
Improved Binary Artificial Fish Swarm Algorithm for the 0–1

Multidimensional Knapsack Problems

Md. Abul Kalam Azada,∗, Ana Maria A.C. Rochaa,b, Edite M.G.P. Fernandesa

aAlgoritmi R&D Centre
bDepartment of Production and Systems

School of Engineering, University of Minho, 4710-057 Braga, Portugal

Abstract

The 0–1 multidimensional knapsack problem (MKP) arises in many fields of opti-
mization and is NP-hard. Several exact as well as heuristic methods exist. Recently,
an artificial fish swarm algorithm has been developed in continuous global optimiza-
tion. The algorithm uses a population of points in space to represent the position
of fish in the school. In this paper, a binary version of the artificial fish swarm al-
gorithm is proposed for solving the 0–1 MKP. In the proposed method, a point is
represented by a binary string of 0/1 bits. Each bit of a trial point is generated by
copying the corresponding bit from the current point or from some other specified
point, with equal probability. Occasionally, some randomly chosen bits of a selected
point are changed from 0 to 1, or 1 to 0, with an user defined probability. The
infeasible solutions are made feasible by a decoding algorithm. A simple heuristic
add item is implemented to each feasible point aiming to improve the quality of that
solution. A periodic reinitialization of the population greatly improves the quality
of the solutions obtained by the algorithm. The proposed method is tested on a set
of benchmark instances and a comparison with other methods available in litera-
ture is shown. The comparison shows that the proposed method gives a competitive
performance when solving this kind of problems.

Keywords: 0–1 knapsack problem, multidimensional knapsack, artificial fish
swarm, decoding algorithm

∗Corresponding author
Email addresses: akazad@dps.uminho.pt (Md. Abul Kalam Azad), arocha@dps.uminho.pt

(Ana Maria A.C. Rocha), emgpf@dps.uminho.pt (Edite M.G.P. Fernandes)

Preprint submitted to Swarm and Evolutionary Computation August 2, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55626739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction1

The 0–1 multidimensional knapsack problem (MKP) is a NP-hard combinatorial2

optimization problem that arises in many practical problems, such as capital bud-3

geting and project selection problem [1, 2], allocating processors and databases in a4

distributed computer system [3], project selection, cargo loading and so on [4]. The5

0–1 MKP is formulated as follows:6

maximize z(x) ≡ cx

subject to Ax ≤ b

xj ∈ {0, 1}, j = 1, 2, . . . , n,
(1)

where c = (c1, c2, . . . , cn) is an n-dimensional row vector of profits, x = (x1, x2, . . . , xn)
T

7

is an n-dimensional column vector of 0–1 decision variables,A = [ak,j], k = 1, 2, . . . ,m,8

j = 1, 2, . . . , n is an m× n coefficient matrix of resources and b = (b1, b2, . . . , bm)
T is9

an m-dimensional column vector of resource capacities. It should be noted here that,10

in a 0–1 multidimensional knapsack problem, each element of c, A and b is assumed11

to be nonnegative. The goal of the 0–1 MKP is to find a subset of n items that12

yields maximum profit z without exceeding resource capacities b. There are many13

knapsack-like problems. The knapsack family includes the 0–1 knapsack problem14

(KP), where there is just one single constraint (m = 1). Effective approximate al-15

gorithms have been developed for obtaining its near optimal solutions. If a bounded16

amount of each item type is available, then the bounded knapsack problem arises. On17

the other hand, the unbounded knapsack problem is a generalization of the bounded18

knapsack problem where an unlimited number of each item type is available. Another19

generalization of the 0–1 knapsack problem is the multiple-choice knapsack problem20

where exactly one item from each of several classes of items is chosen such that the21

profit z is to be maximized. If the profits equal the resources cj = aj, j = 1, 2, . . . , n,22

then one has the subset-sum problem. The name comes from the fact that it can23

be seen as the problem of choosing a subset of c1, c2, . . . , cn such that its sum is as24

large as possible without exceeding b. The multiple knapsack problem appears when25

some of the n items are chosen to pack in m knapsacks of (maybe) different capac-26

ities such that the profit z is maximized. The most general form of the knapsack27

problem is the multidimensional knapsack problem where all coefficients cj, ak,j, bk,28

k = 1, 2, . . . ,m, j = 1, 2, . . . , n and variables xj , j = 1, 2, . . . , n are nonnegative inte-29

gers, which turns out to be a general integer programming problem [5].30

In the last decades several exact as well as heuristic methods have been pro-31

posed to solve the MKP. Exact methods include dynamic programming methods32

[6, 7], branch-and-bound algorithms [3, 4, 8], the Fourier-Motzkin elimination based33

enumeration algorithms [9], asymptotic analysis method [10], statistical analysis34

2

method [11], linked LP-relaxations, disjunctive cuts and implicit enumeration [12],1

generalized fuzzy approach [13], core concept based on LP-relaxation [14] and so on.2

Pisinger [5] has proposed several exact algorithms for solving knapsack problems in3

his doctoral thesis. A list of some heuristic methods for solving the MKP follows.4

Drexl [15] proposed a simulated annealing based on the add-interchange-drop tech-5

nique for handling the constraints. Hanafi and Fréville [16] proposed a tabu search6

approach for the 0–1 MKP using the surrogate constraints information. Vasquez and7

Vimont in [17] presented a hybrid method that combines the linear programming with8

an efficient tabu search. Chu and Beasley [18] proposed the most successful genetic9

algorithm (GA) for solving the 0–1 MKP. The authors present the drop-add repair10

operator based on the pseudo-utility ratios in order to make the solutions feasible.11

Sakawa and Kato [19] introduced a genetic algorithm with double strings (GADS)12

based on a decoding algorithm. In this decoding algorithm, the items that make13

the solution infeasible are dropped from the solution by checking all the constraints.14

Djannaty and Doosdar investigated in [20] a hybrid genetic algorithm that uses a15

penalty function. A binary ant colony optimization algorithm based on the drop-add16

repair operator [18] is provided in [21]. Zou et al. [22] have recently developed a novel17

global harmony search algorithm based on a penalty function for a KP. Some other18

heuristics are available in the literature [23, 24, 25, 26, 27]. An interesting review of19

different solution methods for solving the 0–1 MKP is found in [28]. The focus of20

the paper is on the theoretical properties and contains an overview of approximate21

and exact solution methods.22

The artificial fish swarm algorithm (AFSA) that simulates the behavior of a fish23

school inside water was recently designed and applied in an engineering context24

[29, 30, 31, 32]. Fishes desire to stay close to the school to protect themselves from25

predators and to look for food, and to avoid collisions within the group. The main26

fish school behavior are the following: random, chasing, swarming, searching and27

leaping.28

The artificial fish is a fictitious entity of a true fish. When applied to an opti-29

mization problem, a ‘fish’ within the school is represented by a point, also known30

as a candidate solution, and the school is the so-called population, or set of points31

or solutions. Inspired by fish school behavior, researchers have developed numeri-32

cal algorithms aiming to converge to a global optimal solution of the optimization33

problem, in an efficient manner. The environment in which the artificial fish moves,34

searching for the optimum, is the feasible search space of the problem.35

A novel fish swarm heuristic which gives priority to the chasing behavior in detri-36

ment of the swarming one, for box constrained global optimization problems, was37

recently presented in [33]. Rocha et al. [34] developed an augmented Lagrangian fish38

3

swarm based method for globally solving a nonlinear general constrained problem.1

A state-of-the-art regarding hybridizations and applications of the AFSA has just2

appeared in [35].3

Binary versions of the most popular stochastic algorithms are common for solving4

discrete binary optimization problems [36, 37], namely 0–1 MKP [38, 39, 40, 41, 42].5

Based on AFSA for continuous global optimization, in this paper, we propose an6

improved binary version of the artificial fish swarm algorithm (IbAFSA) for solving7

the 0–1 MKP (1). A preliminary binary version of the artificial fish swarm algorithm8

(bAFSA) has been presented in [43]. The algorithm was tested on a small set of9

problems. For the sake of simplicity, while describing the proposed binary AFSA10

we will use the words ‘point’ to represent the position of a fish in the school, and11

‘population’ to denote the fish school.12

In the present study, all points in the population are randomly initialized, each13

represented by a binary 0/1 string of length n. The procedure that checks which14

points are in the vicinity of each individual point, the so-called ‘visual scope’, is15

carried out using the Hamming distance. When chasing, searching or swarming16

behavior are selected, the proposed IbAFSA generates each bit of the trial point by17

copying the corresponding bit from the current point or from a second point, with18

equal probability. In chasing, the second point is the best point inside the ‘visual19

scope’, and in searching, that point is randomly selected from the ‘visual scope’. For20

the swarming behavior, the second point is the central point that is computed based21

on ideas presented in [44]. We remark that in the previous work [43], when swarming22

was implemented, a bit of the current point was randomly selected and changed from23

0 to 1 or vice versa to create the trial point. Furthermore, the infeasible solutions are24

made feasible using an adapted version of the decoding algorithm presented in [19].25

Along with the decoding algorithm, an add item operation is also implemented to26

each feasible solution aiming to increase the profit throughout the addition of more27

items in the knapsack. To improve the quality of the solutions obtained by the28

algorithm, the population is periodically reinitialized.29

Thus, the novel contributions of the presented IbAFSA, when compared with30

bAFSA [43], are: i) the computation of a central point inside the ‘visual scope’31

to define a point that is closest to all the other points in the ‘visual scope’, for the32

swarming behavior; ii) the implementation of a different strategy to generate the trial33

point using the current and the central point, in swarming; iii) the implementation of34

an add item operation to each feasible point; iv) the reinitialization of the population35

periodically, although keeping the best point of the population. The performance36

of the proposed IbAFSA is tested on a benchmark set of 0–1 MKP test instances.37

Although the proposal is very simple and easy-to-implement, the comparisons carried38

4

out until now show that the algorithm is a competitive alternative to other heuristic1

methods from the literature.2

A crucial motivation to assess the performance of IbAFSA on the 0–1 MKP is3

that several test problem instances together with their known optimal solution are4

available in the literature.5

The organization of this paper is as follows. We briefly describe the artificial fish6

swarm algorithm in Section 2. In Section 3 the proposed improved binary artificial7

fish swarm algorithm is outlined. Section 4 describes the experimental results and8

finally we draw the conclusions of this study in Section 5.9

2. Artificial Fish Swarm Algorithm10

In this section, we give a brief description of AFSA proposed in [33] for box11

constrained global optimization problems of type minimizex∈Ω f(x). Here f : Rn →12

R is a nonlinear function that is to be minimized and Ω = {x ∈ R
n : lj ≤ xj ≤13

uj, j = 1, 2, . . . , n} is the search space. lj and uj are the lower and upper bounds of14

xj, respectively, and n is the number of variables of the optimization problem.15

AFSA works with a population of N points xi, i = 1, 2, . . . , N to identify promis-
ing regions looking for a global solution [31]. xi is a floating-point encoding that
covers the entire search space Ω. The crucial issue of AFSA is the ‘visual scope’ of
each point xi. This represents a closed neighborhood of xi with a radius equal to a
positive quantity ν defined by

ν = δ max
j∈{1,2,...,n}

(uj − lj)

where δ ∈ (0, 1) is a positive visual parameter. This parameter may be reduced16

along the iterative process. Let I i be the set of indices of the points inside the17

‘visual scope’ of point xi, where i /∈ I i and I i ⊂ {1, 2, . . . , N}, and let npi be the18

number of points in its ‘visual scope’. Depending on the relative positions of the19

points in the population, three possible situations may occur:20

a) when npi = 0, the ‘visual scope’ is empty, and the point xi, with no other21

points in its neighborhood, moves randomly looking for a better region;22

b) when the ‘visual scope’ is not crowded, the point xi is able either to chase23

moving towards the best point inside the ‘visual scope’, or, if this best point24

does not improve the objective function value corresponding to xi, to swarm25

moving towards the central point of the ‘visual scope’;26

5

c) when the ‘visual scope’ is crowded, the point xi has some difficulty in following1

any particular point, and searches for a better region by choosing randomly2

another point (from the ‘visual scope’) and moving towards it.3

The condition that decides when the ‘visual scope’ of xi is not crowded is4

Cf ≡
npi

N
≤ θ, (2)

where Cf is the crowding factor and θ ∈ (0, 1) is the crowd parameter. In this
situation, the point xi has the ability to swarm or to chase. The swarming behavior
is characterized by a movement towards the central point inside the ‘visual scope’ of
xi defined by

x̄ =

∑

l∈I
i xl

npi
.

We refer the reader to [31, 32, 33, 34] for details.5

3. Improved Binary Artificial Fish Swarm Algorithm6

In this section we will present the proposed IbAFSA to solve the 0–1 multidi-7

mensional knapsack problem (1). The outline of the algorithm is described in the8

following.9

3.1. Initialization (coding)10

The first step to design the IbAFSA for solving the 0–1 MKP is to devise a11

suitable representation scheme of a point/solution from the population. Since we12

consider the 0–1 knapsack problem, N solutions, xi, i = 1, 2, . . . , N are randomly13

initialized, each represented by a binary 0/1 string of length n [43, 45, 46]. We14

remark that the maximum population size N of binary 0/1 strings of length n is 2n.15

3.2. Generating trial points in IbAFSA16

In IbAFSA the Hamming distance, Hd, is used to identify the points inside the17

‘visual scope’ of point xi. The Hamming distance between two bit sequences of equal18

length is the number of positions at which the corresponding bits are different. After19

calculating the Hamming distance between all pair of points from the population, the20

npi points inside the ‘visual scope’ of xi are identified as the points xj that satisfy21

the condition Hd(x
i,xj) ≤ ν, for j ∈ {1, . . . , N}, j 6= i, where22

ν = δ × n, (3)

6

δ ∈ (0, 1) and n represents the maximum Hamming distance between two binary1

points. After computing npi, the crowding factor Cf of xi is calculated using (2).2

Depending on the value of Cf , the ‘visual scope’ can be empty, not crowded or3

crowded. In IbAFSA, the behavior that generate the trial points are outlined as4

follows.5

3.2.1. Chasing behavior6

If the ‘visual scope’ of xi is not crowded and the point that has the best objec-7

tive function value inside the ‘visual scope’, denoted by xbest (best ∈ I i), satisfies8

z(xbest) > z(xi), the chasing behavior is to be implemented. In chasing, each bit of9

the trial point, yi, is generated by copying the corresponding bit from xi or from xbest
10

with equal probability. This operation is similar to the uniform crossover present in11

genetic/evolutionary algorithms.12

3.2.2. Swarming behavior13

When the ‘visual scope’ is not crowded and z(xbest) ≤ z(xi) (chasing is not14

possible), then if z(x̄) > z(xi), where x̄ is the central point inside the ‘visual scope’15

of the point xi, the swarming behavior is to be implemented. The central x̄ is16

the point closest to all the other points in the ‘visual scope’, in the sense that the17

average Hamming distance to all other points in the ‘visual scope’ is minimal. Since18

in IbAFSA, the points are represented by binary 0/1 strings, each bit of x̄ takes19

the majority of the corresponding bits of the other points in the ‘visual scope’, and20

is randomly defined in case of tie. We refer to [44] for details. The pseudocode to21

compute the central point is shown in Algorithm 1. In swarming, each bit of the

Algorithm 1 Central point

Require: Set Ii and the npi points inside the ‘visual scope’ of xi

1: for j = 1 to n do

2: Compute x̄j =

∑

l∈Ii

xl
j

npi

3: if x̄j = 0.5 then

4: Set x̄j := Random Integer{0, 1}
5: else

6: Set x̄j := Round(x̄j)
7: end if

8: end for

9: return Central point x̄

22

trial yi is created by copying the corresponding bit from xi or from x̄ with equal23

probability.24

7

3.2.3. Searching behavior1

The searching behavior is tried in the following situations:2

a) when the ‘visual scope’ is not crowded and neither xbest nor x̄ improves in3

objective function value;4

b) when the ‘visual scope’ is crowded.5

Here, a point xrand (rand ∈ I i) inside the ‘visual scope’ of xi is randomly selected6

and the searching behavior is to be implemented if z(xrand) > z(xi). Otherwise, a7

random behavior is implemented. In searching, each bit of yi is created by copying8

the corresponding bit from xi or xrand with equal probability.9

3.2.4. Random behavior10

When the ‘visual scope’ of xi is empty or the other behavior were not performed,11

the point xi performs the random behavior. In this case, the trial point yi is created12

by randomly setting a binary string of 0/1 bits of length n.13

3.3. Constraints handling14

The widely used approach to deal with constraints is based on penalty functions15

where a penalty term is added to the objective function in order to penalize the16

constraint violation. The penalty function method can be applied to any type of17

constraints, but the performance of penalty-type method is not always satisfactory18

due to the choice of an appropriate penalty parameter. Although several ideas have19

been proposed about designing efficient penalty functions and tuning penalty param-20

eters [20, 22], other alternative constraint handling techniques have emerged in the21

last decades.22

There are a number of standard ways of dealing with constraints and infeasible23

solutions in binary represented population-based methods. In IbAFSA, the decoding24

algorithm proposed by Sakawa and Kato [19] to make infeasible solutions feasible is25

used. Although GADS and IbAFSA use different point representations, we modify26

the decoding algorithm so that it can decode points in a population in the same way27

as in [19]. The advantage of this algorithm is that decoding a point xi starts from any28

index and randomly continues to select an index until the maximum length of string29

n is reached to make the point xi feasible, aiming to obtain promising solution (and30

hopefully optimal). At first, a set J = {J1, J2, . . . , Jn} is defined with n randomly31

generated indices. Then the decoding algorithm is performed on xi using the set32

J to make it feasible. This means that, using the sequence J , and one item/bit at33

a time all constraints are checked for capacity satisfaction, using the corresponding34

8

column of the coefficient matrix of the resources. If all constraints are satisfied, the1

bit 1 is maintained and the item is stored in the knapsack. Otherwise, the bit is2

changed to 0. See Algorithm 2. Another decoding algorithm which starts from the

Algorithm 2 Decoding algorithm used in IbAFSA
Require: Point xi and the set J = {J1, J2, . . . , Jn}
1: Set sumk := 0, for k = 1, 2, . . . ,m
2: for j = 1 to n do

3: if xi
Jj

= 1 then

4: Set flag := 1
5: for k = 1 to m do

6: if sumk + ak,Jj
> bk then

7: Set flag := 0
8: break

9: end if

10: end for

11: if flag = 1 then

12: for k = 1 to m do

13: Set sumk := sumk + ak,Jj

14: end for

15: else

16: Set xi
Jj

:= 0
17: end if

18: end if

19: end for

20: return Feasible point xi

3

first index and sequentially continues can be applied but the obtained solution may4

not be optimal.5

After the decoding algorithm, a simple greedy-like heuristic called add item (Al-6

gorithm 3) is implemented to each feasible solution aiming to improve that point7

without violating any constraint. When solving the single knapsack problem, this8

heuristic operation uses the information of the pseudo-utility ratios, δj, which are9

defined as the ratios of the objective function coefficients (cj’s) to the coefficients of10

the single constraint (aj’s). The greater the ratio, the higher the chance that the11

corresponding variable will be equal to one in the solution [18]. In the generalization12

of this add item heuristic for the 0-1 MKP, the pseudo-utility ratios of every item13

in every constraint are calculated, and only the lowest value for each item is con-14

sidered (i.e., δj = min{(cjbk)/ak,j} j = 1, . . . , n, k = 1, . . . ,m). Then δj are sorted15

in decreasing order and a set J = {J1, J2, . . . , Jn} is defined with the indices of the16

δj in decreasing order. One item is added each time in the knapsack if it satisfies17

all the constraints following the sequence of indices in the set J . This procedure is18

9

continued until the entire sequence of indices has been used.

Algorithm 3 Add item algorithm used in IbAFSA
Require: Feasible point xi and set J = {J1, J2, . . . , Jn}
1: Compute sumk =

∑n

j=1 ak,jx
i
j , for k = 1, 2, . . . ,m

2: for j = 1 to n do

3: if xi
Jj

= 0 then

4: Set flag := 1
5: for k = 1 to m do

6: if sumk + ak,Jj
> bk then

7: Set flag := 0
8: break

9: end if

10: end for

11: if flag = 1 then

12: Set xi
Jj

:= 1
13: for k = 1 to m do

14: Set sumk := sumk + ak,Jj

15: end for

16: end if

17: end if

18: end for

19: return Improved feasible point xi

1

3.4. Selection of a new population2

Among the trial points yi,t and the current points xi,t, i = 1, 2, . . . , N , at iteration3

t, in order to decide whether or not they should become members of the population4

in the next iteration, t+1, the trial point is compared to the current point using the5

following greedy criterion:6

xi,t+1 =

{

yi,t if z(yi,t) ≥ z(xi,t)
xi,t otherwise

, i = 1, 2, . . . , N. (4)

3.5. Leaping behavior7

When the best objective function value in the population does not change for a8

certain number of iterations, the algorithm may have stagnated. The other points9

of the population will eventually converge to that objective function value. To be10

able to escape from this region and to try to converge to the optimal solution, the11

algorithm performs the leaping behavior, at every L iterations. In the leaping, a12

point xrand (rand ∈ {1, 2, . . . , N}) is randomly selected from the current population13

and some randomly selected bits of the point are changed from 0 to 1 or vice versa14

10

with probability pm. The value pm = 0.01 is widely used in binary represented1

methods. The described operation is similar to a mutation with probability pm of2

genetic/evolutionary algorithms.3

Afterwards, decoding and the add item heuristic are implemented, and the new4

point replaces the point xrand.5

3.6. Termination conditions6

Let Tmax be the maximum number of iterations. Let zmax be the maximum7

objective function value attained at iteration t and zopt be the known optimal value8

available in the literature. The proposed IbAFSA terminates if one of the conditions9

t > Tmax or |zmax − zopt| ≤ ǫ (5)

holds, where ǫ is a small positive tolerance. This condition enables the algorithm10

to terminate when the best known solution with a tolerance ǫ is reached; otherwise,11

it continues execution until Tmax is exceeded. However, if the optimal value of the12

given problem is unknown, the algorithm may use other termination conditions.13

3.7. Reinitialization of the population14

Past experiments with bAFSA [43] have shown that, from a certain iteration on,15

all the individual points in a population converge to a non-optimal point, even after16

the leaping behavior has been performed. To diversify the search, we propose to17

reinitialize the population randomly, every R iterations, keeping the best solution18

found so far. In practical terms, this technique has greatly improved the quality of19

the solutions and increased the consistency of the proposed improved binary version20

of AFSA.21

3.8. The algorithm22

The pseudocode of the herein proposed improved binary version of AFSA for23

solving the 0–1 multidimensional knapsack problem (1) is shown in Algorithm 4.24

3.9. Time complexity of one iteration of IbAFSA25

The algorithm time complexity is usually measured using O notation and shows26

how the amount of time needed to complete the (operations in the) algorithm varies27

as the size of the input data m and n increase. The time complexity of one iteration,28

for the worst-case scenario of the Algorithm 4, is analyzed assuming that we have a29

population of N points, each point is represented by an n-vector and the problem30

has m constraints. The computation for each iteration is as follows.31

11

Algorithm 4 IbAFSA
Require: Tmax and zopt and other values of parameters
1: Set t := 1. Initialize population xi,1, i = 1, 2, . . . , N
2: Perform decoding and add item, evaluate the population and identify xmax and zmax

3: while ‘termination conditions are not met’ do
4: if MOD(t,R)=0 then

5: Reinitialize population xi,t, i = 1, 2, . . . , N − 1
6: Perform decoding and add item, evaluate population and identify xmax and zmax

7: end if

8: for all xi,t do

9: Compute ‘visual scope’ and ‘crowding factor’
10: if ‘visual scope’ is empty then

11: Perform random behavior to create trial point yi,t

12: else if ‘visual scope’ is not crowded then

13: if z(xbest) > z(xi,t) then
14: Perform chasing behavior to create trial point yi,t

15: else if z(x̄) > z(xi,t) then
16: Perform swarming behavior to create trial point yi,t

17: else if z(xrand) > z(xi,t) then
18: Perform searching behavior to create trial point yi,t

19: else

20: Perform random behavior to create trial point yi,t

21: end if

22: else if ‘visual scope’ is crowded then

23: if z(xrand) > z(xi,t) then
24: Perform searching behavior to create trial point yi,t

25: else

26: Perform random behavior to create trial point yi,t

27: end if

28: end if

29: end for

30: Perform decoding and add item to get yi,t, i = 1, 2, . . . , N and evaluate them
31: Select new population xi,t+1, i = 1, 2, . . . , N
32: if MOD(t,L)=0 then

33: Perform leaping behavior, decoding, add item and evaluate
34: end if

35: Identify xmax and zmax

36: Set t := t+ 1
37: end while

38: return xmax and zmax

Step 1, the initialization, takes Nn operations;1

Step 2, decoding and add item take Nmn and evaluating the population takes N ;2

the total time is N(mn+ 1);3

12

Step 4 – Step 7 take (N − 1)n (for reinitialization of N − 1 points), (N − 1)mn for1

decoding and add item, and N − 1 for evaluation, i.e., the total is (N − 1)(n+2

mn+ 1);3

Step 8 – Step 29: to compute the ‘visual scope’ of each point and to check which4

points are in its vicinity take n2; to generate the trial point takes n; thus, when5

all N points are considered, the total time is Nn2 +Nn;6

Step 30 takes Nmn;7

Step 31 takes N ;8

Step 32 – Step 34 take mn;9

Adding everything up Nn+N(mn+1)+(N −1)(n+mn+1)+Nn(n+1)+Nmn+10

N +mn gives a time of N(3mn+3n+3+n2). Considering that N is a constant, the11

complexity is of O(n2) for fixed m, O(m) for fixed n and O(mn+n2) for variable m12

and n.13

4. Experimental Results14

We code IbAFSA in C and compile with Microsoft Visual Studio 10.0 compiler in15

a PC having 2.5 GHz Intel Core 2 Duo processor and 4 GB RAM. We set N = 100,16

δ = 0.5, θ = 0.8, pm = 0.01 and ǫ = 10−4. In order to perform the leaping behavior,17

we set L = max(25, n). After several experiments, we set the parameter R for the18

reinitialization of the population to 100. We consider six benchmark sets of 0–119

MKP with a total of 55 instances from OR-library1. These problems are widely used20

for the measurement of effectiveness of an algorithm in the optimization community.21

The number of variables, n, in the instances varies from six to 105, and m (number of22

constraints) varies from two to 30. Table 1 lists the values of n and m of the instances23

for each problem set. Since they are benchmark instances, the optimal solution, zopt,24

is known and the termination condition described in (5) can be used to terminate25

the algorithm. For these instances, we set Tmax = 1000 if n ≤ 50; otherwise 2000.26

First, we compare IbAFSA with CPLEX MIP solver, GA [18], bAFSA [43] and27

GADS [19]. We run CPLEX MIP solver in our computer to solve the instances and28

report the obtained results. We use the data of GA available in the corresponding29

literature [18]. We note that GA uses a different termination condition and performs30

just a single run for each instance. We also code GADS in C and run with the rec-31

ommended parameters [19]. In GADS, partially matched crossover, bit flip mutation32

and inversion are used. The crossover, mutation and inversion probabilities are set33

to 0.9, 0.1 and 0.03 respectively. We use the same termination conditions (5) for34

1http://people.brunel.ac.uk/~mastjjb/jeb/info.html

13

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

Table 1: Values of (n,m) of each instance in the sets

Problem Number of (n,m)
set instances

HP 2 (28, 4), (35, 4)
PB 6 (27, 4), (34, 4), (29, 2), (20, 10), (40, 30), (37, 30)
PT 7 (6, 10), (10, 10), (15, 10), (20, 10), (28, 10), (39, 5),

(50, 5)
SENTO 2 (60, 30), (60, 30)
WEING 8 (28, 2), (28, 2), (28, 2), (28, 2), (28, 2), (28, 2),

(105, 2), (105, 2)
WEISH 30 (30, 5), (30, 5), (30, 5), (30, 5), (30, 5), (40, 5),

(40, 5), (40, 5), (40, 5), (50, 5), (50, 5), (50, 5),
(50, 5), (60, 5), (60, 5), (60, 5), (60, 5), (70, 5),
(70, 5), (70, 5), (70, 5), (80, 5), (80, 5), (80, 5),
(80, 5), (90, 5), (90, 5), (90, 5), (90, 5), (90, 5)

GADS and run the program 30 times to report the results. We also run bAFSA and1

IbAFSA 30 times for each instance. In this comparison, GA, bAFSA, GADS and2

IbAFSA had the same value of N . The comparative results are shown in Table 2.3

The table reports the average number of iterations, ‘AIT’, and the average com-4

putational time (in seconds), ‘AT’, considering all the 30 runs and only the successful5

runs, ‘Succ. runs’. If the algorithm finds the optimal solution (or near optimal ac-6

cording to an error tolerance) to an instance in a run, then the run is considered7

to be a successful one. Further, ‘ABT’ is the average best time to find the optimal8

value, i.e., is the average of the best time, from the 30 runs, among all instances of a9

set. ‘Nopt’ is the number of instances that were solved to optimality (at least in one10

run among the 30 runs) in a set, and ‘ASR’ is the average, among all instances in11

the set, of the success rate (in %). The success rate, ‘SR’, indicates the percentage12

of the 30 runs that found the known optimal solution according to the given error13

tolerance.14

We note that CPLEX MIP and GA (in Table 2) solve all the instances to opti-15

mality in each set.16

When comparing bAFSA with IbAFSA, we may conclude that IbAFSA gives17

better results than bAFSA, as far as ‘AIT’, ‘AT’ and ‘ASR’ for the 30 runs are18

concerned. See Table 2. The overall average success rate of IbAFSA is 92.97%,19

whereas that of bAFSA is 68.12%. This is obtained mainly due to the usage of20

add item and reinitialization techniques in IbAFSA. Although ‘AIT’ and ‘AT’, for21

the ‘Succ. runs’, are in general smaller in bAFSA than in IbAFSA, those values22

correspond to a few number of successful runs (see column ‘ASR’). We note that23

14

Table 2: Results obtained by CPLEX MIP, GA, bAFSA, GADS and IbAFSA

CPLEX MIP GA bAFSA GADS IbAFSA

Prob. 1 run 1 run 30 runs Succ. runs 30 runs Succ. runs 30 runs Succ. runs

set AIT AT AT† ABT† AIT AT Nopt ASR AIT AT ABT AIT AT Nopt ASR AIT AT AIT AT Nopt ASR AIT AT ABT

HP 32 0.05 2.6 0.4 737 2.10 2 28.33 74 0.26 0.09 399 0.22 2 76.67 235 0.13 189 0.40 2 98.33 176 0.37 0.06
PB 526 0.13 5.2 0.1 452 1.35 6 60.56 96 0.31 0.08 352 0.25 6 78.33 183 0.13 77 0.17 6 100.00 77 0.17 0.02
PT 22 0.06 3.2 0.2 324 1.19 7 69.52 56 0.25 0.14 335 0.24 5 71.43 70 0.04 262 0.83 7 76.19 123 0.39 0.18
SENTO 953 0.12 11.5 0.3 1712 9.95 2 15.00 84 0.61 0.50 1959 3.03 1 6.67 1379 1.92 43 0.28 2 100.00 43 0.28 0.13
WEING 12 0.14 4.3 0.4 602 4.22 8 65.83 80 0.48 0.30 665 0.76 6 70.33 184 0.09 543 3.11 8 78.75 266 1.30 0.51
WEISH 21 0.07 6.4 0.1 468 2.84 30 76.11 67 0.47 0.34 1312 1.38 17 33.33 493 0.41 109 0.56 30 98.44 89 0.45 0.08

Average 109 0.09 5.6 0.2 522 2.90 68.12 71 0.42 0.28 979 1.04 49.15 345 0.29 188 0.91 92.97 119 0.53 0.16

† Not applicable here (due to different machine used), only to show

15

IbAFSA performs favorably relative to the criterion ‘ABT’ when compared with1

bAFSA. Based on ‘Nopt’, we may conclude that bAFSA and IbAFSA also solve all2

instances to optimality (at least in one run among the 30). Using reinitialization of3

the population, IbAFSA gives more successful runs after R iterations.4

When we compare the results of IbAFSA with those of GADS in Table 2, we5

observe that IbAFSA has a better performance than GADS relative to the criterion6

‘AIT’, in almost all sets. The average computational time (‘AT’) of IbAFSA is higher7

than that of GADS in some sets. This is due to the procedure that aims to identify8

the points inside the ‘visual scope’ of each individual point, at all iterations. We note9

that GADS did not reach the optimal solution to some instances in any of the 3010

runs. The ‘ASR’ obtained by GADS for each set are all under 80%, while IbAFSA11

reaches 100% in sets PB and SENTO, and almost 99% in sets HP and WEISH.12

Since GADS and IbAFSA are population-based stochastic methods, we compare13

them further using different performance criteria: the average of the obtained objec-14

tive function values, ‘zavg’, with the standard deviation of the function values, ‘std’,15

and the success rate, ‘SR’ (in %). For a clear comparison, we plot in Figs. 1–5 the16

bar profiles of ‘zavg’ obtained by GADS and IbAFSA among the 30 runs, for all the17

instances of the six sets. The values of ‘std’ relative to ‘zavg’ are shown over the18

bars. We can notice that IbAFSA outperforms GADS. The ‘zavg’ values of GADS19

are in general slightly smaller than those of IbAFSA, in particular on instances 1620

to 30 of the WEISH set, and the ‘std’ values are larger with GADS. To emphasize

1 2
0

500

1500

2500

3500

HP set

z av
g

0.
0E

+0
0

2.
6E

+0
0

1.
8E

+0
0

0.
0E

+0
0

GADS
IbAFSA

1 2 3 4 5 6
0

2

4

6

8

10

x 10
4

PB set

z av
g

0.
0E

+0
0

0.
0E

+0
0

2.
1E

+0
1

0.
0E

+0
0

9.
5E

+0
1

0.
0E

+0
0

5.
3E

+0
1

0.
0E

+0
0

4.
5E

+0
1

0.
0E

+0
0

6.
5E

+0
1

0.
0E

+0
0

GADS
IbAFSA

Figure 1: Comparison of zavg and std on HP set (left) and PB set (right)

21

the improvement on the quality of the solutions obtained by the herein proposed22

IbAFSA, when compared with the preliminary version bAFSA [43] and GADS, we23

show in Fig. 6 the bar profiles corresponding to ‘SR’. We may conclude that IbAFSA24

outperforms GADS and bAFSA in criterion ‘SR’.25

16

1 2 3 4 5 6 7
0

2000

6000

10000

14000

18000

PT set

z av
g

0.
0E

+0
0

0.
0E

+0
0

3.
7E

−1
2

3.
7E

−1
2

0.
0E

+0
0

0.
0E

+0
0 0.

0E
+0

0
0.

0E
+0

0

0.
0E

+0
0

0.
0E

+0
0

1.
8E

+0
1

5.
8E

+0
0

3.
5E

+0
1

5.
8E

+0
0

GADS
IbAFSA

1 2
0

2000

4000

6000

8000

SENTO set

z av
g

4.
1E

+0
1

0.
0E

+0
0 3.
0E

+0
1

0.
0E

+0
0

GADS
IbAFSA

Figure 2: Comparison of zavg and std on PT set (left) and SENTO set (right)

1 2 3 4 5 6 7 8
0

2

4

6

8

10

x 10
5

WEING set

z av
g

0.
0E

+0
0

0.
0E

+0
0

0.
0E

+0
0

0.
0E

+0
0

0.
0E

+0
0

0.
0E

+0
0

4.
4E

+0
2

0.
0E

+0
0

0.
0E

+0
0

0.
0E

+0
0

0.
0E

+0
0

0.
0E

+0
0

1.
6E

+0
1

3.
8E

+0
3

1.
1E

+0
3

1.
0E

+0
4

GADS
IbAFSA

Figure 3: Comparison of zavg and std on WEING set

In the previous section, the time complexity of one iteration of IbAFSA has been1

analyzed. Although the running time, per iteration, of IbAFSA could be greater2

than that of GADS, which is of order of complexity O(mn), the number of iterations3

required to reach the optimal (or near optimal) solution is much smaller with IbAFSA4

– an average over the 55 instances of 119 in IbAFSA against 345 in GADS – and it5

reaches the optimal solution more often – an average of 188 iterations with 92.97% of6

successful cases in IbAFSA against 979 iterations with 49.15% of successes in GADS,7

over the 30 runs (see Table 2).8

We now compare IbAFSA with HGA (Hybrid Genetic Algorithm) described9

in [20]. For a fair comparison we run IbAFSA with N = 5n and Tmax = 300010

17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2000

4000

6000

8000

WEISH set (1−15)

z av
g

0.
0E

+0
0

0.
0E

+0
0

9.
1E

−0
1

0.
0E

+0
0

0.
0E

+0
0

0.
0E

+0
0

0.
0E

+0
0

8.
9E

+0
0

6.
7E

+0
0

0.
0E

+0
0

0.
0E

+0
0 0.

0E
+0

0
8.

4E
+0

0
0.

0E
+0

0
2.

1E
+0

0
0.

0E
+0

0
0.

0E
+0

0
0.

0E
+0

0
2.

6E
+0

1
0.

0E
+0

0
5.

9E
+0

1
0.

0E
+0

0 3.
4E

+0
1

0.
0E

+0
0

3.
6E

+0
1

0.
0E

+0
0 2.

6E
+0

1
0.

0E
+0

0
3.

2E
+0

1
0.

0E
+0

0

GADS
IbAFSA

Figure 4: Comparison of zavg and std on instances 1 to 15 from WEISH set

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

2000

4000

6000

8000

10000

WEISH set (16−30)

z av
g

1.
9E

+0
1

0.
0E

+0
0 2.

6E
+0

1
0.

0E
+0

0
4.

4E
+0

1
0.

0E
+0

0
5.

2E
+0

1
0.

0E
+0

0
4.

1E
+0

1
0.

0E
+0

0
4.

9E
+0

1
0.

0E
+0

0
9.

6E
+0

1
0.

0E
+0

0

0.
0E

+0
0

7.
7E

+0
1

4.
0E

+0
1

2.
5E

+0
0

8.
3E

+0
1

0.
0E

+0
0

9.
6E

+0
1

0.
0E

+0
0

1.
0E

+0
2

0.
0E

+0
0

1.
2E

+0
2

0.
0E

+0
0

9.
8E

+0
1

0.
0E

+0
0

6.
7E

+0
1

0.
0E

+0
0

GADS
IbAFSA

Figure 5: Comparison of zavg and std on instances 16 to 30 from WEISH set

for all the 55 instances and 10 independent runs were carried out for each instance1

(same as HGA). Table 3 shows the comparison based on the different performance2

criteria. The data of HGA are taken from the corresponding literature. Although3

the machines used to obtain the results are different, IbAFSA shows a very good4

performance when compared with HGA.5

We also compare IbAFSA with some variants of the particle swarm optimization6

(PSO) algorithm. Table 4 contains numerical results obtained by binary versions of7

PSO from the literature. The results are taken from [38, 40]. SBPSO is a Set-Based8

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

20

40

60

80

100

WEISH set

S
R

 (
in

 %
)

GADS
bAFSA
IbAFSA

Figure 6: Comparison of SR: IbAFSA vs. GADS and bAFSA

PSO proposed in [40] that handles the constraints using a dead penalty. On the1

other hand, the modified binary PSO (MBPSO) in [38] applies a static penalty func-2

tion approach to handle the constraints and uses a probability function to maintain3

diversity in the swarm. The results of BPSO are taken from the last cited paper.4

The comparisons are based on the average success rate, ‘ASR’, and average percent-5

age gap to optimality, ‘APG’, where the percentage gap to the optimality (‘PG’) is6

defined by7

PG =
zopt − zmax

zopt
100%.

The table shows that IbAFSA outperforms the three selected PSO versions in both8

criteria.9

Finally, we compare the proposed IbAFSA with the heuristic methods HDP+LBC10

(Hybrid Dynamic Programming with Limited Branch-and-Cut) and DPHEU (Dom-11

inance Principle based Heuristic) described in [24, 27]. The results for comparison12

are reported in Table 5. This comparison is based on ‘PG’ and on ‘Nopt’. We remark13

that the reported values for HDP+LBC and DPHEU are relative to just one run, and14

19

Table 3: Comparison of HGA and IbAFSA

Prob. HGA IbAFSA

set ABT AT Nopt ABT AT Nopt

HP 61.0 84.0 2 0.19 0.82 2
PB 108.0 425.0 6 0.08 0.24 6
PT 150.0 352.0 7 0.51 1.49 7
SENTO 29.0 162.0 2 0.55 0.90 2
WEING 126.0 452.0 8 4.46 26.04 8
WEISH 101.0 321.0 30 0.95 2.69 30

Average 95.8 299.3 1.27 5.53

Table 4: Comparison of BPSO, SBPSO, MBPSO and IbAFSA

Prob. ASR APG

set SBPSO BPSO MBPSO IbAFSA SBPSO BPSO MBPSO IbAFSA

HP 5.00 25.00 53.00 98.33 1.68 0.97 0.33 0.01
PB 14.50 21.50 48.17 100.00 1.81 1.35 0.56 0.00
PT 59.00 – – 76.19 0.32 – – 0.03
SENTO 13.50 27.00 48.00 100.00 0.45 0.22 0.10 0.00
WEING 47.50 57.50 78.13 78.75 2.49 0.34 0.11 0.02
WEISH 32.23 56.30 74.20 98.44 0.66 0.80 0.53 0.00

Average 34.25 49.63 69.63 92.97 1.04 0.78 0.44 0.01

– Not considered

the reported IbAFSA values correspond to the percentage gap to optimality of the1

best run (‘PG best’) and the average percentage gap, over the 30 runs, ‘APG’. We2

note that these values are averaged over all the instances in a set. IbAFSA solves all3

the instances in the sets HP, PB, PT, SENTO, WEING and WEISH to optimality4

in at least one of the 30 runs. From the table, we conclude that IbAFSA gives good5

performance when compared with HDP+LBC and DPHEU.6

Although other solution methods are available, they are not considered during7

the numerical comparisons with IbAFSA since they use just a few instances of each8

set. Based on the numerical experiments carried out until now, we may conclude9

that the proposed improved binary version of the artificial fish swarm algorithm is10

rather effective and competitive when solving the 0–1 MKP.11

20

Table 5: Comparison of HDP+LBC, DPHEU and IbAFSA

Prob. HDP+LBC DPHEU IbAFSA

set PG Nopt PG Nopt PG best APG Nopt

HP 0.45 – 0.00 2 0.00 0.01 2
PB 0.20 – 0.04 5 0.00 0.00 6
PT 0.02 – 0.00 7 0.00 0.03 7
SENTO 0.00 – 0.00 2 0.00 0.00 2
WEING 0.00 – 0.00 8 0.00 0.02 8
WEISH – – 0.03 28 0.00 0.00 30

Average 0.09 0.02 0.00 0.01

– Not considered/not available in the paper

5. Conclusions1

In this paper, an improved binary version of the artificial fish swarm algorithm2

for solving 0–1 MKP has been presented. In this method a point in the population3

is represented by a binary string of 0/1 bits. The Hamming distance is computed in4

order to identify the neighborhood points inside the ‘visual scope’ of a current point.5

Depending on the number of points inside the ‘visual scope’, the current point can6

perform either chasing, swarming, searching or random behavior. To create a trial7

point, each bit is generated by copying the corresponding bit from the current point8

or from some other specified point, with equal probability. When a leaping behavior9

is to be performed, some randomly chosen bits of a selected point are changed from 010

to 1, or 1 to 0, with an user defined probability. The decoding algorithm, combined11

also with an add item algorithm to each feasible point, are also implemented in12

order to make the points feasible and improve the quality of the solution. A greedy13

selection criterion is used to decide whether or not the trial points should become14

members of the population in the next iteration. A periodic reinitialization of the15

population has shown to improve the quality of the solutions and increase IbAFSA16

consistency.17

A comparison of IbAFSA with other solution methods available in the litera-18

ture has been carried out with the 55 benchmark test instances. The effective-19

ness of IbAFSA has been shown when compared with a previous binary version of20

AFSA. The occurrence of obtaining the optimal solution has increased in average21

from 68.12% up to 92.97%. The running time of one iteration of IbAFSA for solving22

0–1 MKP with m constraints and n decision variables has been analyzed and the23

complexity is of O(n2) for fixed m, O(m) for fixed n and O(mn+n2) for variable m24

and n. The comparison with GADS and HGA became highly favorable to IbAFSA.25

21

The results show that IbAFSA outperforms GADS in all tested criteria (‘AIT’, ‘AT’,1

‘Nopt’ and ‘ASR’) and HGA in the criteria ‘ABT’ and ‘AT’. The numerical results2

demonstrate the superiority of the proposed IbAFSA against swarm-based heuristics3

such as some binary versions of the PSO algorithm, BPSO, MBPSO and SBPSO.4

From the comparison with the heuristics HDP+LBC and DPHEU, we conclude that5

IbAFSA has a competitive performance. Thus, it is found that the proposed method6

is rather effective and competitive when solving small benchmark instances. Future7

developments will focus on the large instances of the 0–1 MKP and on the simplifi-8

cation of some procedures, in particular those related with generating a trial point9

from the current one based on fish behavior, in order to reduce the processing time.10

Acknowledgments11

The authors would like to thank four anonymous referees for their careful reading of the paper12

and for their helpful comments and suggestions which greatly improved the paper. The first author13

acknowledges Ciência 2007 of FCT (Foundation for Science and Technology), Portugal for the14

fellowship grant: C2007-UMINHO-ALGORITMI-04. Financial support from FEDER COMPETE15

(Operational Programme Thematic Factors of Competitiveness) and FCT under project FCOMP-16

01-0124-FEDER-022674 is also acknowledged.17

References18

[1] Petersen CC. Computational experience with variants of the balas algorithm19

applied to the selection of R&D projects. Management Science 13(9) (1967)20

736–750.21

[2] Weingartner HM. Mathematical Programming and the Analysis of Capital Bud-22

geting Problems Prentice-Hall, Englewoods Cliffs, 1963.23

[3] Gavish B, Pirkul H. Efficient algorithms for solving multiconstraint zero–one24

knapsack problems to optimality. Mathematical Programming 31 (1985) 78–25

105.26

[4] Shih W. A branch and bound method for the multiconstraint zero–one knapsack27

problem. Journal of the Operational Research Society 30 (1979) 369–378.28

[5] Pisinger D. Algorithms for knapsack problems. Ph.D. thesis, Department of29

Computer Science, University of Copenhagen, Denmark, 1995.30

http://www.diku.dk/hjemmesider/ansatte/pisinger/31

22

http://www.diku.dk/hjemmesider/ansatte/pisinger/

[6] Balev S, Yanev N, Fréville A, Andonov R. A dynamic programming based re-1

duction procedure for the multidimensional 0–1 knapsack problem. European2

Journal of Operational Research 166 (2008) 63–76.3

[7] Weingartner HM, Ness DN. Methods for the solution of the multidimensional4

0/1 knapsack problem. Operations Research 15 (1967) 83–103.5

[8] Fréville A, Plateau G. The 0–1 bidimensional knapsack problem: Towards an6

efficient high-level primitive tool. Journal of Heuristics 2 (1996) 147–167.7

[9] Cabot AV. An enumeration algorithm for knapsack problems. Operations Re-8

search 18 (1970) 306–311.9

[10] Schilling KE. The growth of m–constraint random knapsacks. European Journal10

of Operational Research 46 (1990) 109–112.11

[11] Fontanari JF. A statistical analysis of the knapsack problem. Journal of Physics12

A: Mathematical and General 28 (1995) 4751–4759.13

[12] Soyster AL, Lev B, Slivka W. Zero–one programming with many variables and14

few constraints. European Journal of Operational Research 2 (1978) 195–201.15

[13] Lin FT. On the generalized fuzzy multiconstraint 0–1 knapsack problem. in:16

Proceedings of the 2006 IEEE International Conference on Fuzzy Systems. pp.17

984–989, 2006.18

[14] Puchinger J, Raidl GR, Pferschy U. The multidimensional knapsack problem:19

structure and algorithms. INFORMS Journal of Computing 22(2) (2010) 250–20

265.21

[15] Drexl A. A simulated annealing approach to the multiconstraint zero–one knap-22

sack problem. Computing 40 (1988) 1–8.23

[16] Hanafi S, Fréville A. An efficient tabu search approach for the 0–1 multidimen-24

sional knapsack problem. European Journal of Operational Research 106 (1998)25

659–675.26

[17] Vasquez M, Vimont Y. Improved results on the 0–1 multidimensional knapsack27

problem. European Journal of Operational Research 165 (2005) 70–81.28

[18] Chu PC, Beasley JE. A genetic algorithm for the multidimensional knapsack29

problem. Journal of Heuristics 4 (1998) 63–86.30

23

[19] Sakawa M, Kato K. Genetic algorithms with double strings for 0–1 programming1

problems. European Journal of Operational Research 144 (2003) 581–597.2

[20] Djannaty F, Doostdar S. A hybrid genetic algorithm for the multidimensional3

knapsack problem. International Journal of Contemporary Mathematical Sci-4

ences 3(9) (2008) 443–456.5

[21] Kong M, Tian P, Kao Y. A new ant colony optimization algorithm for the mul-6

tidimensional knapsack problem. Computers & Operations Research 35 (2008)7

2672–2683.8

[22] Zou D, Gao L, Li S, Wu Z. Solving 0–1 knapsack problem by a novel global9

harmony search algorithm. Applied Soft Computing 11 (2011) 1556–1564.10

[23] Akçay Y, Li H, Xu SH. Greedy algorithm for the general multidimensional11

knapsack problem. Annals of Operations Research 150 (2007) 17–29.12

[24] Boyer V, Elkihel M, Baz DE. Heuristics for the 0–1 multidimensional knapsack13

problem. European Journal of Operational Research 199 (2009) 658–664.14

[25] Hill RR, Cho YK, Moore JT. Problem reduction heuristic for the 0–1 multi-15

dimensional knapsack problem. Computers & Operations Research 39 (2012)16

19–26.17

[26] Pirkul H. A heuristic solution procedure for the multiconstraint zero-one knap-18

sack problem. Naval Research Logistics 34 (1987) 161–172.19

[27] Veni KK, Balachandar SR. A new heuristic approach for large size zero–one20

multi knapsack problem using intercept matrix. International Journal of Com-21

putational and Mathematical Sciences 4(5) (2010) 259–263.22

[28] Fréville A. The multidimensional 0–1 knapsack problem: An overview. European23

Journal of Operational Research 155 (2004) 1–21.24

[29] Jiang M, Mastorakis N, Yuan D, Lagunas MA. Image segmentation with im-25

proved artificial fish swarm algorithm. in: Mastorakis N et al. (eds.), ECC 2008,26

LNEE, Vol. 28. Springer-Verlag, Heidelberg, pp. 133–138, 2009.27

[30] Jiang M, Wang Y, Pfletschinger S, Lagunas MA, Yuan D. Optimal multiuser28

detection with artificial fish swarm algorithm. in: Huang DS et al. (eds.), ICIC29

2007, CCIS, Vol. 2. Springer-Verlag, Heidelberg, pp. 1084–1093, 2007.30

24

[31] Wang CR, Zhou C-L, Ma J-W. An improved artificial fish swarm algorithm and1

its application in feed-forward neural networks. in: Proceedings of the Fourth2

International Conference on Machine Learning and Cybernetics. pp. 2890–2894,3

2005.4

[32] Wang X, Gao N, Cai S, Huang M. An artificial fish swarm algorithm based and5

abc supported QoS unicast routing scheme in NGI. in: Min G et al. (eds.), ISPA6

2006, LNCS, Vol. 4331. Springer-Verlag, Heidelberg, pp. 205–214, 2006.7

[33] Rocha AMAC, Fernandes EMGP, Martins TFMC. Novel fish swarm heuris-8

tics for bound constrained global optimization problems. in: Murgante B et9

al. (eds.), Computational Science and Its Applications, ICCSA 2011, Part III,10

LNCS, Vol. 6784. Springer-Verlag, Heidelberg, pp. 185–199, 2011.11

[34] Rocha AMAC, Martins TFMC, Fernandes EMGP. An augmented Lagrangian12

fish swarm based method for global optimization. Journal of Computational and13

Applied Mathematics 235 (2011) 4611–4620.14

[35] Neshat M, Sepidnam G, Sargolzaei M, Toosi AN. Artificial fish swarm algorithm:15

a survey of the state-of-the-art, hybridization, combinatorial and indicative ap-16

plications. Artificial Intelligence Review (2012). DOI:10.1007/s10462-012-9342-217

[36] Mirjalili S, Lewis A. S-shaped versus V-shaped transfer functions for binary18

particle swarm optimization. Swarm & Evolutionary Computation 9 (2013) 1–19

14.20

[37] Suresh K, Kumarappan N. Hybrid improved binary particle swarm optimization21

approach for generation maintenance scheduling problem. Swarm & Evolution-22

ary Computation 9 (2013) 69–89.23

[38] Bansal JC, Deep K. A modified binary particle swarm optimization for knapsack24

problems. Applied Mathematics and Computation 218(22) (2012) 11042–11061.25

[39] Beheshti Z, Shamsuddin SM, Yuhaniz SS. Binary accelerated particle swarm26

algorithm (BAPSA) for discrete optimization problems. Journal of Global Op-27

timization (2013). DOI 10.1007/s10898-012-0006-128

[40] Langeveld J, Engelbrecht AP. A generic set-based particle swarm optimization29

algorithm. in: Proceedings of the 2011 International Conference on Swarm In-30

telligence, France 2011, pp. id-1–id-10.31

25

[41] Langeveld J, Engelbrecht AP. Set-based particle swarm optimization applied to1

the multidimensional knapsack problem. Swarm Intelligence 6 (2012) 297–342.2

[42] Wang L, Wang X, Fu J, Zhen L. A novel probability binary particle swarm3

optimization algorithm and its application. Journal of Software 3(9) (2008) 28–4

35.5

[43] Azad MAK, Rocha AMAC, Fernandes EMGP. Solving multidimensional 0-16

knapsack problem with an artificial fish swarm algorithm. in: Murgante, B. et7

al. (eds.), Computational Science and Its Applications, ICCSA 2012, Part III,8

LNCS, Vol. 7335. Springer-Verlag, Heidelberg, pp. 72–86, 2012.9

[44] Moraglio A, Johnson CG. Geometric generalization of the Nelder-Mead algo-10

rithm. in: Cowling P, Merz P (eds.), EvoCOP 2010, LNCS, Vol. 6022. Springer-11

Verlag, Heidelberg, pp. 190–201, 2010.12

[45] Goldberg DE. Genetic Algorithms in Search, Optimization, and Machine Learn-13

ing. Addison-Wesley, Reading, MA, 1989.14

[46] Michalewicz Z. Genetic Algorithms+Data Structures=Evolution Programs.15

Springer, Berlin, 1996.16

26

	Introduction
	Artificial Fish Swarm Algorithm
	Improved Binary Artificial Fish Swarm Algorithm
	Initialization (coding)
	Generating trial points in IbAFSA
	Chasing behavior
	Swarming behavior
	Searching behavior
	Random behavior

	Constraints handling
	Selection of a new population
	Leaping behavior
	Termination conditions
	Reinitialization of the population
	The algorithm
	Time complexity of one iteration of IbAFSA

	Experimental Results
	Conclusions

