

International Journal of Advanced Robotic Systems

A Specification Patterns System
for Discrete Event Systems Analysis

Regular Paper

José Creissac Campos1 and Jose ́ Machado2,*

1 Departamento de Informática/Universidade do Minho & HASLab/INESC TEC, Portugal
2 Departamento de Engenharia Mecanica/CT2M, Universidade do Minho, Portugal
* Corresponding author E-mail: jmachado@dem.uminho.pt

Received 20 Dec 2012; Accepted 19 Mar 2013

DOI: 10.5772/56412

© 2013 Campos and Machado; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract As formal verification tools gain popularity, the
problem arises of making them more accessible to engineers.
A correct understanding of the logics used to express the
properties of a system’s behaviour is needed in order to
guarantee that properties correctly encode the intent of the
verification process. Writing appropriate properties, in a
logic suitable for verification, is a skilful process. Errors in
this step of the process can create serious problems since a
false sense of safety is gained from the analysis. However,
when compared to the effort put into developing and
applying modelling languages, little attention has been
devoted to the process of writing properties that accurately
capture verification requirements. In this paper we illustrate
how a collection of property patterns can help in simplifying
the process of generating logical formulae from informally
expressed requirements.

Keywords Discrete Event Systems, Dependability, Model
Checking, Property Specification Patterns

1. Introduction

The dependability of an automated system (e.g., its
reliability, availability, maintainability) has a direct im-

pact on people and goods safety. Guaranteeing the safe
operation of a system requires a holistic approach to
design that takes safety considerations into account from
the early design stages through to operational exploita-
tion.

Formal verification of software is becoming established as
a useful and powerful technique for guaranteeing the
correctness of software artefacts in general. This is also
the case for industrial controller analysis [1]. Formal veri-
fication's main advantage is that it enables analysis of all
possible system behaviour. Typical mentioned disadvan-
tages relate to the time and computational resources
needed for the attainment of formal verification results
and to the level of expertise needed to apply the verifica-
tion techniques. In this paper we address the latter issue.

In recent years, several approaches to applying formal
verification techniques to automation system dependabil-
ity have been proposed. These range from formal verifica-
tion by theorem proving [2] to formal verification by
model checking [3-6]. Model-checking [7], in particular, is
becoming an established technique for the formal veri-
fication of Discrete Event Systems (DES) automation. A fi-
nite state system can be represented by a labelled state

1José Creissac Campos and José Machado:
A Specification Patterns System for Discrete Event Systems Analysis

www.intechopen.com

ARTICLE

www.intechopen.com Int. j. adv. robot. syst., 2013, Vol. 10, 315:2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55626679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

transition graph, where labels of a state are the values of
the atomic propositions in that state (for example the
values of the latches). The properties of the system are
expressed as formulae in temporal logic. Model-checking
(see Figure 1) consists of traversing the graph of the
transition system and verifying that it satisfies the
formula representing the property, i.e., that the system is
a ``model'' of the property.

Temporal logic formulae enable the expression of
properties of the behaviour of the system, for example,
properties of the internal states of the controller (e.g.,
safety and liveness properties of the controller model) [8],
but also properties related to the plant model, such as the
safety or liveness of its behaviour.

Figure 1. Model checking

As verification tools gain popularity, the problem arises
of making their use scale to more realistic settings. The
applicability of such tools is affected by a number of
factors, from the scalability of the algorithms being used
as the size and complexity of the problems being faced
increases, to their proneness to human error during the
modelling and interpretation of results phases as
potential users become less proficient in the verification
techniques being applied. We refer to this latter aspect as
the accessibility of the verification tools.

We have been working on the issue of making
verification more accessible. In order to help the analysis
of PLC (Programmable Logic Controller) programs, it is
important to facilitate the use of automated reasoning
tools. This can be done at several levels:

• help in deducing the controller and plant models
• help in writing properties for analysis
• help in analysing the results.

Thus, support for formal verification ranges from helping
the editing of models and properties, to helping the
interpretation of verification results. One specific aspect
that deserves attention is the writing of properties to be
verified. Meaningful properties can be hard to write. This
is even more evident when we consider the behaviour of
complex automated systems, whose requirements are
difficult to describe.

Writing a property for verification is a two-step process:

1. we must first identify what the relevant properties of

a given system are
2. then we must decide how to correctly express them

in the logic of the verification tool.

Step 1 is domain dependent and largely relies on
knowledge about the specific system being designed/
verified and what its properties should be. Step 2 is a
technical step. A correct understanding of the model, the
requirement and the logic in which properties are ex-
pressed is needed in order to guarantee that the property
being verified correctly encodes the intent of the verifica-
tion process. This is a non-trivial step. As illustrated by
[9] and [10], instances can be found in the literature
where the logical formula used for verification does not
correspond to what was intended. This is a serious
problem since a false sense of safety is gained with the
analysis.

The process is made more complex when the models are
developed in such a way that verification must only be
performed at certain specific points in the evolution of the
system (for example, because not all states in the model
represent actual system states).

In this paper we look at how the process of expressing
properties can be supported. In order to ease the process,
strategies can be applied, such as breaking down a
property in smaller parts, or using observer automata to
express the behaviour we want to verify. The former case
begs the question of how to compose the results of the
smaller verification steps [11]. In the latter case, we are
increasing the complexity of the model. Our approach is
to provide designers with patterns that can be
instantiated to produce properties of interest. By studying
and identifying the properties used for the verification of
DES automation, it becomes possible to systematize the
writing of such properties in an automatic way. A tool
was been developed to support this approach.

In [10] we presented a study about the type of properties
that are typically verified in industrial controllers using
formal analysis techniques. The results of that study were
systematized in a collection of patterns to help analysis. A
tool was developed to support the approach. In this paper
we develop the pattern collection further and illustrate
how it can be used in a concrete example. Additionally,
we describe the tool that has been developed to support
the process and discuss how it can assist the process of
defining relevant properties for verification.

The paper is structured as follows: Section 2 describes
our approach to modelling and the impact it has on how
properties must be expressed. Section 3 discusses prop-
erty patterns and in particular those proposed by Dwyer

2 Int. j. adv. robot. syst., 2013, Vol. 10, 315:2013 www.intechopen.com

et al. [9]. Section 4 presents a study of automation
related properties and Section 5 introduces a new
pattern collection for the automated production systems
verification that resulted from the study. Section 6
presents the tool that was developed to support the use
of patterns, Section 7 presents a case study and finally,
in Section 8 we discuss the results that have been
achieved.

2. Formal Verification

Formal verification techniques, model checking in partic-
ular, are exhaustive techniques. However, they are also
time-consuming techniques when compared, for instance,
to simulation and especially when a real case is being
analysed. This is due to the complexity of the calculations
performed. Indeed, obtaining a solution might not always
be feasible. This is typically solved using abstraction to
reduce the size of the models by removing unnecessary
detail.

An automation system is always composed by a control-
ler coupled with a plant (see Figure 2). The controller out-
puts are the plant inputs and the plant outputs are con-
troller inputs. As part of a dependable controller design
approach, the target verification system model may
comprise [12] either the controller on its own, assumed to
be in an open-loop on the plant (non model-based
verification) or the controller + plant set interacting
within a closed-loop (model-based verification).

Figure 2. An automation system composed by a controller and a
plant

The use of formal methods on industrial automation
systems controller verification may be classified on three
levels, taking into account three different criteria [12]:

• The used method: Model-checking [13], Theorem-

proving [2], Reachability analysis [14].
• The adopted formalism: Petri Nets [15], Net Condi-

tion/Event Systems [16], Finite state machines [17].
• The use (or not) of a plant model: (a) Non model-

based, without considering a plant model, (b)
Constrained-based, considering only some behaviour
constraints (rudimentary model) and (c) Model-
based, considering a real plant model, elaborated
using a well-defined formalism. This model can be
more or less refined depending on the behaviour
properties that one intends to prove.

Many pieces of work are focused on the formal
verification of industrial controllers without considering

the plant modelling. Among them, the most significant
are [8, 13, 18, 19].

There are other works that, although not considering an
explicit plant model, consider the introduction of some
system behaviour constraints and have thus improved
the obtained results considerably [20].

In other work, the plant model was considered in an
explicit way. Among them, the most significant are [15–
17, 21] where the plant is modelled with the utilization of
the following formalisms: Petri Nets, Finite state
machines and Net condition/event systems.

In general, plant modelling is done using a monolithic
approach and the plants that are modelled are small,
when compared to the complexity of a standard industri-
al system. Such systems tend to be too complex to be
modelled this way. When the plant is modelled using a
modular approach [22], the global model of the plant is
typically obtained from the Cartesian product of the mod-
ules that compose it. This allows the modelling of more
complex systems. However, the global model becomes
complex and has a higher dimension (number of states
and transitions). To control this, abstraction must be used.
At the same time that unnecessary detail (for the verifica-
tion task) is removed from the model, the model becomes
more detached from the physical system. Hence, situa-
tions and states appear that do not have a physical signi-
fication. For example, due to abstraction the model might
need to perform internal calculations that do not directly
correspond to any physical state. States in the model that
do have a physical signification are called stable states
(see, for example, [6]).

In the works studied, when a plant model is used, a
reduction of the reachable states of the controller model is
performed. With the restriction imposed by the plant
model, some states of the obtained global model are not
reached because the plant behaviour model imposes re-
strictions on the controller model, making the model
more realistic. In this case, there are behaviour properties
that can only be proved when the plant model is taken
into account, especially liveness properties.

Another important aspect that must be taken into account
is the detail of the plant model considered. In fact, this
factor directly affects the global model obtained for the
automation system (a higher number of states has a direct
influence on the global computation time). The kind of
properties that become possible to prove is directly
related to the plant model’s level of detail.

3. Property specification patterns

A number of classifications for property specifications in
the context of model checking approaches have been

3José Creissac Campos and José Machado:
A Specification Patterns System for Discrete Event Systems Analysis

www.intechopen.com

proposed. Manna and Pnueli [23] used a syntactic
approach, proposing a taxonomy of LTL (Linear Time
Logic) formulae. The taxonomy is based on the operators
used in each formula, therefore it covers all possible
specifications that can be expressed in the logic. The
categories they define, however, tend to be rather broad
and came from a theoretical perspective. While they can
be useful in classifying existing specifications, they
provide little support for the process of generating new
ones.

In [24] the same authors proposed a more pragmatic
approach. A proof system that handles three basic types
of property:

• invariance — expressing that something holds in all

states of the system (for example, the liquid in a tank
will always remain below a predefined maximum
value)

• response — expressing cause-effect relations (for
example, if the tank becomes full the output valve
will be open)

• precedence — expressing something must happen
before something else (for example, before the valve
is closed, the tank must be empty).

The term “design pattern” was first introduced by
Gamma et al. [25] as a means of capturing and
transmitting experts’ knowledge in the field of object-
oriented design. A pattern is not simply a mechanism to
classify some artefact (be it an object-oriented design, or a
property specification) into a category. A pattern’s goal is
to capture proven solutions to known problems and
demonstrate how they can be used in practice to solve the
same or similar problems in new situations.

With the above in mind, Dwyer et al. [9] proposed a
system of property specification patterns. They carried
out an extensive review of published property specifica-
tions and identified recurring patterns, which they organ-
ized into a hierarchy.

For each pattern a description that includes the pattern’s
intent, examples and known uses, relationships to other
patterns and mappings to different logics (in particular,
LTL and CTL – Computational Tree Logic [26]) are pro-
vided. Additionally, the patterns can be tailored with
scopes: they can be applied to the whole of the model’s
behaviour, or be restricted to work between specified
conditions.
A full account of all the patterns is out of the scope of this
paper. Briefly, three classes of patterns are identified:
occurrence (dealing with whether specific conditions are
verified in the behaviour of the system), order (dealing
with the order in which events/conditions occur) and
compound (dealing with chains of events/conditions).
Some of the most relevant patterns are:

• absence – a given state/event (P) does not occur (in
CTL this is expressed as “AG(¬P)”)

• universality – a given state/event (P) occurs always (in
CTL this is expressed as “AG(P)”)

• response – a given state/event (P) must always be
followed by a state/event (Q) (in CTL this is
expressed as “AG(P →AF(Q))”)

• precedence – a given state/event (P) always precedes
some state/event (Q) (in CTL this is expressed as
“A[¬Q W P]”)

4. A study of automation related properties

Patterns do not provide concrete solutions. Instead, they
provide templates that must be tailored for specific
purposes. Hence, when attempting to apply the patterns
to a specific area two issues arise:

• The patterns should capture the relevant knowledge

for the specific area being considered. Is all the
relevant knowledge (or, at least, enough of the
relevant knowledge) captured by the current set of
patterns being used?

• The manner in which the properties are formulated
should be adequate to the logics and modelling
approaches used in the area of interest. Are the
languages and encoding strategies used in the
patterns adequate?

In order to answer these two questions we carried out a
study of property specifications in the area of automation
control of discrete systems (our area of interest in the
current context).

The objective of the study was similar to that in [9]: to
collect properties used in the literature and look for
possible patterns. The justification for performing a new
study of this type was twofold. On one hand, the original
study was already a number of years old, begging the
question of whether new patterns had arisen. On the
other hand, we were interested in a particular application
domain of the verification technology (discrete systems
controllers) and in determining whether domain specific
patterns were being used in that context.

A number of papers and theses were analysed. Relevant
examples are [4, 8, 18, 27, 28] (see also the pattern
descriptions in Section 5). In many cases the papers
concentrated mainly in the modelling approaches, with
little being said about the verification itself. Consequent-
ly, in those cases little information was provided about
which properties were verified and how they came about.
This reinforced our perception that work is needed in this
area.

A total of six main case studies were analysed, resulting
in over 70 property specifications. These properties were

4 Int. j. adv. robot. syst., 2013, Vol. 10, 315:2013 www.intechopen.com

then aggregated into classes according to their syntactical
structure and the type of application. These classes origi-
nated patterns for which LTL and CTL formulae were de-
fined. The seven identified classes are the following (we
provide typical formulations for illustrative purposes
only, for a complete account of the patterns visit the pat-
terns’ web site1):

1. Possibility

“AG EF P”, meaning P is always possible
2. Fairness

“G F P”, meaning P occurs infinitely often
3. Absence

“G (stable→ ¬P)”, meaning P does not occur (in stable
states)

4. Universality
“G P”, meaning P occurs in every state

5. Response
a. Eventual Response

“G (P → F Q)”, meaning after P, Q will happen
b. Immediate Response

“AG (P → AX(Q))”, meaning after P, Q will
happen immediately next

6. Precedence
“A[¬Q W P]”, meaning P always precedes Q

7. Liveness
“AG(¬P → EF Q)”, meaning Q can occur after P.

Comparing these classes with the patterns defined by [9]
we find that four of the classes corresponded to patterns
in the patterns systems (3 to 6), while three of them do
not (1, 2 and 7). However, even for the corresponding
patterns, we found that the formulation of the properties
did not always totally coincide.

Given the particular modelling approach used in the
field, a considerable number of properties used special
variables to restrict the analysis to sub-sets of states of the
model. This was particularly the case when property
formulation considered the notion of stable states. While
the concept can at first seem a detail to be dealt with
during pattern instantiation, in some cases it can have a
considerable impact on the structure of the properties.
The introduction of such variables requires considerable
knowledge of the logics being used if it is to be done
properly. For this reason, the pattern collection was de-
fined to include the possibility of restricting the analysis
to a subset of system states (through the stable variable, as
illustrated in property 3).

5. The Patterns system

Since the first version, introduced in [10], the pattern
collection has been subject to a number of updates. Most
notably, a new pattern has been added (Liveness), one

1 http://ivy.di.uminho.pt/scaps-patterns

pattern has been sub-divided (Response) and (more
importantly) the notion of scope has been introduced.

This paper presents a more detailed account of patterns
than has been possible before. Even so, due to space
constraints, we have simplified the presentation of the
patterns: (a) only the after and after/until scopes are
presented (the after scope is used to express the pattern
holds after some condition; the after/until scope is used to
express the pattern holds between two conditions), (b)
scopes are presented for the base formulation only and (c)
alternative formulations to the use of the weak until
operator are not included; with a few exceptions, only
one example per pattern is presented.

Throughout the descriptions P and Q will be used to
denote variables that need instantiation. St and Sp will be
used for scoping the patterns. The stable variable defines
the stable states. Note that the temporal logical formulae
are presented for completeness and validation purposes
only. Using the patterns does not require an understand-
ing of these properties. It is only necessary to provide
values for the parameters; formulae for verification are
generated automatically by our tool (this is illustrated in
Sections 6 and 7).

5.1 Possibility Pattern

In many situations it is relevant to verify whether some
event or system state is possible. The Possibility Pattern
captures this type of requirement. This pattern was found
to be one of the three most common patterns in the
literature review that was carried out.

Property Pattern: Possibility
Intent: To express that some event or state (P) is always
possible throughout the execution of the system. Note that it
does not require that the state or event actually happens in a
specific execution of the model, only that it is possible that it
will.
Parameters
P: the event/state we want to guarantee is possible
Basic Formulation
CTL: AG EF P
P is always possible (but not guaranteed) Scoping (CTL)
After St: AG(St → AG EF P)
After St until Sp:
AG((St ∧ ¬Sp) → A[E[¬Sp U (P ∧ ¬Sp)] W Sp])
Stable Formulation
CTL: AG EF (stable ∧ P)
A stable state where P holds is always possible (but not
guaranteed)

Rossi [4] uses properties that can be considered instances
of this pattern to express the absence of dead code. The
author writes a family of properties:

 AG EF(etat = prei) (1)

5José Creissac Campos and José Machado:
A Specification Patterns System for Discrete Event Systems Analysis

www.intechopen.com

where etat is a variable capturing the current state of the
system and prei are the possible execution steps. What
each property expresses is the requirement that, given a
particular execution step prei, in all states of the system
(AG) there is at least one execution path that leads (EF)
to its execution (i.e., the execution step is always
possible).

Bornot et al. [8] use an instance of this pattern to express
that two events (s4 and sfc_top_s3.s8) have to synchronize
repeatedly:

 AG EF(s4 ∧ sfc_top_s3.s8) (2)

In fact, this is a mislead application of the pattern since
proving the property does not guarantee that the
events ever synchronize in any specific execution of
the model. What it is guaranteed is that the events
might synchronize (see intent above and the next
pattern).

5.2 Fairness Pattern

In some situations it is not enough to express that some
event or state is possible, it must be possible consistently
throughout the behaviour of the system. This property is
called Fairness. This pattern, despite not being one of the
most used, was used to express relevant properties.

Property Pattern: Fairness
Intent: To express that some event or state (P) is repeatedly
possible throughout the execution of the system. Unlike the
possibility pattern, this pattern does require that the state or
event actually happens in the execution of the model.
Parameters
P: the event/state we want to be repeatedly possible
Basic Formulation
LTL: G F P
P will always happen in the future
Scoping (LTL)
After St: G(St → G F P)
After St until Sp: G((St ∧ ¬Sp)→ [F (P ∧ ¬Sp) W Sp])
Stable Formulation
LTL: G F (stable ∧ P)
A stable state where P holds will always happen in the future

Rossi [4] writes the following property (an instance of the
Fairness Pattern) to express dead lock freedom:

 G F fdc (3)

where fdc represents the end of the processing cycle. The
property expresses that in all states of an execution (G) a
future state can be found (F) where the processing cycle
ends. Note, however, that a behaviour satisfying the
above property is one where the system does not leave
the fdc condition. Hence, the verification should be com-
plemented with the analysis of the fairness of other
steps.

5.3 Absence Pattern

In many cases it is relevant to verify that undesirable
situations cannot occur. The Absence Pattern can capture
this requirement. This was one of the most common
patterns in the literature.

Property Pattern: Absence
Intent: To express that some event or state P is not present
throughout the execution of the system.
Parameters
P: the event/state we want avoid
Basic Formulation
CTL: AG (¬P)
LTL: G (¬P)
P is never possible.
Scoping (CTL)
After St: AG(St → AG ¬P)
After St until Sp: AG((St ∧ ¬Sp) → A[¬P W Sp])
Scoping (LTL)
After St: G(St → G ¬P)
After St until Sp: G((St ∧ ¬Sp) → [¬P W Sp])
Stable Formulation
CTL: AG ¬(stable ∧ P)
LTL: G ¬(stable ∧ P)
P is never possible in a stable state.

Yang et al. [27] used this pattern repeatedly to express
both that a tank should not become empty and that it
should not overflow:

 AG¬(Lev = 0) ∧ AG¬(Lev = 6) (4)

where Lev represents the level of the tank (Lev = 0
being the empty condition and Lev = 6 the overflow
condition).

Mertke and Frey [18] used this pattern to express the
following functional requirement:

“While the pressure is above 6.1 bar, motor 1 should not
be turned on and motor 2 should not be turned on.”
resulting in:

 AG¬(rdy_plc ∧ (¬i1) ∧ (o1 ∨ o2)) (5)

where rdy_plc plays the role of our stable variable, i1
represents the pressure condition and o1 and o2 are the
states of the engines.

5.4 Universality Pattern

Guaranteeing that some condition is true in all states of
the system is also a common requirement. The
Universality Pattern captures this.

Property Pattern: Universality
Intent: To express that some event or state condition P occurs
in every state of the execution of the system. This pattern is
the opposite of the absence pattern.

6 Int. j. adv. robot. syst., 2013, Vol. 10, 315:2013 www.intechopen.com

Parameters
P: the event/state we want to guarantee in every state
Basic Formulation
CTL: AG P
LTL: G P
P is always true.
Scoping (CTL)
After St: AG(St →AG P)
After St until Sp: AG((St ∧ ¬Sp) →A[P W Sp])
Scoping (LTL)
After St: G(St → G(P))
After St until Sp: G((St ∧ ¬Sp) → [P W Sp])
Stable Formulation
CTL: AG (stable → P)
LTL: G (stable → P)
P is true in all stable states.

Bornot et al. [8] used a property that can be considered as
an instance of this pattern to express that two events
always synchronize:

 AG(s4 ↔ sfc_top_s3.s8) (6)

where s4 and sfc_top_s3.s8 are the two events that should
always be synchronized. The property expresses that, for
all states of the system’s execution (AG), event s4
happens if and only if event sfc_top_s3.s8 happens.

Yang et al. [29] used an instance of the pattern to express
that the temperature of a reactor always stays inside a
desirable range:

 AG(reactor.TREA > 0 ∧ reactor.TREA < 6) (7)

where reactor.TREA is the reactor’s temperature.

5.5 Response Patterns

In some situations we might want to verify whether there
are causal relations between two states or events. One
possibility is one state/event leading to another. This is
captured by the Response Patterns. Patterns are provided
for both the case when the response does not need to be
immediate and for when it does need to be immediate.

5.5.1 Eventual Response

Yang et al. [27] used an instance of this pattern to express
that a pump should not carry on working when the level
of a tank is running low:

Property Pattern: Eventual Response
Intent: To express that some event or state P will always lead,
at some point in the future, to another event or state Q.
Parameters
P: the event/state that acts as the stimulus
Q: the event/state that is the response
Basic Formulation
CTL: AG (P → AF Q)
LTL: G (P → F Q)
P always leads to Q.

Scoping (CTL)
After St: AG(St → AG (P → AF Q))
After St until Sp:
AG((St ∧ ¬Sp) → A[(P → A[¬Sp U (Q ∧ ¬Sp)]) W Sp])
Scoping (LTL)
After St: G(St → G(P → F Q))
After St until Sp:
G((St ∧ ¬Sp) → [(P → [¬Sp U (Q ∧¬Sp)]) W Sp])
Stable Formulation
CTL: AG ((P ∧ stable) → AF (stable ∧ Q))
LTL: G (P → F (stable ∧ Q))
P always leads to Q at some future stable state.
Note that, depending on the specific analysis being
performed, in the latter case we might wish to state that P
must also be considered in a stable state only (P ∧ stable).

 AG(Lev < 2 → AF(¬m2 ∧ ¬vB ∧ ¬v4)) (8)

where Lev represents the level of the tank, m2 is the state
of the pump and vB and v4 are valves’ states. The proper-
ty captures the requirement that for all states (AG) were
the level is below two, then in all possible behaviours of
the system a state will be reached (AF) where the pump
and the valves are off. In this case it is not required that
the level be measured at a stable state.

Rossi [4] uses a variation on this pattern’s LTL stable
formulation to express the system responds to signals

 G(E_STOP → F(fdc → (¬MR ∧ ¬MP0 ∧ MP1))) (9)

where fdc is the stable variable, E_STOP is the signal and
¬MR ∧ ¬MP0 ∧ MP1 characterizes the correct response of
the system.

Note that, when fdc holds F(fdc → (¬MR ∧ ¬MP0 ∧ MP1)),
is equivalent to what the pattern prescribes: F(fdc ∧ (¬MR
∧ ¬MP0 ∧ MP1)). When fdc does not hold, however, the
first formulation becomes vacuously true. Hence, the
property does not necessarily have the intended meaning
(a situation that using the pattern would avoid).

5.5.2 Immediate Response

The pattern above requires a response to eventually be
provided. A variation of the pattern is to require the re-
sponse to be provided immediately after the stimulus.

Property Pattern: Immediate Response
Intent: To express that some event or state P will always
immediately lead to another event or state Q.
Parameters
P: the event/state that acts as the stimulus
Q: the event/state that is the response
Basic Formulation
CTL: AG (P → AX Q)
LTL: G (P → X Q)
P always leads to Q in the next state.
Scoping (CTL)
After St: AG(St → AG (P → AX Q))

7José Creissac Campos and José Machado:
A Specification Patterns System for Discrete Event Systems Analysis

www.intechopen.com

After St until Sp:
AG((St ∧ ¬Sp) → A[(P → AX(Q ∧ ¬Sp)) W Sp])
Scoping (LTL)
After St: G(St → G(P → X Q))
After St until Sp:
G((St ∧ ¬Sp) → [(P → X (Q ∧¬Sp)) W Sp])
Stable Formulation
CTL: AG ((P ∧ stable) → A[¬stable U (stable ∧ Q)])
LTL: G (P → ([¬stable U (stable ∧ Q)))
P always leads to Q in the next stable state.
Note that, depending on the specific analysis being
performed, in the latter case we might wish to state that P
must also be considered in a stable state only (P ∧ stable).

Bornot et al. [8] used this pattern in the formula:

 AG((active ∧ s6) → AX(x ∧ y → s7 ∧ ¬s8)) (10)

to express that a specific condition in the state of the
system (active ∧ s6) immediately leads to a transition and
not to another (x ∧ y → s7 ∧ ¬s8).

5.6 Precedence Pattern

The previous pattern captured one type of causal relation.
Another possible causal relation is that some state/event
must always precede some other state/event. The
Precedence Pattern captures this. Few instances of this
pattern were found.

Property Pattern: Precedence
Intent: To express that some event or state P must occur
before some other event or state Q. Conceptually this pattern
is the opposite of the response pattern. Notice that the pattern
is defined for the current state only. If needed it can be
combined with the universality pattern.
Parameters
P: the event/state that should occur first
Q: the event/state that should occur second
Basic Formulation
CTL: A[¬Q W P]
LTL: ¬Q W P
Whatever the system behaviour, P will always happen before
Q happens.
Scoping (CTL)
After St: A[¬St W (St ∧ A[¬Q W P])]
After St until Sp: AG((St ∧ ¬Sp) →A[¬Q W (P ∨ Sp)])
Scoping (LTL)
After St: G(¬St) ∨ F(St ∧ (¬Q W P))
After St until Sp: G((St ∧ ¬Sp) → [¬Q W (P ∨ Sp)])
Stable Formulation
CTL: A[¬(stable ∧ Q) W (stable ∧ P)]
LTL: ¬(stable ∧ Q) W (stable ∧ P)
P always precedes Q in stable states.

Rossi [4] used the LTL encoding of this pattern in the
property:

 G(¬dp_conveyor_motor W (¬dp_drill_motor)) (11)

to express that a drill should always be stopped
(¬dp_drill_motor) before a conveyor belt is started
(dp_conveyor_motor).

Surprisingly, when the property is rewritten to eliminate
the weak until operator (W), which is not supported by
the verification tool, an end of cycle variable is
introduced, meaning that the original property and the
one verified, are not exactly the same. Our tool is able to
automatically generate the properties without the weak
until operator thus avoiding problems of this sort.

5.7 Liveness Pattern

There are situations where we want to make sure that
some state or event can always follow another state or
event (as opposed to the response patterns which makes
it mandatory). The Liveness Pattern captures this type of
requirement.

Property Pattern: Liveness
Intent: To express that some event or state Q can occur after
some other event or state P.
Parameters
P: the event/state that acts as reference
Q: the event/state that should be possible afterwards
Basic Formulation
CTL: AG(P → EF Q)
Q is always possible after P.
Scoping (CTL)
After St: A[¬St W (St ∧ AG(P →EF Q))]
After St until Sp:
AG((St ∧ ¬Sp) → A[(P → E[¬Sp U (Q ∧ ¬Sp)]) W Sp])
Stable Formulation
CTL: AG((P ∧ stable) → EF (Q ∧ stable))
Q is always possible after P when stable states are considered.

Machado et al. [6] used this pattern in the formula:

 AG(X1 → EF¬X1) (11)

to express deadlock freedom. The property works by
stating that, for all states (AG) where some condition X1
holds, there exists an execution path where a state will
eventually be reached (EF) in which the condition no
longer holds (i.e., the state of X1 can always change).

6. Tool support

As already discussed, expressing properties in a formal
logic can be a complex task. While the patterns described
above can be a useful tool in dealing with this complexity,
the manual process of selecting and instantiating a
pattern is error prone and such errors can be hard to
detect. This is particularly the case when complex
formulae are at stake.

In order to address this, a tool to help pattern instanti-
ation has been developed. The tool (Properties Editor –
see Figure 3) is based on the notion of property patterns

8 Int. j. adv. robot. syst., 2013, Vol. 10, 315:2013 www.intechopen.com

described above. A list of property patterns and help for
instantiating those patterns, is provided.

Figure 3. The Patterns tool

The patterns include all the information in the original
patterns, such as the intention and known uses. This
allows the user to browse the patterns in order to select
the most adequate one for the property of interest. Addi-
tionally the tool allows for the definition of the scope for
the property and of the logic to be used (currently CTL
and LTL are supported).

Instantiation of patterns to produce a property specifica-
tion is done by indicating values for the patterns parame-
ters. In Figure 3 the user has selected the Eventual Re-
sponse pattern (see the patterns tree on the left) and
provided the value “ev1” for parameter P and the value
“ac=1” for parameter Q (see bottom half of right side).
According to the template and since the CTL logic and a
Global scope have been selected (see pull down menus on
the bottom left), the tool is generating the property (see
bottom right):

 AG(ev1 → AF(ac = 1)) (12)

which, as required, states that “ev1” will always lead to
“ac=1”.

As illustrated in the figure (see patterns’ tree), the tool
supports different collections of patterns. In the current
case, both the patterns in [9] (Dwyer) and the patterns
introduced above (SCAPS) are being made available
(although only the branch corresponding to this last col-
lection has been expanded). Explaining the implement-
ation of the tool is out of the scope of the current paper,
but in short, a DTD (Document Type Definition) for the
description of patterns has been developed and support
for reading pattern collections expressed in XML, in
accordance to that DTD, integrated into the tool. This will
then be enough to create XML files for each new pattern
collection and the tool will load the appropriate patterns
on request.

Additionally, the tool provides a mechanism to generate
more than one property from the same pattern. This is
achieved through the INST meta-variable.

7. Applying the pattern collection – an example

In this section we use an example, taken from [30], to
illustrate how the pattern collection can be useful in the
analysis of Discrete Event Systems.

7.1 The example system

The system chosen for this case study lies in the well-
known category of "pick-and-place" systems (see Figure
4).

This system is representative, from the point of the class
of electropneumatic systems, in terms of physical analysis
because it is characterized by having monostable and
bistable directional valves, single-acting and double-
acting cylinders, position sensors (limit switches) of the
cylinders, which behaviour depends from one only
cylinder (sensors associated to the vertical cylinder) and
position sensors that depend from position than more
than one cylinder (sensors associated to the position of
the horizontal cylinders). Also the fact that one part can
appear at any moment at one of the three feeding
conveyers is an added value from the point of view of the
diversity that can be found in this system. This is the
reason why patterns developed and tested using this
system are stronger and representative for systems of the
same kind.

The function of this system is to take parts, fed by
gravity into three feed chutes, for placement in a single
unloading chute. Sensors pp1, pp2 and pp3 indicate the
presence of a part in one of the feed chutes, while
sensor pp0 signals the presence of a part in the
unloading chute.

Figure 4. Plant of the “pick-and-place” system

9José Creissac Campos and José Machado:
A Specification Patterns System for Discrete Event Systems Analysis

www.intechopen.com

The device that enables the picking and placing of a part
is composed of a group of three pneumatic cylinders plus
a vacuum suction cup system. The vertical cylinder (VC)
places the suction cup in contact with a part.
Longitudinal cylinders L1C and L2C are arranged in
series to allow positioning of the vertical cylinder VC in
front of the four chutes (L2C stroke is twice as long as
than L1C stroke). The four positions reached are thereby
detected by position sensors s0, s1, s2 and s3. The
depression in the suction cup is obtained by virtue of a
venturi device and detected by a vacuum sensor.

The vertical cylinder is controlled by a monostable
electro-valve (order VCGD – Vertical Cylinder Go Down)
and its positions of end of stroke are detected by vcu
(vertical cylinder up) and vcd (vertical cylinder down)
sensors.

The horizontal cylinders L1C and L2C are controlled by
bistable electro-valves and the control orders of the
corresponding electro-valve are L1CGO (L1C Go Out) and
L1CGI (L1C Go In). By analogy, orders L2CGO and L2CGI
are the orders sent from the controller to the electro-valve
of cylinder L2C for, respectively, the moving forward and
moving back of the cylinder L2C piston rod.

For the picking-up of the parts, the order VENTURI is
sent from the controller to the electro-valve associated
and the aspiration is detected by the sensor vacuum.

This system was formally modelled to allow for formal
verification. Describing the model is out of the scope of
this paper (see [30] for a description). Here we are
interested in expressing the properties. For the discussion
that follows it is enough to know the meaning of the
variables described below.
The following variables are used to represent plant model
states:

• V_P2: VC is in the deployment movement
• V_P5: L1C is in the retracted position
• V_P6: L1C is in the deployment movement
• V_P7: L1C is in the deployed position
• V_P8: L1C is in the retraction movement
• V_P9: L2C is in the retracted position
• V_P10: L2C is in the deployment movement
• V_P11: L2C is in the deployed position
• V_P12: L2C is in the retraction movement

Concerning controller model states, a family of variables
(Xi) is used to represent the internal state of the controller
during the evolution of the system.

7.2 Desired System Behaviour

Informally the desired system behaviour can be described
by the following nine properties:

• PR_1.i: The controller never commands horizontal
cylinder i in two directions at the same time

• PR_2: If the controller commands the vertical
cylinder to go down, then it must not command any
movement to the horizontal cylinders

• PR_3: The controller commands horizontal cylinders
only while sensor vcu is on

• PR_4: After the part is picked up, in the "pick-up
position", it must not be dropped down until the
suction cup reaches the "place position"

• PR_5: The horizontal cylinders move only while
sensor vcu is on

• PR_6.i: The controller model must not have deadlock
• PR_7.i: When a part is detected by sensor ppi, then in

the future, the corresponding horizontal cylinder(s)
will be deployed

• PR_8.i: When a part is detected by sensor ppi, then in
the future, it will be picked

• PR_9: While the vertical cylinder is moving down, all
the other cylinders stay in deployed or retracted
position.

7.3 Property Formalization

Machado [30] used CTL to express all but one property.
In the case of property PR_4 an observer automata was
used, due to the complexity of the behaviour that was
being expressed. In all cases, only stable states were
considered for verification (represented by variable
stable).

In the following we will show how the pattern collection
can ease the process of property formalization. We will
do this by selecting appropriate patterns for each
property and instantiating its parameters with
appropriate expressions. The generated formulae are
presented in Table 1 below.

Property PR_1.i can be seen as wanting to guarantee that
the system will never reach undesirable states. Looking at
the pattern collection, this can be expressed using the
Absence pattern (Section 5.3) and the Global scope. We
need only define what the undesirable states are for each
cylinder and instantiate P in the parameter with them.
For L1C P becomes L1CGO ∧ L1CGI. For L2C P becomes
L2CGO ∧ L2CGI. By applying the pattern we get the first
two formulae in Table 1.

Four of the eight remaining properties correspond to
conditions we want to always hold. This is true of
properties PR_2, PR_3, PR_5 and PR_9. In this case we
need only define what the condition is and use the
Universality pattern (Section 5.4) with the Global scope.
For PR_2 P becomes VCGD → ¬(L1CGI ∨ L1CGO ∨ L2CGI
∨ L2CGO) (i.e., movement in the vertical cylinder means
no movement in the horizontal ones). By applying the
pattern we get the third formula in the table. The same is
done for the other properties.

10 Int. j. adv. robot. syst., 2013, Vol. 10, 315:2013 www.intechopen.com

Property PR_4 refers to a property that must always be
true between two specific instants. We want to guarantee
that the piece never drops down between the pick-up and
place positions. Again, this can be expressed using the
Universality pattern, but now with the “After...Until...”
scope. P becomes vacuum (the piece never drops down),
St (the pick-up position) is replaced by (s1∨s2∨s3)∧vcd
and Sp (the place position) by s0 ∧ vcd. Instantiating the
pattern we get the fifth formula in the table.

Property CTL formalization
PR_1.1 PR_1.2 AG ¬(stable ∧ L1CGO ∧ L1CGI)

AG ¬(stable ∧ L2CGO ∧ L2CGI)
PR_2 AG (stable →(VCGD →

 ¬(L1CGI ∨ L1CGO ∨ L2CGI ∨
L2CGO)))

PR_3 AG (stable →
((L1CGI∨L1CGO∨L2CGI∨L2CGO) → vcu))

PR_4 AG((stable∧(s1∨s2∨s3)∧vcd∧¬(s0∧vcd)) →
 A[(stable→vacuum) W (stable∧ s0
∧vcd)])

PR_5 AG(stable→((V_P6 ∨ V_P8 ∨ V_P10 ∨ V_P12)
 →
vcu))

PR_6.1 ...
PR_6.38

AG (X1 → EF ¬X1)
...
AG (X38 → EF ¬X38)

PR_7.1 PR_7.2
PR_7.3

AG((stable ∧ pp1) → EF(stable ∧ V_P6))
AG((stable ∧ pp2) → EF(stable ∧ V_P10))
AG((stable ∧ pp3) → EF(stable ∧ V_P6 ∧
V_P10))

PR_8.1

PR_8.2

PR_8.3

AG ((stable ∧ pp1) →
 EF (stable ∧ s1 ∧ vcd ∧
vacuum))
AG ((stable ∧ pp2) →
 EF (stable ∧ s2 ∧ vcd ∧
vacuum))
AG ((stable ∧ pp3) →
 EF (stable ∧ s3 ∧ vcd ∧
vacuum))

PR_9 AG (stable → (V_P2 → ((V_P5 ∧ V_P9) ∨
 (V_P5 ∧ V_P11) ∨ (V_P7 ∧ V_P9) ∨
 (V_P7 ∧
V_P11))))

Table 1. Results from applying the patterns

Notice that we used the stable version of the “After...
Until...” scope. Notice also that, for simplicity, in the table
the weak until operator is used. The tool does not use
weak operators since these are typically not supported by
model checkers. Hence, the generated formula becomes:

AG((stable ∧ (s1 ∨ s2 ∨ s3) ∧ vcd ∧ ¬(s0 ∧ vcd)) →
 ¬E[¬(stable ∧ s0 ∧ vcd) U (¬(stable → vacuum) (13)

∧ ¬(stable ∧ s0 ∧ vcd))])

In property PR_6 we want to ensure that the system state
can always evolve. This can be defined using the Liveness
pattern (Section 5.7) for each of the Xi internal state
variables. Defining P as X1 and Q as ¬X1, we get the
seventh formula in the table. The same process is applied

to each variable (X1 to X38). In fact, the tool supports the
simultaneous generation of the 38 needed formulae in
one step (for simplicity we only present the first and last
ones). This is achieved by creating a list of variables in the
INST values field (bottom right corner of Figure 3) and
automatically applying the pattern to the list. Note that,
following [30], in this case we chose not to consider stable
states only.

Properties PR_7.i and P_8.i are similar. Both are instances
of the Eventual Response pattern (Section 5.5). For sensor
pp1 we replace P with pp1 and Q with V_P6 (the corre-
sponding cylinder) to get the ninth property in the table,
which corresponds to PR_7.1. For PR_8.1 we replace P
with pp1 and Q with s1 ∧ vcd ∧ vacuum (i.e., the vertical
cylinder is down at the right position and there is vacu-
um in the suction cup). For the remaining cases the proc-
ess is the same.

Table 1 summarizes all the properties that were
generated. It must be stressed that all the properties, no
matter how complex, were generated automatically with-
out the need to write any CTL code. As noted above, in
[30] the option was available not to try writing a CTL for-
mula for PR_4 and an observer automata was used
instead. Using patterns, generating this complex property
was no more difficult than generating the property for the
simpler cases. On the contrary, using an observer
automata meant some additional modelling work had to
be carried out and also that the property formalization
was done differently from the other ones.

For illustration purposes, the automaton used in [30] is
presented in Figure 5. The automaton has three states that
model the following behaviour:

• PR1: models the absence of a sucked part
• PR2: models the presence of a sucked part (not

yet dropped off)
• PR3: models an undesired behaviour: the

dropping off of the part between the pick-up
and place positions.

The transitions between the three states perform synchro-
nization with the model being verified and define the
conditions under which each transition is valid. In order
to prove PR_4, the following CTL formula was proved of
the joint behaviour of the model and the automata:
AG¬(PR3 ∧ stable)

Comparing this with the three small propositional formu-
las that were needed to instantiate the Universality pat-
tern, it can be seen that using the pattern was much sim-
pler. This is especially the case since the property patterns
tool supports the exploration of the patterns to identify
the best candidate in each situation.

11José Creissac Campos and José Machado:
A Specification Patterns System for Discrete Event Systems Analysis

www.intechopen.com

Figure 5. Sequential modelling of property PR_4

8. Conclusions

Model checking is becoming an established technique for
the formal verification of Discrete Event System (DES)
automation. A finite state system can be represented by a
labelled state transition graph and the properties of the
system (expressed as formulae in temporal logic) checked
by traversing the graph of the transition system, verifying
that it satisfies the formula representing the property.

As verification tools gain popularity, the problem arises
of making them more accessible to engineers. Three main
problems can be identified: writing the models, writing
properties for analysis and analysing the results.
Typically the literature addresses the first problem,
paying little attention to the remaining two. However, if
verification tools are to be successful outside the limited
group of experts in the formal approach each tool
supports, support for expressing properties and
understanding results is also needed.

In this paper we have looked at the issue of supporting
the expression of property specifications. A study was
carried out of the properties present in the automated
production systems analysis literature and a collection of
patterns has been put forward as an aid to expressing
relevant properties of a system’s behaviour. Together
with its tool support, this pattern collection enables the
expression of complex properties using basic knowledge
of propositional logic only.

The applicability of the pattern collection was demon-
strated with an example. Comparing our results with
those of [30], we can see that we obtained equivalent CTL
formulae for all properties (except PR_4). However, we
do so without the need to resort to temporal logic
expertise. The only requirements were an understanding
of the problem domain and basic propositional logic
knowledge. The temporal logic aspects were captured by
the patterns. In the special case of PR_4, we were able to
generate a temporal formula (again, using propositional
logic to instantiate the pattern) while originally there was
a need to resort to an observer automaton.

The tool is being made available at:
http://www.di.uminho.pt/~jfc/PatternsTool/

9. References

[1] I. Moon. Modeling programmable logic controllers for
logic verification. IEEE Control Systems, 14(2): 53–59,
1994.

[2] J. M. Roussel and B. Denis. Safety properties
verication of ladder diagram programs. Journal
Européen des Systémes Automatisés, 36: 905–917,
2002.

[3] O. De Smet and O. Rossi. Verification of a controller
for a flexible manufacturing line written in Ladder
Diagram via model-checking. In 21th American
Control Conference, ACC’02: 4147–4152, Anchorage,
USA, May 2002. CDROM paper n. 734, 2002.

[4] O. Rossi. Validation formelle de programmes ladder
pour automates programmables industriels. PhD
thesis, École Normale Supérieure de Cachan, France,
2003.

[5] M. Gaid, B. Bérard and O. Smet. Verification of an
evaporator system with UPPAAL. European Journal
of Automated Systems, 39(9): 1079–1098, 2005.

[6] J. Machado, B. Denis and J. J. Lesage. A generic
approach to build plant models for DES verification
purposes. In 8th International Workshop On Discrete
Event Systems (WODES’06): 407–412, 2006.

[7] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit,
L. Petrucci and P. Schnoebelen. Systems and Software
Verification: Model-Checking techniques and tools.
Springer, 1999.

[8] S. Bornot, R. Huuck, B. Lukoschus and Y. Lakhnech.
Verification of sequential function charts using SMV.
In International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA 2000), V: 987–2993. CSREA Press, 2000.

[9] M. B. Dwyer, G. S. Avrunin and J. C. Corbett. Patterns
in property specification for finite-state verification.
In B. Boehm, D. Garlan and J. Kramer, editors, 21st
Intern. Conf. on Software Engineering (ICSE’98):
411–420. IEEE Computer Society Press, 1998.

[10] J. C. Campos, J. Machado and E. Seabra. Property
patterns for the formal verification of automated
production systems. In Proceedings of the 17th IFAC
World Congress: 5107–5112. IFAC, 2008.

[11] W. P. de Roever, H. Langmaack and A. Pnueli,
editors. Compositionality: The Significant Difference,
Volume 1536 of Lecture Notes in Computer Science.
Springer, 1998.

[12] G. Frey and L. Litz. Formal method in PLC
programming. In IEEE Int. Conf. on Systems, Man
and Cybernetics: 2431–2436, 2000.

[13] S. Lampérière-Couffin, O. Rossi, J.-M. Roussel and J.-
J. Lesage. Formal validation of PLC programs: A
survey. In Proceedings of the ECC’99: European
Control Conference, 1999.

12 Int. j. adv. robot. syst., 2013, Vol. 10, 315:2013 www.intechopen.com

[14] S. Shanmugham and C. Roberts. A verification
methodology for real-time supervisory control
specification. Computers & Industrial Engineering,
29(1-4): 705–709, 1995.

[15] K. A. D’Souza and S. K. Khator. System
reconfiguration to avoid deadlocks in automated
manufacturing systems. Computers and Industrial
Engineering, 32(2): 455–465, April 1997.

[16] M. Rausch and B. H. Krogh. Formal verification of
PLC programs. In Proceedings of the American
Control Conference: 234–238, 1998.

[17] G. Hassapis, I. Kotini and Z. Doulgeri. Validation of a
control system software specified in SFC notation by
using hybrid automata. In Proceedings of INCOM’98
II: 65–70, 1998.

[18] T. Mertke and G. Frey. Formal verification of PLC-
programs generated from signal interpreted petri
nets. In IEEE Int. Conf. on Systems, Man and
Cybernetics: 2700–2705. IEEE, 2001.

[19] O. Rossi. Validation formelle de programmes ladder
pour automates programmables industriels. PhD
thesis, École Normale Supérieure de Cachan, France,
2004.

[20] G. Canet, S. Couffin, J. J. Lesage, A. Petit and P.
Schnoebelen. Towards automatic verification of PLC
programs written in Instruction List. In IEEE Int
Conf. on Systems, Man and Cybernetics: 2449–2454,
2000.

[21] S. Kowalewski and J. Preußig. Verification of
sequential controllers with timing functions for
chemical processes. In 13th IFAC World Congress,
invited session on Advances in Discrete Event
Control, 1996.

[22] J. Zaytoon and V. Carré-Ménétrier. Grafcet et graphe
d’états: comportement, raffinement, vérication et
validation. APII – Journal Européen des Systèmes
Automatisés, 7: 751–782, 1999.

[23] Z. Manna and A. Pnueli. Temporal Verification of
Reactive Systems: Specification. Springer-Verlag, 1991.

[24] Z. Manna and A. Pnueli. Tools and rules for the
practicing verifier. Technical Report STAN-CS-90-
1321, Stanford University, 1990.

[25] E. Gamma, R. Helm, R. Johnson and J. Vlissides.
Design Patterns. Addison-Wesley Professional
Computing Series. Addison-Wesley, 1995.

[26] E. M. Clarke, E. A. Emerson and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Transactions on Programming Languages and
Systems, 8(2): 244–263, 1986.

[27] S. H. Yang, L. S. Tan and C. H. He. Automatic
verification of safety interlock systems for industrial
processes. Journal of Loss Prevention in the Process
Industries, 14: 379–386, 2001.

[28] B. Zoubek. Automatic verification of temporal and
timed properties of control programs. PhD thesis,
School of Computing, The University of
Birmingham, 2004.

[29] S. H. Yang, O. Stursberg, P. W. H. Chung and S.
Kowalewski. Automatic safety analysis of computer-
controlled plants. Computers and Chemical
Engineering, 25: 913–922, 2001.

[30] J. M. Machado. Inuence de la prise en compte d’un
modèle de processus en vérication formelle des
Systèmes à Evénements Discrets. PhD thesis, Escola
de Engenharia, Universidade do Minho, 2006.

13José Creissac Campos and José Machado:
A Specification Patterns System for Discrete Event Systems Analysis

www.intechopen.com

