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SUMMARY  

The flexural behavior of RC beams strengthened with prestressed near-surface-mounted (NSM) 

carbon-fiber-reinforced-polymer (CFRP) laminate was investigated in this paper. For this purpose, 

four RC beams were tested under monotonic four-point loading. One beam was kept un-strengthened, 

as a control beam, and another one was strengthened with a non-prestressed NSM CFRP laminate. 

The remaining beams were strengthened with NSM CFRP laminates prestressed at 20% and 40% of 

its ultimate tensile strength. The prestressed NSM CFRP laminate technique provided a significant 

increment of the load carrying capacity for deflection levels corresponding to serviceability and 

ultimate limit states. A numerical strategy was also employed to simulate the flexural behavior of the 

tested RC beams. The experimental and numerical researches are described and the relevant results 

are presented and discussed. 

 

 

1. INTRODUCTION  

Carbon Fiber Reinforced Polymer (CFRP) reinforcements have been showing to be effective to 

increase the flexural and the shear resistance of reinforced concrete (RC) structures by using the Near 

Surface Mounted (NSM) strengthening technique [1-3]. NSM is based on introducing CFRP elements 

into slits opened on the concrete cover of the RC members to strengthen, and bonded to the 

surrounding concrete with an adhesive [1]. The CFRP laminates of rectangular cross section provide 

higher strengthening efficacy than round and square cross section bars due to higher ratio between 

perimeter and cross sectional area, and also due to the higher confinement effectiveness created by the 

concrete surrounding the reinforcement [4,5]. However, although NSM CFRP laminates can increase 

the ultimate flexural strength of RC members, they do not significantly increase the load carrying 

capacity for deflection levels corresponding to the serviceability limit state (SLS). Recent research 

showed that applying NSM CFRP reinforcements with a certain prestress level can mobilize better the 

potentialities of these high tensile strength materials, with an appreciable increase of the load carrying 

capacity of RC beams at SLS [6-9]. However, competitive devices, capable of applying NSM 

prestressed laminates according to the constraints imposed by real applications still need to be 

developed. In the present work the preliminary experimental tests with RC beams strengthened 

according to a technique already proposed [10] are presented. For this purpose, four RC beams were 

tested under monotonic four-point loading configuration. The influence of the prestressed level on the 

flexural response of these beams was assessed, with a special focus on the benefits in terms of load 

carrying capacity at SLS, as well as its influence in the ultimate deflection of the beams. The 

experimental program is described and the main results are presented and discussed. 

Advanced numerical simulations based on the finite element method (FEM) are a competitive 

alternative to experimental research for the assessment of the effectiveness of the strengthening 

technique [11,12]. However, for predicting realistically the behavior of RC beams strengthened 
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according to the new technique, the nonlinear behavior of the material constituents, as well as the 

CFRP-adhesive-concrete interfaces should be correctly modeled, which is still a challenge in the 

computational mechanical domain. Furthermore, in the numerical analysis carried out, the realistic 

prestressing process of the CFRP elements adopted in the experimental tests was simulated. The 

numerical research conducted is briefly described and the relevant results are presented and discussed.  

 

 

2. EXPERIMENTAL PROGRAM  

The experimental program consisted of four RC beams: a non-strengthened RC beam serving as a 

control beam, a strengthened RC beam with a non-prestressed CFRP laminate (herein designated as 

passive CFRP laminate), and two strengthened RC beams reinforced with a NSM CFRP prestressed 

laminate, one at 20% and the other at 40% of the ultimate tensile strength of the CFRP laminate.  

 

2.1 Geometry, reinforcement, loading and supporting conditions of the beams 

The geometry, supporting and loading conditions are schematically represented in Fig. 1a. The RC 

beams were monotonically tested under four-point loading at a deflection rate of 1.2 mm/min. Each 

beam was reinforced in the tension and in the compression faces with 2ɸ10 steel bars, and included 

closed steel stirrups of 6 mm diameter spaced at 80mm to avoid shear failure (Fig. 1b).  

For the strengthened RC beams, a groove of 6mm × 24mm cross section was cut on the concrete cover 

(Fig. 1b) along the total length of the beam. To apply the prestressed CFRP laminate for the 

strengthening of the RC beams, a CFRP laminate was placed in the groove with no epoxy and then, 

after applying the prestressing force, the groove was completely filled with the epoxy adhesive. 

However, in order to simulate the constraints imposed by the supports in real strengthening 

applications, only 2100mm of the groove was filled with epoxy adhesive, which means that in a length 

of 150mm in each extremity of the beams the CFRP laminate was not bonded to the concrete. The 

cross section of the CFRP laminates had 1.4mm of thickness and 20mm of depth. 

 

 
Figure 1: Beams of the experimental program: a) geometry, loading and support conditions,  

b) reinforcement details 
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2.2 Material Properties 

Table 1 includes the values of the main properties of the concrete, steel bars, CFRP laminate and 

epoxy adhesive. The average concrete compressive strength and young modulus were evaluated from 

uniaxial compression tests on cylinders of 150mm diameter and 300mm height [13]. 

 

Table 1: Material properties 

Material Type 
Number of  

samples 
Property MPa 

Concrete 

3 Compressive strength at 28 days 21.2 (3.3) 

2 Compressive strength at 153 days§ 32.2 (1.1) 

3 Young’s modulus at 28 days 25.9×103 (2.0×103) 

2 Young’s modulus at the 153 days§ 27.4×103 (2.4×103) 

Steel 

Bars 

5 Young’s modulus of bars ɸ10 208×103 (6×103) 

4 Young’s modulus of bars ɸ6 218×103 (8×103) 

5 Yield tensile strength of bars ɸ10 516 (3) 

4 Yield tensile strength of bars ɸ6 613 (14) 

5 Ultimate tensile strength of bars ɸ10 636 (4) 

4 Ultimate tensile strength of bars ɸ6 696 (9) 

CFRP  

Laminates 

4 Tensile strength 2330 (401) 

4 Elastic modulus 173×103 (23×103) 

Epoxy  

Adhesive 

5 Tensile strength 20.6 (0.7) 

5 Elastic modulus 7.42 (0.29) 

Average (Standard Deviation) 
§ 153 days is the age of testing. 

 

 

2.3 Prestressing 

One of the main challenges to use the prestressing system for strengthening of RC beams is the access 

to the extremities of the beams as support for the actuators which is not feasible in real strengthening 

applications. In order to overcome this drawback, in 2009 Barros proposed a prestressing system for 

the NSM-CFRP flexural strengthening of RC elements, which is schematically described in Fig. 2 

[10]. The description of this concept can be found in [10], and design details of all the components of 

this system are available in [14,15]. 

 

              

Figure 2: Telescopic device to apply prestressed NSM CFRP laminates  

 

For laboratory conditions, the prestressing system represented in Fig. 3 was designed. The sliding 

extremity of the prestressing system consists of a hollow hydraulic cylinder with a maximum capacity 

of 20 ton, to which is connected a through-hole load cell of 200 kN.  

For the beams prestressed at a level of 20% and 40% a load of 11.1 kN and 22.8 kN was applied to the 

laminate, respectively, which corresponds to a stress level of 396 MPa and 814 MPa. During the 

curing period of the epoxy (72 hours) a maximum fluctuation of 27 MPa was recorded, due to, mainly, 

temperature variation of the environmental conditions. An average rate of load decay of 0.3 kN/min 

was imposed for the releasing of the prestress in order to avoid cracking in the surrounding concrete 

and sliding at the CFRP/adhesive/concrete interfaces. 

 

Anchorage Piece 

Telescopic Tube FRP laminate 

Clamping Wedges 
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Figure 3: Prestressing system for laboratory experimental programs 

 

 

3. EXPERIMENTAL RESULTS 

 

3.1. Force-Deflection 

The force-deflection relationships for all tested beams are indicated in Fig. 4, where it can be 

concluded that all the strengthened beams provided an increase of about 60% in terms of the ultimate 

load carrying capacity, when the control RC beam is considered for comparison purposes. However, at 

the deflection level corresponding to SLS (8.8mm) [16], the load increment provided by passive, 20% 

and 40% prestressed CFRP laminates was 32%, 47% and 55%, respectively, revealing the benefits of 

the prestressing. It is worth noting that the beams prestressed with 20% and 40% exhibited similar 

behavior in the phase between crack initiation and yielding. This fact can be attributed to the low 

CFRP reinforcement ratio, as well as to a possible lower concrete tensile strength of the beam 

reinforced with 40% when compared to the beam prestressed with 20%. However, at the moment of 

yield initiation, the effect of the 40% prestress is evident since it is visible that the deflection level at 

which it occurred has increased. 

 

  
a) b) 

Figure 4: Load-deflection curves of tested beams up to: a) ultimate; b) deflection at SLS 

 

In Table 2, the relevant results obtained in the tests are indicated, where: Δi is the initial deflection due 

to the prestress load; Pcr is the load at cracking initiation and Δcr its corresponding deflection; Py is the 

load at yield initiation of the longitudinal tensile bars and Δy its corresponding deflection; Psr is the 

load at SLS; Pu is the ultimate load and Δu its corresponding deflection; Psrc is the load at SLS of 

control beam. 

 

Table 2: Main results obtained in the tested beams 

RC Beams 
Δi  
 

(mm) 

Pcr  
 

(kN) 

Δcr  
 

(mm) 

Py  
 

(kN) 

Δy  
 

(mm) 

Psr  
 

(kN) 

Pu  
 

(kN) 

Δu  
 

(mm) 

sr src

src

P P

P
 (%) 

Control 0.00 13.81 0.30 50.42 6.00 51.86 57.12 24.46 0.00 

Passive 0.00 16.55 0.35 62.27 6.35 68.32 92.97 24.46 31.74 

20%Prestress -0.08 18.70 0.35 68.16 5.90 76.38 94.00 19.36 47.28 

40%Prestress -0.18 20.73 0.31 74.24 6.61 80.35 95.16 16.92 54.94 
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3.2 Failure Modes 

The crack patterns of all beams consisted predominantly on flexural cracks. However, two distinct 

types of failure modes were observed: the control beam failed by concrete crushing at top face after 

yielding of tension steel bars, while all strengthened RC beams failed by rupturing of the CFRP 

laminate after the yielding of the tension steel bars and before concrete crushing. 

 

3.3 Energy Absorption  

To evaluate the energy absorption capability of all the beams, the energy absorption of the tested 

beams was determined by integrating the area under the force-deflection curves up to the service and 

ultimate load/deflection (defined in Table 2). The obtained values are indicated in Table 3, where ϕSLS 

and ϕULS are the energy absorption of the beams up to the service and ultimate load level, respectively, 

and the subscript c refers to the energy absorption of the control beam. Fig. 5 evidences that the 

increase in the prestress level enhances the service energy absorption even though the ultimate energy 

absorption decreases almost linearly with the applied prestress. Nevertheless, for the prestress level of 

40%, the energy absorption at ultimate load level is almost equal to the one produced by the control 

beam. This reveals that, despite the loss energy absorption, the performance of this beam under this 

prestress level is still significant and it is therefore considered that, for this series of beams, 40% is the 

optimum prestress level. 

 

Table 3: Energy absorption of beams 

RC Beams 
ϕSLS  

(kN.mm) 

ϕULS  

(kN.mm) 

(ϕSLS - ϕSLS,c) / ϕSLS,c  

(%) 

(ϕULS – ϕULS,c) / ϕULS,c  

(%) 

Control 335.2 1183.0 0.0 0.0 

Non-Prestress 414.8 1687.0 23.7 42.6 

20%Prestress 473.7 1379.0 41.3 16.6 

40%Prestress 488.4 1205.1 45.7 1.9 

 

 

 
Figure 5: Ultimate energy absorption of beams compared to control beam 

 

 

4. NUMERICAL MODELING 

 

4.1 FE Model Description  

A 3D finite element model was used to simulate the behavior of the tested beams. 3D eight-node solid 

elements were used to model the concrete, CFRP laminate and epoxy adhesive. 3D two-node truss 

elements were adopted to model the steel bars. To reduce the computational time, a quarter of the full 

size beam was modeled, taking the advantage of the double symmetry of the beams. The loading and 

boundary conditions of the model were applied according to the particularities of the test setup. 

Preliminary analyses were carried out in order to obtain a mesh refinement that does not compromise 

the accuracy of the simulations. Furthermore, a fine mesh refinement was applied in the zones where 

relatively high stress gradients are expected to occur, and the final mesh is depicted in Fig. 6. 
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Figure 6: Finite element mesh of the tested beams (a quarter of the beam was selected) 

 

The Nonlinear Concrete Damaged Plasticity (CDP) model was selected to simulate the concrete 

nonlinear behavior [22]. In this CDP model, the concepts of linear isotropic elasticity in combination 

with isotropic tensile and compressive plasticity are used to simulate the inelastic behavior of the 

concrete. The CDP model considers non-associated potential plastic flow resulting in a non-symmetric 

stiffness matrix. The Drucker-Prager hyperbolic function was used to assess the flow potential [22]. 

The CDP model assumes that tensile cracking and compressive crushing of the material are the two 

main failure mechanisms. The concrete stress-strain relation for uniaxial compression was obtained 

according to the recommendations of CEB-FIP model code [17]. To describe the concrete tensile 

behavior, a linear stress-strain relation was assumed for uncracked concrete, and a stress-crack 

opening relation  according to CEB-FIP model code was used for the cracked concrete (with tensile 

fracture energy, Gftc, of 0.08 N/mm) [17]. 

The values of the CDP model parameters were estimated based on the recommended range of values, 

by determining those that assure the best prediction of the force-deflection recorded in the 

experimental test with the control beam [18-22]. These parameters, used in the numerical simulations, 

were determined as follows: 

- Dilation angle, ψ: is the inclination of the failure surface towards the hydrostatic axis, measured in 

the meridional plane. It is physically explained as the concrete internal friction angle and it usually 

ranges between 36º and 40º [21]. In the numerical simulations, the value of 38º was adopted; 

- Plastic potential eccentricity, e: adjusts the shape of meridional plane (herein assumed as a 

hyperbola) at which the function approaches an asymptote, meaning that the flow potential tends to a 

straight line in the meridional plane as the eccentricity tends to zero [21-22]. This eccentricity can be 

considered equal to the ratio between tensile and compressive strength of concrete or, in alternative, 

0.1 as recommended by CDP model [21]; 

- Stress ratio fb0/fC0: is the ratio between the initial biaxial compressive yield stress and the initial 

uniaxial compressive yield stress, which was taken as 1.16, as recommended by CDP model [22] 

- Shape of the loading surface, Kc: describes the ratio of the distance between the hydrostatic axis and 

the compression meridian and the tension meridian in the deviatoric cross section, respectively [21]. 

Kc ranges between 0.5 and 1 and the CDP default value of 2/3 was assumed in the analyses; 

- Viscosity parameter, VP: it was assumed to be zero in the analyses. 

 

 

 

 

Support 
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Elasto-plastic models with associated plastic flow were used to simulate the behavior of epoxy 

adhesive and steel bars. This means that the inelastic deformation rate is normal to the yield surface 

[22]. The perfect plasticity model, with no hardening, was used to simulate the epoxy adhesive 

behavior. On the other hand, the isotropic hardening plasticity model was considered to simulate the 

behavior of steel bars up to its ultimate tensile strength in agreement with the results of the tensile 

tests. A linear elastic stress-strain relation up to the ultimate tensile strength was adopted to simulate 

the tensile behavior of the CFRP laminates.  

To simulate the bond behavior of the CFRP laminate-adhesive-concrete interfaces, two surface-based 

contact interfaces were defined. One was used at the laminate-epoxy adhesive interface, while the 

other was applied at the concrete-epoxy adhesive interface. A mixed mode of debonding including 

stress-separation (in the normal direction of the interface element) and shear stress-slip (on both 

directions of the interface element plane) was used to simulate the concrete-epoxy adhesive interface, 

while for the laminate-epoxy interface only the shear stress-slip, in both directions of the plane, was 

considered. A linear softening law was defined to describe damage evaluation in the interface.  

To describe the shear stress-slip behavior in the interface between the epoxy adhesive and the 

concrete, the values of the maximum shear stress (τmax), maximum shear slip (δmax), and the shear 

fracture energy (Gfs) were obtained from Eqs.(1-3) [23].  

 

τmax = (0.802+0.078 . υ) .  fc
0.6 (1) 

δmax=(0.976 . υ0.526) / (0.802+0.078 . υ) (2) 

Gfs= (τmax . δmax )/2 (3) 

 

where   is the aspect ratio of the interface failure plane defined as (groove depth+1mm)/(groove 

width+2mm), and fc is the concrete compressive strength. According to these equations and the 

geometric/material characteristics of the beams previously described in section 2, the values of 

τmax=8.4 MPa, δmax=1.7 mm, and Gfs=7.1 N/mm were used for the shear stress-slip model.  

 

Concerning the stress separation components, the maximum tensile stress of the interface was limited 

to the concrete tensile strength and, therefore, failure is assumed to occur in the surrounding concrete 

when the tensile stress exceeds the concrete tensile strength (σtc) [12]. The tensile fracture energy was 

considered to be equal to the fracture energy of concrete (Gftc). So, the values of σtc=2.51 MPa and 

Gftc=0.08 N/mm were used for modeling the normal stress-separation behavior. 

To model the interface between the epoxy adhesive and the CFRP laminate, the following shear stress-

slip law was used [24]: 
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 (4) 

 

where τm and sm are the maximum shear stress and its corresponding slip, respectively, and   and    

are parameters defining the shape of the pre- and post-peak τ-s curves. The values of these parameters 

were found in literature [24] for concrete with similar strength. The shear fracture energy of this 

interface was estimated to be equal to the area under the shear stress-slip curve, imposing 1.7 mm as 

the maximum admissible slip. Thus, the values of α=0.16, α’=0.32, sm=0.23 mm, τm=20 MPa and 

Gfs=23.56 N/mm were used for defining the shear bond-slip model. 

These equations were selected due to their simplicity and ability to simulate appropriately the bond 

behavior between epoxy adhesive and both CFRP laminate and concrete. 

The following four steps of the experimental tests were simulated numerically in order to reproduce, 

as much as possible, the real test conditions: 

Step 1: Applying prestressing force on the CFRP laminate. 

Step 2: Introducing the interfaces between concrete/epoxy adhesive and CFRP laminate/epoxy 

adhesive, assuming that the properties of the interfaces correspond to a hardened stage of the epoxy. 
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Step 3: Release the prestressing force. 

Step 4: Applying the monotonic load up to the collapse of the beam. 

 

4.2 Assessment of the predictive performance of the numerical strategy 

Fig. 7 compares the force versus mid span deflection obtained numerically and experimentally. The 

obtained results show the high predictive performance of the adopted numerical strategy. 

 

a)  b)  

c)  d)  

Figure 7: Comparison between experimental and numerical load-mid deflection curves,  

a) Control beam, b) Non-prestressed beam, c) 20% prestressed beam, d) 40% prestressed beam 

 

The good predictive performance is also evidenced in Fig. 8, where the relationship between the 

applied load and the tensile strain in the laminate, measured at mid-section of the beam, is represented.  

 

 
Figure 8: Load versus strain in CFRP laminate at mid-section of the beam 

 

The comparison between the experimental and the numerical ultimate energy absorption curves with 

respect to the control beam is presented in Fig. 9. The best prestress level obtained from FE analysis 

was 36.6%, which is in good agreement with the experimental one (40%).  
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Figure 9: Comparison between experimental and numerical energy absorption capacity of the 

strengthened beams 
 

 

5. CONCLUSIONS 

A strengthening technique based on applying prestressed CFRP laminates into slits cut on the concrete 

cover was used with the purpose of increasing the load carrying capacity of RC beams failing in 

bending, mainly at serviceability limit state conditions. A nonlinear 3D finite element model was used 

to predict the flexural behavior of the tested beams. According to this research, it can be concluded 

that: 

1. A CFRP reinforcement ratio of ρf = Af / (b df) = 0.06% has conducted to an increase of about 63% in 

the ultimate load carrying capacity of beams with a steel reinforcement ratio of 

ρs = As / (b ds) = 0.39%, regardless the fact the CFRP laminate is passive or applied with a prestress 

level of 20% and 40%. 

2. A prestress level of 20% and 40% conducted to an increase of 47% and 55% in terms of load 

carrying capacity at deflection corresponding to the serviceability limit state, while passive CFRP 

laminate provided an increase of 32%.   

3. Prestressing of NSM CFRP laminate was effective in terms of increasing the load at crack and steel 

yield initiation.  

4. When compared to the energy absorption of the control beam, the strengthened beams exhibited a 

linear decreasing of the energy absorption with the increase of the prestress level. 

5. Considering the criteria of preserving the energy absorption capacity of the control beam with the 

highest increase of load carrying capacity for serviceability limit state conditions, a prestress level of 

40% seems to be the most appropriate for the tested series of beams. 

6. Since all the strengthened beams failed by the rupture of the CFRP laminate, the used epoxy 

adhesive provided proper bond conditions between adhesive and both the surrounding materials: 

CFRP laminate and concrete.  

7. The proposed 3D finite element approach that simulates concrete/ adhesive and laminate/ adhesive 

interfaces simultaneously, as well as the relevant nonlinear features of the intervening materials, has 

predicted with high accuracy the deformational response of the tested beams, as well as relevant 

results determined experimentally.  
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