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Abstract:  To predict correctly the deformational and the cracking behavior of reinforced concrete 
elements failing in shear using a smeared crack approach, the strategy adopted to simulate the crack 
shear stress transfer is crucial. For this purpose, several strategies for modeling the fracture mode II 
were implemented in a smeared crack model already existing in the FEM-based computer program, 
FEMIX. Special development was given to a softening shear stress-shear strain diagram adopted for 
modeling the crack shear stress transfer. 
The predictive performance of the implemented constitutive model was assessed by simulating up 
to failure a series of eight beams tested to appraise the effectiveness of a new strengthening 
technique to increase the shear resistance of reinforced concrete beams. According to this 
strengthening technique, designated as Embedded Through-Section (ETS), holes are opened 
through the beam’s section, with the desired inclinations, and bars are introduced into these holes 
and bonded to the concrete substrate with adhesive materials. The strengthening elements are 
composed of steel bars bonded to the surrounding concrete with an epoxy adhesive. 
By using the properties obtained from the experimental programs for the characterization of the 
relevant properties of the intervening materials, and deriving from inverse analysis the data for the 
crack shear softening diagram, the simulations carried out have fitted with high accuracy the 
deformational and cracking behavior of the tested beams, as well as the strain fields in the 
reinforcements. The constitutive model is briefly described, and the simulations are presented and 
analyzed. 
 

1 INTRODUCTION 

    Available research shows that the predictive 
performance of computer programs based on 
the finite element method (FEM) and 
incorporating constitutive models for the 

material nonlinear analysis of reinforced 
concrete (RC) structures failing in shear is 
quite dependent on the constitutive model 
adopted to simulate the shear stress transfer in 
the cracked concrete [1]. Recently a total crack 
shear stress-shear strain approach was 
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implemented in a multi-directional fixed 
smeared crack model for a better simulation of 
the strengthened beams failing in shear and in 
flexural/shear [2]. This approach was able of 
simulating the decrease of the total crack shear 
stress with the crack opening, but the stiffness 
predicted by the model for the behaviour of 
some beams was higher than the one registered 
experimentally. Furthermore, due to numerical 
instabilities some simulations were not capable 
of attaining the deflection corresponding to the 
peak load. In this paper a softening diagram is 
proposed for modelling the sliding component 
of the crack constitutive law, and it was 
implemented into a multi-directional fixed 
smeared crack model for capturing with high 
accuracy, not only the deformational and load 
carrying capacity of reinforced concrete beams 
failing in shear, but also the crack patterns 
formed during the loading process of this type 
of structural elements. To appraise the 
predictive performance of this model, it was 
applied on the simulation of the experimental 
tests carried out with a series of RC beams 
shear strengthened according to the embedded 
through-section (ETS) technique. This technique 
consists on opening holes across the depth of the 
beams cross section, with the desired inclinations, 
where bars are introduced and are bonded to the 
concrete substrate with adhesive materials [3]. 
The constitutive model is briefly described in this 
paper, the shear strengthening effectiveness of the 
ETS technique is demonstrated based on the 
obtained results, and the predictive performance 
of the proposed model is assessed by simulating 
the experimental tests. 

2 NUMERICAL MODEL 

Under the framework of the finite element 
analysis, the tested beams are considered as a 
plane stress problem. The description of the 
formulation of the multi-directional fixed 
smeared crack model is restricted to the case 
of cracked concrete, at the domain of an 
integration point (IP) of a plane stress finite 
element. According to the adopted constitutive 
law, stress and strain are related by the 
following equation. 

crcoDσ ε∆ = ∆  (1) 
 

being { }1 2 12, ,
Tσ σ σ τ∆ = ∆ ∆ ∆  and 

{ }1 2 12, ,
Tε ε ε γ∆ = ∆ ∆ ∆  the vectors of the 

incremental stress and incremental strain 
components. Due to the decomposition of the 
total strain into an elastic concrete part and a 
crack part, co crε ε ε∆ = ∆ + ∆ , in equation (1) the 
cracked concrete constitutive matrix, crcoD , is 
obtained with the following equation [4] 
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where coD  is the constitutive matrix of 
concrete, assuming a linear behaviour 
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being Ec and cν  the Young’s modulus and the 
Poisson’s coefficient of concrete, respectively. 
In equation (2) crT  is the matrix that 
transforms the stress components from the 
coordinate system of the finite element to the 
local crack coordinate system (a subscript ℓ is 
used to identify entities in the local crack 
coordinate system). If m cracks occurs at an IP 
 

1 ... ...
Tcr cr cr cr

i mT T T T =    (4) 
 

being the matrix crack orientation of a generic 
i th crack defined by 
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with iθ  being the angle between the x1 axis and 
the vector orthogonal to the plane of the i th 
crack. In equation (2) crD  is a matrix that 
includes the constitutive law of the m cracks 
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with cr
iD  being the crack constitutive matrix of 

the i th crack 
 

,

,

0

0

cr
cr I i
i cr

II i

D
D

D

 
=  
 

 (7) 

 

where ,
cr
I iD  and ,

cr
II iD  represent, respectively, the 

modulus correspondent to the fracture mode I 
(normal) and fracture mode II (shear) of the i th 
crack. The behaviour of non-completely closed 
cracks formed in an IP is governed by the 
following relationship 
 

cr cr crDσ ε∆ = ∆
ℓ ℓ

 (8) 
 

where crσ∆
ℓ

 is the vector of the incremental 
crack stress components in the coordinate 
system of each of the m cracks 
 

,1 ,1 , , , ,... ...

cr

Tcr cr cr cr cr cr
n nt n i nt i n m nt m

σ

σ τ σ τ σ τ
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 (9) 

  

and crε∆
ℓ

 is the vector of the correspondent 
incremental crack strain components 
 

,1 ,1 , , , ,... ...

cr

Tcr cr cr cr cr cr
n nt n i nt i n m nt m

ε

ε γ ε γ ε γ

∆ =
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 (9) 

 

Using the crT  matrix, the vector of the 
incremental crack strain components in the 
finite element coordinate system, crε∆ , can be 
obtained from crε∆

ℓ  
 

Tcr cr crTε ε ∆ = ∆  ℓ
 (11) 

  

and the equilibrium condition 
 

cr crTσ σ∆ = ∆
ℓ

 (12) 
  

must be assured. In the present approach, a 
new crack is arisen in an IP when the angle 
formed between the new crack and the already 
existing cracks, cr

newθ , exceeds a certain 
threshold angle, thθ  (a parameter of the 
constitutive model that in general ranges 
between 30 and 60 degrees [4]). 
The crack opening propagation is simulated 
with the trilinear diagram represented in 
Figure 1, which is defined by the normalized 
stress, iα , and strain, iξ , parameters that define 
the transitions points between the linear 

segments of this diagram. The ultimate crack 
strain, ,

cr
n uε , is defined as a function of the 

parameters iα  and iξ , fracture energy, I
fG , 

tensile strength, ,1
cr

ct nf σ= , and crack band 

width, bl , as follows [4], 
I
fcr

n,u
1 1 2 2 1 2 ct b

G2

f l
ε

ξ α ξ α ξ α
=

+ − +
 (13) 

 

being cr cr
1 n,2 n,1/α σ σ= , 2 ,3 ,1/cr cr

n nα σ σ= , 1 ,2 ,/cr cr
n n uξ ε ε=  

and 2 ,3 ,/cr cr
n n uξ ε ε= . To simulate the fracture mode 

II modulus, cr
IID , a shear retention factor is 

currently used [4, 5]: 

1
cr
II cD G

β
β

=
−

 (14) 

where cG  is the concrete elastic shear modulus 
and β  is the shear retention factor. The 
parameter β  is defined as a constant value or 
as a function of the current crack normal 
strain, cr

nε , and of the ultimate crack normal 
strain, ,

cr
n uε , as follows, 

 

1

,

1

p
cr
n
cr
n u

εβ
ε

 
= −  
 

 (15) 

when 1 1p = , a linear decrease of β  with the 
increase of cr

nε  is assumed. Larger values of 
the exponent 1p  correspond to a more 
pronounced decrease of the β  parameter [4]. 
In structures governed by flexural failure 
modes, this strategy leads to simulations with 
reasonable accuracy. Exceptions occur in 
structures that fail by the formation of a 
critical shear crack. To simulate accurately the 
deformational response and the crack pattern 
up to the failure of this type of structures, the 
adoption of a softening crack shear stress vs. 
crack shear strain relationship (−cr cr

t tτ γ ) is the 
strategy explored in the present work. 
The crack shear stress vs. shear strain diagram 
represented in Figure 2 was adopted in the 
simulations performed in the present work, but 
other more sophisticated diagrams were also 
implemented in FEMIX computer program, 
and their corresponding formulations are 
described in detailed elsewhere [6]. 
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Figure 1: Trilinear stress-strain diagram to simulate the 
fracture mode I crack propagation (cr cr

n ,2 1 n,1σ α σ= , 
cr cr
n ,3 2 n,1σ α σ= , ,2 1 ,

cr cr
n n uε ξ ε= , ,3 2 ,

cr cr
n n uε ξ ε= ). 
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Figure 2: Diagram to simulate the relationship between 
the crack shear stress and crack shear strain component, 
and possible shear crack statuses. 
 
According to the adopted approach for 
modelling the crack shear deformation, 

−cr cr
t tτ γ , the crack shear stress increases 

linearly until the crack shear strength is 
reached, ,

cr
t pτ , (first branch of the shear crack 

diagram), followed by a decrease of the cr
tτ  

with the increase of cr
tγ  (softening branch). 

The diagram represented in Figure 2 is defined 
by the following equations: 
 

( )

( ) ( )
,1 ,

,
, , , ,

, ,

,

0

0

cr cr
t t

cr cr cr
t t t t p

cr
t pcr cr cr cr cr cr

t p t t p t p t t ucr cr
t u t p

cr cr
t t u

D

τ γ

γ γ γ
τ

τ γ γ γ γ γ
γ γ

γ γ

=

 < ≤



= − − < ≤
−

 >

 

(16) 

 

The initial shear fracture modulus, ,1
cr
tD , is 

defined by equation (14) (cr
IID  is replaced by 

,1
cr
tD ) by assuming for β  a constant value in the 

range ]0,1[. The peak crack shear strain, ,
cr
t pγ , 

is obtained using the crack shear strength 
(from the input data), ,

cr
t pτ , and the crack shear 

modulus: 
,

,
,1

cr
t pcr

t p cr
tD

τ
γ =  (17) 

The ultimate crack shear strain, ,
cr
t uγ , depends 

on the crack shear strength, ,
cr
t pτ , on the shear 

fracture energy (mode II fracture energy), 

,f sG , and on the crack bandwidth, bl : 

,
,

,

2 f scr
t u cr

t p b

G

l
γ

τ
=  (18) 

In the present approach it is assumed that the 
crack bandwidth, used to assure that the results 
are independent of the mesh refinement [5], is 
the same for both fracture mode I and mode II 
processes, but specific research should be done 
in this respect in order to assess the influence 
of these model parameters on the predictive 
performance of the behaviour of elements 
failing in shear. 
When the softening constitutive law 
represented in Figure 2 is used to evaluate the 
fracture mode II softening modulus cr

IID  of 

equation (7), its value depends on the branches 
defining the diagram. For this reason five 
shear crack statuses are proposed and their 
meaning is schematically represented in 
Figure 2. The crack mode II modulus of the 
first linear branch of the diagram is defined by 
equation (14), the second linear softening 
branch is defined by 

 
,

,2
, ,

cr
t pcr cr

II t cr cr
t u t p

D D
τ

γ γ
= = −

−
 (19) 

and the crack shear modulus of the unloading 
and reloading branches is obtained from 

 ,max
,3 4

,max

cr
tcr cr

II t cr
t

D D
τ
γ−= =  (20) 

being ,max
cr
tγ  and ,max

cr
tτ  the maximum crack 

shear strain already attained and the 
corresponding crack shear stress determined 
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from the softening linear branch. Both 
components are stored to define the 
unloading/reloading branch (see Figure 2). 

In free-sliding status, ,>cr cr
t t uγ γ , the crack 

mode II stiffness modulus, ,5
cr cr
II tD D= , is null. 

To avoid numerical instabilities in the 
calculation of the stiffness matrix, when the 
crack shear status is free-sliding a residual 
crack shear stress value is assumed for this 
phase of sliding. 
A free-sliding status is also assigned to the 
shear crack status when ,>cr cr

n n uε ε . The details 

about how the shear crack statuses are treated 
can be consulted elsewhere [6]. 

3 PREDICTIVE PERFORMANCE OF 
THE NUMERICAL MODEL  

3.1 Introduction 

    To assess the predictive performance of the 
model described in previous section, the 
experimental tests carried out with a series of 
rectangular cross section reinforced concrete 
(RC) beams shear strengthened according to 
the Embedded Through-Section (ETS) 
technique were simulated. According to this 
strengthening technique, holes are opened 
through the beam’s section, with the desired 
inclinations, and bars are introduced into these 
holes and bonded to the concrete substrate 
with adhesive materials. The strengthening 
elements are composed of steel bars bonded to 
the surrounding concrete with an epoxy 
adhesive. 

3.2 Series of beams 

    The experimental program is formed by a 
series of beams with a cross section of 
150x300 mm2, with a total length of 2450 mm 
and a shear span length of 900 mm (Figures 3 
and 4). The longitudinal tensile and 
compressive steel reinforcement consist of two 
steel bars of 25 mm diameter and two steel 
bars of 12 mm diameter, respectively. Steel 
stirrups of two vertical arms and 6 mm 
diameter were used. The concrete clear cover 
for the top, bottom and lateral faces of the 
beams was 20 mm. The experimental program 
is made up of a beam without any shear 
reinforcement (reference beam), and a beam 
for each of the following shear reinforcing 
systems: (i) steel stirrups of ∅6 mm at a 
spacing of 300 mm (S300.90), (ii) ETS 
strengthening bars at 90º (E300.90) or at 45º 
(E300.45) in relation to the beam axis, with a 
spacing of 300 mm, (iii) steel stirrups of ∅6 
mm at a spacing of 300 mm and ETS 
strengthening bars at 90º (S300.90/E300.90) or 
at 45º (S300.90/E300.45), with a spacing of 
300 mm, (iv) steel stirrups of ∅6 mm at a 
spacing of 225 mm (S225.90), and (v) steel 
stirrups of ∅6 mm at a spacing of 225 mm and 
ETS strengthening bars at 90º, with a spacing 
of 225 mm (S225.90/E225.90). ETS bars of 
∅10 mm were used.  
It should be noted that an ETS bar was 
designed as a stirrup of one arm, following the 
design recommendations of ACI 318 Code [7] 
for the steel stirrups in the context of shear 
reinforcement or RC beams. 
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Figure 3: Test configuration. All dimensions are in mm 
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Figure 4: General information about the beams of the experimental program 
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3.3 Test setup and monitoring system 
    Figure 5 depicts the positioning of the 
sensors for data acquisition. To measure the 
deflection of a beam, four linear voltage 
differential transducers (LVDTs) were 
supported in a suspension yoke. The LVDT 
3558 was also used to control the tests at a 
displacement rate of 20 µm/s up to the failure 
of the beams. The beams were loaded under 
three-point bending with a shear span of 900 
mm. This corresponded to an a d  ratio equal 
to 3.44, where a  is the shear span and d the 
depth of the longitudinal reinforcement 
(Figure 3). The applied load (F) was measured 
using a load cell of ±500 kN and accuracy of 
±0.05%. Two or three electrical resistance 
strain gauges, depending on the shear 
reinforcing arrangement, were installed in the 
steel stirrups to measure the strains. 
Additionally, six or eight strain gauges, SGs, 
were bonded on the ETS strengthening bars 
according to the strengthening arrangement 
represented in Figure 4. 

30
0

2450

LVDT
3558

LVDT
82803

LVDT
83140

LVDT
19906

300 300 300 675 675

c

F (Control)

100 100

 

L/3

L/3

L/3
 

L/3

L/3

L/3

 
Figure 5: Monitoring system. 

3.4 Material properties 

The values for the characterization of the 
main properties of the materials used in the 
present work were obtained from experimental 
tests and can be found elsewere [3]. 

 
3.5 Main results 

    Figure 6 shows the relationship between the 
total applied load and the deflection of the loaded 
section, F-u, of the beams. For similar shear 
reinforcement ratio and ETS strengthening ratio 
the RC beams reinforced with steel stirrups or 
strengthened with ETS bars have identical 
behavior (S300.90 and E300.90 beams). For the 
beams with ETS bars of equal spacing but 
different inclination (which means different 
shear strengthening ratio), ETS bars applied at 

45-degrees have provided a higher increase in 
terms of load carrying capacity and deflection at 
peak load (E300.90 versus E300.45 beams). Due 
to the significant increase provided by the ETS 
bars for the shear resistance, the beams 
reinforced with steel stirrups and strengthened 
with ETS bars collapsed by the yielding of the 
longitudinal steel bars, followed by concrete 
crushing.  
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Figure 6: Relationship between the load and the 

deflection at the loaded section. 

3.6 Finite element mesh, integration 
schemes and constitutive laws for the 
materials 

    To simulate the crack initiation and the 
fracture mode I propagation of reinforced 
concrete, the trilinear tension-softening 
diagram represented in Figure 1 was adopted. 
To distinguish concrete elements in tension 
softening and in tension stiffening, distinct 
values were considered for the concrete of the 
elements in the first two rows of finite element 
mesh (elements considered in tension 
stiffening). The values that define these 
diagrams are indicated in Table 1. In this table 
is also included the data necessary to define 
the shear-softening diagram represented in 
Figure 2, adopted to simulate the degradation 
of crack shear stress transfer after crack 
initiation. Since no available experimental 
results exist to characterize the crack shear 
softening diagram, the adopted values were 
obtained by inverse analysis by fitting the 
experimental results as best as possible. 
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An example of a finite element mesh used for 
the simulation of the S225.90/E225.90 beam is 
represented in Figure 7. The beams are 
modelled with a mesh of 8-noded serendipity 
plane stress finite elements. A Gauss-Legendre 
integration scheme with 3×3 IP is used in all 

concrete elements. The longitudinal steel bars, 
stirrups and the ETS strengthening bars are 
modelled with 3-noded perfect bonded 
embedded cables (one degree-of-freedom per 
each node) and a Gauss-Legendre integration 
scheme with 3 IP (integration point) is used. 

 

Table 1: Values of the parameters of the concrete constitutive model 
 

Poisson’s ratio (cν ) 0.15 

Initial Young’s modulus ( cE ) 31100 N/mm2 (Batch 1) 
30590 N/mm2 (Batch 2) 

Compressive strength (cf ) 30.78 N/mm2 (Batch 1) 
28.81 N/mm2 (Batch 2) 

Trilinear tension-stiffening diagram (1) 
fct = 2.0 N/mm2 ; Gf = 0.06 N/mm 
ξ1 = 0.01; α1 = 0.5; ξ2 = 0.5; α2 = 0.2 

Trilinear tension-softening diagram (1)  
fct = 1.8 N/mm2 ; Gf = 0.05 N/mm 
ξ1 = 0.01; α1 = 0.4; ξ2 = 0.5; α2 = 0.2 

Parameter defining the mode I fracture energy  
available to the new crack [4] 

n = 2 

Parameters for defining the softening crack shear  
stress-shear strain diagram of concrete in the tension-stiffening  ,τ cr

t p =  1.38 N/mm2; ,f sG =0.5 N/mm; β =0.2 

Parameters for defining the softening crack shear  
stress-shear strain diagram of concrete in the tension-softening ,τ cr

t p =  1.38 N/mm2; ,f sG =0.7 N/mm; β =0.2 

Crack bandwidth, lb 
Square root of the area of Gauss integration 
point 

Threshold angle [4] αth = 30º 

Maximum number of cracks per integration point 2 
(1)

 ,1
cr

ct nf σ= ; 1 ,2 ,/cr cr
n n uξ ε ε= ; cr cr

1 n,2 n,1/α σ σ= ; 2 ,3 ,/cr cr
n n uξ ε ε= ; 2 ,3 ,1/cr cr

n nα σ σ=  (see Figure 1) 

 

 

Figure 7: Finite element mesh (dimensions are in mm) 

For modeling the behavior of the longitudinal 
steel bars, stirrups and ETS bars, the stress-
strain relationship represented in Figure 8 was 
adopted. The curve (under compressive or 
tensile loading) is defined by the points 
PT1=( ,ε σsy sy), PT2=( ,ε σsh sh) and 

PT3=( ,ε σsu su), and a parameter p that defines 

the shape of the last branch of the curve. 
Unloading and reloading linear branches with 

slope ( )σ ε=s sy syE  are assumed in the 

present approach. The values of the parameters 
of the constitutive model for the steel are 
indicated in Table 2. 
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σs

εs

Es

PT1
(ε   ,σ  )sy sy

PT2
(ε   ,σ   )sh sh

PT3

(ε   ,σ   )su su

Es

 
Figure 8: Uniaxial constitutive model for the steel bars [4]. 

 

Table 2: Values of the parameters of the steel 
constitutive model. 

 

Steel bar 
diameter 

(mm) 

PT1

[ ]

( )

ε
σ

−sy

sy MPa

 

PT2

[ ]

( )

ε
σ

−sh

sh MPa

 

PT3

[ ]

( )
su

su MPa

ε
σ

−  
p

 

6 
2.750×10-3 

559.14 
2.000×10-2 

708.14  
5.000×10-2 

708.93 
1 

10 
2.660×10-3 

541.60 
2.405×10-2 

643.23  
5.000×10-2 

643.23 
1 

12 
2.350×10-3 

484.68 
2.302×10-2 

655.00  
5.000×10-2 

655.53 
1 

25  
2.270×10-3 

507.68 
3.450×10-3 

608.75  
2.052×10-2 

743.41 
1 

3.7 Simulations and discussion 

    The experimental and the numerical 
relationships between the applied load and the 
deflection at the loaded section for the tested 
beams are compared in Figure 9. In these 
figures a horizontal line corresponding to the 
maximum experimental load (in dash) is also 
included. The crack patterns of these beams at 
the end of the analysis (at the end of the last 
converged load increment) are represented in 
Figure 10. 
    These figures show that the numerical model 
is able to capture with good accuracy the 
deformational response of the beams and 
captured with good precision the localization 
and profile of the shear failure crack. Figure 11 
also shows that the numerical simulations fit 
with good accuracy the strains measured in the 
steel stirrups and ETS strengthening bars, 
which means that the assumption of perfect 
bond between composite materials and 

surrounding concrete is acceptable, at least in 
the design point of view for the serviceability 
and ultimate limit states. Similar level of 
accuracy was obtained in the simulations of 
the other beams. At the moment of the shear 
failure, the longitudinal steel bars have already 
yielded in some of the beams, which is quite 
well predicted by the numerical models, since 
vertical completely open cracks were formed 
(flexural cracks). 
 
4 CONCLUSION 

    This study presents the relevant results of an 
experimental program for the assessment of 
the effectiveness of the Embedded Through-
Section (ETS) technique for the shear 
strengthening of reinforced concrete beams. 
From the obtained results, it can be concluded 
that: 
1) the use of steel ETS bars for the shear 
strengthening provided significant increase of 
the load carrying capacity of RC beams for the 
both bar orientations considered. The 
effectiveness is also significant in terms of the 
deflection performance. The shear 
reinforcement system composed by inclined ETS 
strengthening bars was more effective than 
vertical ETS bars, assuring a better performance 
in terms of load and deflection capacities.  
2) the capability of a FEM-based computer 
program to predict with high accuracy the 
behavior of this type of structures up to its 
collapse was highlighted. The introduction of 
the shear crack softening diagram into the 
multi-directional fixed smeared crack model 
has improved significantly the deformational 
behavior and the load carrying capacity. The 
crack pattern of the tested beams and the strain 
fields in the reinforcements were also captured 
with high accuracy. Due to the lack of specific 
experimental tests, the data to define the shear 
crack softening diagram was obtained by 
inverse analysis. It can be concluded that the 
implementation of the shear softening diagram 
in the multi-directional fixed smeared crack 
model available in the FEMIX computer 
program has improved its capabilities to 
predict with higher accuracy the behavior of 
structures failing in shear or in flexural/shear. 
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Figure 9: Load-deflection at the loaded section 
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Figure 10: Crack patterns of the beams (in pink colour: crack completely open; in red colour: crack in the opening 
process; in cyan colour: crack in the reopening process). 
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Figure 11 - Load vs. strains in the shear 
reinforcement of the beams: (a) S225.90, and (b) 

E300.45 

 


