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ABSTRACT 

The vulnerability of unreinforced masonry walls (URM) under seismic events, causing huge 

loss of money and human lives, has revealed the enormous need for an efficient strengthening 

material.  In this context, the present paper reports the development of a new reinforcing 

material for masonry walls based on braided fibrous structures. These fibrous materials were 

developed through braiding of polyester yarns around a core made of either glass fiber (core 

reinforced braid). Masonry walls were fabricated by placing these braided materials on the 

surface of clay brick walls in a mesh like configuration and covering with a mortar layer. This 

technique is designated as reinforced textile mortar retrofitting technique.  

Keywords: textile reinforced mortar, brick masonry, seismic retrofitting 

 

INTRODUCTION 

Last seismic events in Southern Europe have highlighted the vulnerability in the most usual 

constructive typology in contemporary architecture: framed structures with masonry infills 

(Pompeu Santos, 2007, Lourenço et al., 2010). Contemporary structures have a good capacity 

to withstand these actions, given that they were considered for their design according to 

modern codes. Nonetheless, nonstructural elements as masonry infills show a high degree of 

damage even for medium magnitude earthquakes, causing casualties and high economic 

losses (Bertero and Broken 1983, Meharbi et al. 1994, Al-Chaar et al. 2002, Vintzileou and 

Tassios 1989). For decades, these elements have been considered as nonstructural and 

therefore they were not requested to have resisting conditions.  

Given this, there is a large segment within the building stock in seismic prone areas that needs 

to undergo preventive action, especially for out-of-plane loads. This can range from a mere 

union of the infills to the frame structures to reinforce the elements, which can also be applied 

to the case of already damaged elements. The potential benefits go beyond the mere stability 

of nonstructural elements, as this would improve the behaviour of the whole structure to face 

seismic events. Following the use of textile reinforcement mortar as a retrofitting technique 

for masonry infill walls (Papanicolau et al., 2007; Papanicolau et al., 2008;) , some new fibre-

based materials for structural reinforcement based on braiding techniques have been 

developed in the last years in the University of Minho, as an alternative to conventional FRP 

rods. These materials have several advantages, out of which it can be remarked the possibility 

of designing the composition according to mechanical requirements and the implication of 

low-tech (Mora, 2012)and low-cost procedures for its production. 

The main purpose on this paper is to provide the results of the experimental campaign 

designed for the assessment of the performance of distinct meshes composed of braided 

materials with distinct quantity of fiber reinforcement and distinct spacing to work as 
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retrofitting technique of brick masonry under flexural loads. The meshes with braided 

materials are composed of braided bars with two yarns of glass fibers spaced 6cm (2G6), four 

yarns of glass fiber with spacing of 6cm (4G6) and two yarns of glass fiber with spacing of 

3cm (2G3) embedded in the rendering mortar of the specimens. The performance of these 

meshes was also compared with the behavior of different commercial meshes available in the 

market. 

INNOVATIVE MATERIALS: BRAIDE FIBER-REINFORCED RODS 

The application of textile materials is a technique with some years of research and 

development, with some commercial implementations already available. The used fibres are 

glass and carbon, due to the junction of good mechanical properties with durability and 

chemical resistance.  

A second generation of this kind of materials is currently being developed on the aim of 

improving the behavior and effectiveness of the resisting fibers, by means of their use within 

composite materials, and especially within braided composite materials under the form of 

rods (Godinho et al., 2008). These were developed as an alternative for steel reinforcements, 

given its higher strength, its resistance to corrosion, the lower diameter and the possibilities 

offered by the insertion of a reinforcement structure to improve the bonding to the matrix. The 

further application of this technology is the retrofitting of masonry infill walls, still in early 

steps of assessment and main topic for this work. The resulting material is very similar to FRP 

rods, in the sense that they are a composite material with fibers within a resin matrix. They 

are called in bibliography braided composite rods (BCR). Its innovation is linked to the use of 

different materials within a composite trying to make the most of each one’s properties. The 

resisting fiber, stronger, is inserted within a braided with low mechanical properties and 

cheap. This braiding, not being significantly resistant, should carry out two functions: (1) 

improving the bond among the mortar matrix and the fibers and (2) protecting the fibers from 

the potential chemical aggressivity of the matrix. Bonding is a major problem in the 

application of very strong materials for reinforcement. Failures by slipping of the fibers 

within the mortar or concrete matrix are very common, and it implies an ineffective use of the 

material, given that it is not allowed to develop its maximum stress.  

Material Composition and manufacturing process 

The composite material developed and presented in this paper can be briefly described as a 

braided fibrous materials made of polyester (polymeric fibers) around a core of fiberglass, 

with the addition of polyester resin to guarantee on the one hand bonding among them on the 

other hand the stability of the structure. Two different types of reinforcement will be 

produced in order to have a mean of parametrical comparison. They will be named from now 

as 2G and 4G, according with the number of yarns of fibreglass composing the core, namely 

two (2G) or four (4G). The choice on fibreglass instead of carbon is due to its lower cost, 

better availability  and its better behavior in terms of ductility, given the higher stiffness and 

lower elongation in rupture of carbon, even if it has a higher tensile resisting force.  

The BCR material is composed by 15 simple yarns and a braid (composed by 8 yarns) of high 

resilience polyester. In fact, a special disposition has been developed regarding the 

composition of the BCR material. The technique to made BCR involves braiding in the transverse 

and longitudinal directions forming a tubular structure. The yarns are in two groups of spindles and 

rotate in opposite directions, clock and counter- clock wise. With the aim of improving mechanical 

properties and for adding new functionalities, axial fibers can be added. This structure can be 

composed of different materials for achieving the required reinforcing behavior. Braiding angle is the 

most important parameter in characterizing a textile braided structure, influencing directly its 
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behavior. Braiding angle is the angle between the longitudinal axis and the direction of insertion of the 

braiding yarns (Mora, 2012). In this case, this thicker yarn, which is used in the braiding 

machine in a rate of 15 normal to 1 thicker, is composed by a simple braid of 8 yarns.  

     
 (a)  (b)  (c) 

Fig.1. Details about the manufacturing of the BRC; (a) distinct components of the BRC; (b) tensioning before 

the application of the polyester resin; (c) application of the polyester resin 

The final step of the preparation of the rods implies tensioning them with 100N force, and 

then to stabilize them, as seen Fig 1b. The tensioning was done by attaching the braided rods 

to a stable structure on one end, and hanging weight on the other end. Once tensioned, san 

impregnation with resin is made, a process that is done manually as seen in Fig. 1c. The 

polyester resin is chosen because of its lower cost and toxicity compared to epoxy resins. It is 

activated through addition of 2% of Methyl Ethyl Ketone Peroxide. This is a technique 

aiming at ensuring the bonding and the unitary behavior of both braided fibrous and core, 

given that they will work together in the resin matrix and keeping the possibility of creating 

meshes by woving the individual BCR. For other research projects, the technique of resining 

was different (Godinho et al., 2008). Braided materials can be characterized mainly by two 

features: braiding angle and diameter.  The diameter of the rods has been determined by its 

measure with a Vernier calipter with 0.05 mm accuracy for the measurement. The difficulty 

comes for the rugosity adherence of the BCR, which makes the diameter irregular. For each 

2G and 4G 20 measures were taken in order to have a good average as characteristic feature. 

An average diameter of 2.05mm was found for 2G rods and an average diameter of 2.16mm 

was obtained for 4G rods. 

The braiding angle is defined as the angle formed by the yarns braided around the core and 

the axis of the rod. This feature is important as bonding properties are highly affected by the 

characteristics of the braid and its rib structure. In previous studies by Godinho et al. (2008), 

it was observed that for each core-reinforced fabric, there is a braiding angle that ensures an 

optimum mechanical performance. For a braided fabric produced with six bobbins of 

polyester yarns and two simple braids, and a core reinforcement of 1800 tex fibreglass, this 

angle was stated in 23º-24º. This characterization was made with an optical amplifier and 

corresponding image-treatment software. The obtained data is an average of three measures, 

and the measured entity is as defined graphically in Fig. 2. 

   
Fig.2. Visual aspect of the braided composite 2G and 4G rods 
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Mechanical characterization of BCR (Braided composite rods). Uniaxial tensile tests 

The produced materials were tested according to ASTM 5034 (2009) in order to obtain their 

mechanical properties, namely breaking strength (equivalent to tensile strength), elongation 

and modulus of elasticity. This was done in a servo-controlled machine, following the 

common procedures in textile tests. The material is grabbed by the clamps and tensioned until 

breaking, being obtained the data of elongation related to the applied force. 

Samples of each 2G and 4G rods were prepared according to the standards and requirements 

of the testing machine. From previous experience it was learnt that it was not convenient to 

grab the rods directly with the clamps, being a better option providing them of holding plates 

on each end, made of a composite of fibreglass and epoxi resins, in order to obtain such a 

strength that the breaking occurs in the middle of the sample. The length of the samples was 

100 mm, and the holding surfaces were 70x50mm
2
. The equipment was a dynamometre 

Hounsfeld H100KS, and the test was carried under displacement control at a rate of 

5mm/min. A preload of 10N was considered. 

 
 (a)  (b) 

Fig.3. Details of the tensile tests of the composite rods; (a) equipment; (b) BRC specimens 

The typical behavior found for the composite rods under tensile loading is presented in Fig. 4. 

It is seen that the composite rods present a clear distinct behavior (2G and 4G) from the 

simple polyester braided rods (without reinforcing core). The composite rods exhibit 

considerable high stiffness than the simple braided rods, which is associated to the high 

stiffness of the reinforcing fibers. Besides, the reinforced composite braided rods present 

linear behavior until the maximum force is attained, whereas the pre-peak behavior of the 

simple braided rods is influence by the braded structure, leading to a different initial stiffness. 

This characteristic is associated to the braided angle of the textile structure. The maximum 

force of the composite rods is governed by the maximum force achieved by the glass fibers in 

the core, even if. the failure is not visible during the tests, as the fibers break within the 

polyester braid. Even if the post behavior should not be considered as representative od the 

composite structure, it should be noticed that there is a trend for the recovery of the tensile 

bearing force, which is associated to the bearing capacity of the polyester braided rods, whose 

tensile resistance is increasing for increasing deformation. In this case, very considerable axial 

deformations can be found. The recovery of the resisting force should be of the same order of 

the resisting force of the polyester braided, as shown in Fig. 4b. It should be noticed that the 

stiffness of the second branch is no more related to the stiffness of the composite rods and 

should be more close to the stiffness of the simple braided rods. It should be noticed that  that 

for braided composite rods 4G, with double mass of the braided rod 2G, does not resist to the 

double force. 
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 (a) (b) 

Fig.4. Typical behavior of the tensile behavior of the composite and simple braided rods: (a) tensile behavior of 

the composite braided rods4G and (b) comparison of the tensile behavior composite (2G and 4G) and simple 

braided rods 

This nonlinearity in the tensile bearing capacity should be associated to different factors: (1) 

even if the deformation is solidary, the fibers in the core could be not perfectly aligned in the 

pre-tensile state, giving higher strains than expected, as the reinforcing fibers have to align in 

the beginning of the tensioning process; (2) nature of the fibrous materials, and the higher 

probabilities of having imperfect yarns, increased for materials with higher content of yarns. 

Besides, the scatter on the results can be explained by the semi-manual production of the 

braided rods. 

Manufacture of BCR meshes 

After the production of the reinforcements, the produced rods were assembled into a 

bidirectional mesh. A woven structure for the mesh was preferred to the simple superposition 

of the rods in perpendicular directions, due to a better self-stability of the mesh before its 

implementation and a better guaranteed bidirectional behavior. The meshes were assembled 

according to the defined measures, with spacing of 60 or 30 millimeters. The manual 

character of this procedure implied difficulties such as ensuring accurate constant spacing 

among the rods. The joining of the two perpendicular directions of yarns in the mesh was 

done by application of polystyrene resin on them, see Fig. 5a. To guarantee a correct 

application, the curing period was of 24 hours. The aim is to improve the natural stability of 

the mesh to ensure its application to the wall in correct conditions. 

One of the purposes of this research is to assess the capacity of improvement of the bonding 

between the reinforcement fibers and the matrix mortar due to the use of braided materials. So 

far, commercial solutions consist just on the reinforced material, prepared to be inserted in the 

mortar matrix. To have a reference, two different commercial solutions were chosen to be 

used and be compared to the developed materials. The range of options was not very wide 

but, nonetheless, it was possible to choose two solutions different among them, being one 

more similar to our proposal in terms of resisting material and mass density, and the other 

different in material and disposition. The bidirectional mesh is composed by alkali-resistant 

fiberglass (CM1), see Fig 5b. The black color is due to the alkali-resistant treatment, based on 

bitumen. It is composed in both directions by two yarns of fiberglass per element, in one 
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direction they are tightly together and in the other they are separated. The joints are somehow 

rigid, apparently made by pressure and heat. Its application is recommended with “high 

ductility mortars”. The unidirectional mesh (CM2), see Fig 5c, is composed in the main 

direction are composed by two yarns of carbon fiber, slightly joined by a very thin fiberglass 

rolled around them. The yarns are slightly covered with a sandy-like granular element, 

probably to increase the bonding properties, though there is no mention to it in the technical 

data. The transversal elements are composed of fiberglass, in a much lower density, probably 

better for stabilizing the mesh than for really give a bidirectional behavior. The mesh is joined 

by woving, and its density guarantees its self-stability.  

 

   
 (a)  (b)  (c)  

Fig.5. Details about the meshes; (a) Proposed mesh; (b) commercial mesh CM1; (c) commercial mesh CM1 

EXPERIMENTAL CAMPAIGN ON STRENGHTENED MASONRY  

The evaluation of the effectiveness of the new materials developed as a retrofitting technique 

aiming at improving the out-of-plane behavior of brick masonry infill walls was carried out 

based on an experimental campaign composed of bending tests mobilizing the flexural 

resistance of masonry in the perpendicular direction to the bed joints. For this, distinct 

solutions for the retrofitting materials were selected, namely: (1) application of the textile 

composite meshes developed; (2) use two distinct commercial meshes as described 

previously. The idea is to reinforce the rendering mortar with the textile distinct meshes 

(TRM technique). 

Masonry specimens and testing procedure 

The geometry of the samples, the setting of the flexural resistance tests and the number of 

tests were defined according to standards EN-1052 (1999). For this work, the geometry of 

samples was reviewed in comparison with the previous work (Vasconcelos et al., 2012), as it 

is considered that the span that was considered for the flexural tests should be increased so 

that the results could be also more comparable with previous studies that have been carried 

out with larger spans. Therefore, the new dimensions will be designed according to UNE-EN-

1052, according to the same type of bricks as the previous works, but trying to make the span 

for the flexural test double of the previous one, so that the relation thickness/span of the wall 

is closer to 10. Papanicolau and Triantafillou (2008) used specimens with a span to thickness 

ratio of 1300/85 (approximately 15) and Rupika (2010) used specimens with a span to 

thickness ratio of 930/7 (approximately 12). 

The brick was selected as the most representative for simple partition walls or for simple 

leaves within composed enclosure walls in Portugal. The total thickness of the wall registered 

in codes (referring to isolation requirements) and in construction practice is of 12 cm. This 

solution, executed with the most usual measures of bricks and with bricks with horizontal 

perforation, leads to a brick of 30x20x11cm
3 

(LxWxH). Given that the flexural tests will be 
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done in the direction of the bed joints, it was necessary to have data for the compressive 

strength of the bricks in the direction of the holes. Four brick masonry units were tested in a 

loading machine with a capacity of 2000kN according to EN 771-2 00, using the 

corresponding load rate of 0.05 (N/mm
2
)/s. The obtained average value must be normalized 

due to the dimensions of the unit. Given the height of 300 mm and the width 140 mm, the 

correction factor δ is 1.35, and the normalized strength in the parallel direction to the 

perforation, fb,  is of 6.1 MPa.  

The mortar for the bed and head joints is defined as a general purpose pre-mixed mortar used 

for laying the mortar units and is from class M10. The mortar for the rendering and 

implementation of the reinforcements is defined as rendering mortar, according to EN-998-

1:2003. The quality of both mortars was controlled through samples taken during the 

construction of the specimens and then tested under flexure and uniaxial compressive 

strength. This procedure enables also to control also the quality of workmanship. The average 

compressive strength for laying brick units was 9.34 MPa, with the lowest value of 7.9 MPa, 

and the highest of 11.1 MPa. This value is slightly under the 10 MPa given by the 

specifications (M10), but again, it can be due to a higher quantity of water required to have a 

proper workability. The average flexural strength was of 2.94 MPa. For the render, the 

average compressive strength was of 9.18 MPa, higher than the minimum value provided by 

the producer and the average flexural strength of 3.45 MPa.  

The construction of the samples was completed with the addition of the reinforcement 

materials, both commercial and self-produced, within a general purpose rendering mortar, as 

seen in Fig. 6a. Before the application of the retrofitting materials, the walls were swept to 

clean possible dust or imperfections that could affect adherence, and then spilled with water 

to avoid that the bricks absorbed the water of the mortar making it dry too quickly. The mesh 

was applied within the rendering mortar layer of approximately 12mm. In total, five different 

retrofitting schemes were tested. As mentioned in the previous section, the retrofitting meshes 

are characterized by the reinforcement density, spacing of the yarns and tensile capacity 

(Table 1). A calculation of the total tensile strength for each retrofitting mesh has been done. 

For the commercial meshes, this value is provided as tensile strength per metre, and will be 

adjusted to the tensile width of the walls, corresponding to the height of the samples and equal 

to 610 mm. In a simplified way, the resisting force taken by the proposed meshes is taken as 

the value resulting by multipliying the mean tensile force of each type of rod by the number 

of rods according to each retrofitting scheme. This is an approximate calculation and need to 

be confirmed by further tensile tests on the produced meshes, which is being made in a scope 

an additional experimental work. 

 

     
(a)  (b) 

Fig.6. Details about the experimental program; (a) application of the BCR meshes; (2) setup for the flexural tests 

Table 1. Definition of retrofitting schemes. 
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Retrofitting 

material 

Reinforcement 

density (g/m
2
) 

Spacing 

(mm) 

Tensile Capacity 

(kN) 

2G #6 57 60 9.2 

2G#3 114 30 12.0 

4G#6 114 60 18.4 

CM1 225 25 27.4 

CM2 200 (unidirect.) 20 57.1 

Definition of the retrofitting schemes and test setup and test procedure 

The test setup is composed of a steel frame connected to a reaction slab to which a hydraulic 

jack, with a load capacity of 500 kN connected to a load cell of 200KN is associated. The 

loading configuration was defined according to standard EN1052-2 99 for flexural strength of 

masonry. The deformation of the samples was measured through three LVDTs with a 

measuring capacity of 50 mm: one in the mid-span and one under each application of the 

load, as this were expected to be the most likely points for the formation of the cracks and 

thus the maximum deflection. The simple support structural scheme was achieved through the 

use of metallic rods, adding an interface in-between the rod and the sample composed by two 

layers of Teflon painted with mineral oil to avoid any unexpected effect of the friction at the 

supports, see Fig. 6b. In this case, the load-application control is through fixed displacement. 

The testing procedure is composed of three steps, according to the different expected 

mechanisms: (1) first step, with a velocity of 0.004 mm/s during the first 6 mm, 

corresponding to the lower rate achievable by the machine. This is due to the low 

displacement required for the cracking of the wall (after the first testing, estimated in the 

order of 1 mm); (2) second step, with a velocity of 0.01 mm/s during the next 4 mm, 

increasing the velocity as the reinforcement is loaded after the cracking of the wall; (3) last 

step, with a velocity of 0.02 mm/s, aiming to make time-affordable tests given the high 

deformation expected, especially for the braided materials. 

Analysis of results 

An overview of the obtained results will be provided on the purpose of analyzing the main 

features of the behavior that define each reinforcement typology. There will be a special 

interest on analyzing certain mechanical parameters that measure the effectiveness of each 

solution, namely cracking load, cracking load displacement, maximum loading and 

corresponding deflection and maximum deflection. Besides, it is important (1) to evaluate the 

post-peak behavior with increase or decrease of the loading capacity; (2) increase on the 

ultimate deformation; (3) evaluation of the failure mode, focusing on the existence of 

redistribution of load, being this a feature of the safety improvement provided by each 

solution. The typical load-displacement curves obtained for each masonry specimens are 

indicated in Fig.7.  

The unreinforced masonry (Fig.7a) is characterized by a very brittle behavior, which is 

associated to the localized central crack involving the failure of the unit-mortar interface and 

the units, see Fig.8a. This is the typical failure mode already pointed out by recent researches 

(Vasconcelos et al., 2012). In average the maximum flexural load, corresponding in this case 

to the cracking flexural load, presents an average value of 8.48kN (Table 2), corresponding to 

the flexural stress in the perpendicular direction to the bed joint, fxi, of 0.45MPa. The scatter 

on the flexural cracking load is low, which validate the accuracy of the experimental results.  
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 (a)  (b) 

 
 (c)  (d) 

 
 (e)  (f) 

Fig.7. Typical force-displacement diagrams obtained in flexural tests; (a) unreinforced masonry; (b) masonry 

strengthened with mesh 2G#6;  (c) masonry strengthened with mesh 4G#6;  (d) masonry strengthened with mesh 

2G#3;   (e) masonry strengthened with mesh CM1;  (f) masonry strengthened with mesh CM2 
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Table 2 . Loading and deflection indexes associated to the load vs. displacement curves 

 
URM 2G#6 4G#6 2G#3 CM1 CM2 

Flexural cracking load (kN) 8.48 7.68 8.44 8.56 10.9 10.6 

Cracking load deflection (mm) 0.165 0.149 0.235 0.265 0.145 0.198 

Max elastic flexural stress (MPa) 0.450 0.408 0.448 0.454 0.579 0.563 

Max flexural load (kN) 
 

9.47 10.395 17.829 23.38 32.36 

Max deflection calculated (mm) 
 

68.287 42.826 86.583 12.59 large 

Max flexural stress (MPa) 
 

0.502 0.551 0.946 1.242 1.718 

Load redistribution 
 

NO NO YES YES YES 

As expected, the material is very stiff, with a very low displacement until the peak load is 

attained. Even if the loading rate was set for the minimum possible for the used load cell, the 

samples broke in an average of 3 minutes, presenting an abrupt failure, resulting in the 

impossibility of obtaining any post-peak response. The response of the specimens 

strengthened with braided composite rod meshes present a similar behavior until the flexural 

cracking load is attained (Fig.7b-d), resulting in the opening of the first flexural crack. In 

average, the flexural cracking load obtained in the specimens 2G#6, 4G#6 and 2G#3 is similar 

to the load recorded in the URM specimens (Table 2).This means that the proposed meshes 

are not very effective in increasing the flexural cracking load. Besides, it is seen that after the 

first crack is opened there is a considerable reduction of the resisting flexural load in case of 

specimens strengthened with braided composite rod meshes, whereas the reduction is more 

controlled in case of Comercial meshes CM1 and almost inexistent in case of the CM2 mesh. 

Notice that the commercial mesh CM1 is composed of the same base reinforcing material 

than the innovative materials, glass fibres. However, reinforcement ratio is considerably 

higher when compared with the innovative materials developed here. On the other hand, the 

small spacing among the yarns guarantees a very uniform behavior. There is a very good 

redistribution of the load in case of use CM2, with the development of several thin cracks 

without a definite opening of any of them. The opening of these cracks implies lowerings on 

the load bearing capacity, even if a growing tendency until reaching a maximum load of about 

23 kN is observed. The peak load is attained for a deflection of about 12 mm. 

 
 (a)  (b)  (c) 

 
  (d)  (e) 

Fig.8. Crack patterns at failure; (a) masonry strengthened with mesh 2G#6;  (b) masonry strengthened with 

mesh 2G#6;  (c) masonry strengthened with mesh 2G#6;   (d) masonry strengthened with mesh CM1;  (e) 

masonry strengthened with mesh CM1 
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After the reduction of the flexural strength there is a recover for a value close to the flexural 

cracking load in case of specimens strengthened with 2G#6 and 4G#6. In case of mesh 2G#3 

there is a progressive increase on the flexural load for more than the double of the flexural 

cracking load. The great advantage of the BRC meshes (2G#6 and 4G#6) is the improvement 

on the behavior after the cracking load, as the specimens are able to recover great percentage 

of the flexural resistance for high values of lateral deformation, even if no advantage was 

observed in the crack distribution, see Fig. 8a-b, in relation to unreinforced masonry. On the 

other hand, the mesh 2G#3 results in effective force redistribution, being the crack patterns 

clearly more distributed, see Fig8c. 

It is observed that the BRC meshes present a more ductile behavior than the mesh CM1, in 

which two specimens failed abruptly after the achievement of the maximum load. In case of 

the specimens reinforced with the BRC mesh 2G#3, the increase on the flexural resistance 

load in accompanied by the increase on the deformation. Contrarily to the other BRC meshes, 

in this case it is possible to observe that there is a more effective redistribution of forces being 

the mesh also effective in increasing the resistance, see Fig. 8d. It should be noticed that the 

ductility measured as a function of the maximum displacement is also higher in case of BRC 

mesh 2G#3, being practically similar to the ultimate deformation exhibited by the specimens 

strengthened with mesh CM2.  The use of this commercial solution lead to an enhancement of 

the first cracking load, of around 20 % compared to the unreinforced samples. The most 

remarkable feature of its behavior is the quick redistribution of the loads and the developing 

of several thin cracks. The formation of cracks does not imply the dropping on the load 

bearing capacity, but just a lowering of the stiffness (cracked stiffness). In this case it is 

observed a distributed crack pattern, even if in the failure sliding of the carbon fibers was 

recorded. 

CONCLUDING REMARKS 

The comparison among the different retrofitting solution must take into account the 

differences between the used solutions. The samples with the innovative material are 

comparable among them, given that they have a progressively increasing tensile capacity, and 

this is noticeable in increasingly better properties. The commercial solutions, having a much 

higher mass and tensile capacity, give better results in general, though the features of their 

behavior are different. Therefore, the comparison among the solutions should be regarded 

more in a qualitative than in a quantitative scope. 

However, for the quantitative comparison the following statements can be remarked: (1) the 

composite reinforcements do not provide any noticeable improvement in the elastic range, 

meanwhile the commercial products increases the maximum elastic flexural stress (load at 

first crack) in about 26% for CM1 and 24% for CM2 commercial solutions; (2) the maximum 

load increases progressively with the amount of reinforcement, though not in a linear way. 

The improvement on the flexural maximum load can be estimated in terms of load bearing 

capacity (directly related to flexural stress) when compared to the load obtained in 

unreinforced masonry specimens: (1) 2G#6, improvement on the maximum flexural load of of 

11%; (2) 4G#6, improvement on the maximum flexural load of of 22.6%; (3) 2G#3, 

improvement on the maximum flexural load is of 110% but it is mobilized for very large 

deformations. If the range of deformations for which the maximum load is achieved for the 

other solutions is considered, the improvement can be estimated as 36%; (4) CM1 

improvement on the maximum flexural load of of 175%.; (5) CM2, improvement on the 

maximum flexural load of 281%. 
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