
MapIt: A model based pattern recovery tool?

Rui Couto1,2, António Nestor Ribeiro1,2, and José Creissac Campos1,2

1 Departamento de Informática/Universidade do Minho, Braga, Portugal,
{rui.couto,anr,jose.campos}@di.uminho.pt

2 HASLab/INESC TEC, Portugal

Abstract. Design patterns provide a means to reuse proven solutions
during development, but also to identify good practices during analysis.
These are particularly relevant in complex and critical software, such as is
the case of ubiquitous and pervasive systems. Model Driven Engineering
(MDE) presents a solution for this problem, with the usage of high level
models. As part of an effort to develop approaches to the migration
of applications to mobile contexts, this paper reports on a tool that
identifies design patterns in source code. Code is transformed into both
platform specific and independent models, and from these design patterns
are inferred. MapIt, the tool which implements these functionalities is
described.

Keywords: Design Patterns; MDA; Mobile; Reverse Engineering; Ubiq-
uitous.

1 Introduction

The amount of embedded software that surrounds us means that the perva-
siveness of software is increasingly growing in our daily lives. From automobiles
with infotainment capabilities, to fly-by-wire systems or the intelligent monitor-
ing and control of electrical substation automation systems, embedded systems’
complexity is growing and raising issues of design, development and maintain-
ability.

The Model Driven Architecture (MDA) methodology has been proposed by
the Object Management Group (OMG) to overcome the above issues in the
broader area of software engineering [13,16]. In the software development pro-
cess, paying more attention to the modeling phase has shown multiple benefits.
Usually, in traditional approaches, the time spent writing models is considered

? This work is funded by ERDF - European Regional Development Fund through the
COMPETE Programme (operational programme for competitiveness) and by Na-
tional Funds through the FCT Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-
015095.
Published in Model-Based Methodologies for Pervasive and Embedded Software, vol-
ume 7706 of Lecture Notes in Computer Science, pages 19-37. Springer. 2013. The
final publication is available at link.springer.com.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55626672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://link.springer.com/chapter/10.1007%2F978-3-642-38209-3_2


2 MapIt: A model based pattern recovery tool

somehow wasted, and this happens because only code writing is considered soft-
ware production. The MDA defines a standard approach to develop model based
software solutions. It turns the time “spent” writing models into software pro-
duction, allowing the generation of code from those models. This approach’s
main objective is to put more relevance in the modeling phase, and even, to
make the modeling process the main activity in the production of software solu-
tions. It is relevant to note that the MDA’s relevance and feasibility has already
been proven by some authors [13,16]. However, to achieve such benefits models
must be complete and correct. This results in a time consuming task and usu-
ally, once written, a model is never updated again. This lack of attention to the
models makes them obsolete and therefore useless [15]. So, the full advantages
of the modeling process are not attained.

One of the contributing factors to this mismatch is the fact that the OMG
does not define the reverse process from code to models (it only defines the
models to code process). This prevents the establishment of a fully round-trip
engineering approach, making it difficult to keep the models coherent with the
code. Another aspect in which a reverse approach might be interesting is in the
integration of projects not developed according to an MDA approach into an
MDA based modeling process. To support this, tools are needed to generate
models based on their source code.

In a forward engineering approach we start with abstract models and refine
them into code. Our aim is to be able to reverse engineer code into increasingly
abstract models. Design patterns are of crucial importance in this process. They
allow us to abstract, from the code, the architectural solutions used in the devel-
opment process. Based on them, one can view source code, not as a complex set
of classes, but as a structured solution to a given problem, where it is possible
to instantiate each class with a given role as defined by the patterns.

Christopher Alexander [2] described a design pattern as the core of a solu-
tion to a given recurrent problem. Thus, they may be used to solve a problem
multiple times, without repetition. Although the original definition was relative
to buildings, it is also considered to be valid for software engineering. A design
pattern describes a simple and elegant solution to a well known problem. Current
design patterns’ relevance is due to the work of Erich Gamma, who cataloged a
collection of design patterns in [7]. This catalog may be considered as a starting
point. Since then, many other authors have cataloged different patterns [3,6].

Reversing the MDA process will allows us to easily create, evolve and migrate
software using a model based approach. Having reversed models, Erich Gamma
patterns will be considered and inferred on these models to better capture the
design of the implemented system [7]. Hence, this work main objectives may be
resumed as follows:

– to analyze and extract information from Java source code;
– to generate high level models (cf. Platform Specific Models (PSM)) in the

Unified Modeling Language (UML) framework;
– to infer design patterns on those models;
– and to abstract PSM into Platform Independent Models (PIM).



MapIt: A model based pattern recovery tool 3

To achieve them, a tool which implements these functionalities was devel-
oped. The tool fulfills the above objectives, being able to generate models from
code, transform models between different abstraction levels, and identify archi-
tectural patterns. We have started with Erich Gamma patterns as we wanted
to develop an approach that could be as generic as possible, but other pattern
collections can later be considered.

The remaining of the paper is organized as follows. Section 2 presents some
work related with our approach. Section 3 presents the expected challenges. In
section 4 we present and describe our tool. A case study will be presented in
section 5, and section 6 presents some results’ discussion. Section 7 concludes
this paper addressing some hints on future work.

2 Background

This section covers relevant background information regarding the reverse en-
gineering process of extracting and interpreting models from a system’s imple-
mentation. It presents the most relevant MDA concepts concerning this work.
Both direct and reverse MDA processes are addressed, as well as the pattern
inference process. Also, tools which implement such concepts are described.

2.1 Models and transformations

Models’ definition and transformation is the essence of the MDA process. To have
these models, we need a standard way to define them. This is achieved through
a metamodel. The metamodel is a “well defined language” which allows us to
create both PIM and PSM. A PIM is a model which describes a software system
at a higher abstraction level. It is independent from the technology or platform
where the system will be deployed. These models are usually transformed into
PSMs. A PSM is a model at a lower abstraction level than a PIM. It describes
software systems for a specific platform or technology [18]. Usually, PSM models
are transformed into source code. The standard modeling language adopted to
create these models is the UML, but that is not a restriction. Having these
models, the transformations are the next step.

A transformation definition is a set of transformation rules. The information
about how a model element (a PIM element, for instance) should be represented
on other model (PSM, for instance) consists in a transformation rule. Having
transformation definitions, it is then possible to transform one model into an-
other at a different abstraction level [5].

Transformation rules, as defined by the MDA, typically have the intent of
lowering the abstraction level of the model. That is, bringing it closer to a work-
ing system [14]. These rules may have a reverse mode, which allows a reverse
transformation and raise a model’s abstraction level. Typical transformations are
from abstract to concrete but by reversing these rules, we may expect reverse
transformations.



4 MapIt: A model based pattern recovery tool

2.2 Reversing the MDA process

Several MDA implementations have already been proposed, resulting in tools
and algorithms to go from models to code [13,11]. Reversing the MDA process is
very useful as a way not only to include existent software in the MDA process,
but also to keep consistency between source code and models. However, the
OMG does not define the reverse process from code to models, it only defines
the models to code process. The reverse MDA process has also been subject
of study, but usually in a limited way. A common approach to include legacy
software systems in a new project, is by treating them, for instance, as a class
in the new system’s models, whose methods are the functionalities provided by
this software. A complete integration of these systems would be more useful, and
some authors have also studied this issue.

The most common methodologies to reverse the MDA process suggest that:

– First, the source code must be analyzed (be it text or bytecode);
– Second, relevant information must be extracted to create an intermediary

representation (as a syntactic tree or a graph, for instance) [19];
– Finally, as these representations contain a high level of detail, they must be

simplified [17,4] by abstracting away unnecessary details.

This approach allows not only to integrate the models in the MDA process,
but also to execute high level operations in the models, such as performing soft-
ware changes, high level code analysis, pattern inference and formal verification.

To execute the reverse MDA process there are two possible approaches. The
first one consists in a static analysis which mainly extracts the structural aspects
of the code, producing PSM and PIM. Our tool is based in this first approach.
The second approach consists on a dynamic analysis which is focused on software
behavioral aspects [1].

Performing the basic structural analysis is a relatively simple task, because
it relies only in the (textual) source code. On the other hand, inferring the
relation between the model elements is the hardest task (apart from the dynamic
information) [10]. Some studies stated that while binary associations can be
directly extracted from source code, n− ary associations requires more work to
be inferred. The static analysis process allows us to create (possible incomplete)
UML class diagrams. To illustrate this process’ difficulty, we note that one of the
most precise recovering tools (according to the author), is capable of extracting
only 62% of UML elements [8].

The reverse engineering process can be applied at any level of abstraction.
However, considering that we are interested in reversing existing systems, there
are two possible main starting points. One is starting from the text of the source
code, as programmed by the developer. The other, is starting from the compiled
code (in the case of Java, from the bytecode). The textual approach has shown
to be more adequate in this context. First, the source represents the system
without compiler optimizations. Second, using Java bytecode requires a bigger
effort to understand and extract information from it. Also, by using the textual
source code, it is possible to more easily integrate this tool in the development
process.



MapIt: A model based pattern recovery tool 5

2.3 Pattern Inference

The importance of design patterns is proved by the number of patterns found
on software developed nowadays. Some of the advantages they offer are to allow
a vision of the system at a higher abstraction level, or to be used as quality (or
lack of quality) measures. When patterns are not documented in a software, an
inference process is needed to retrieve them [8].

The pattern inference functionality offers multiple advantages. It can be used
as a quality measure, to obtain extra information, among other possibilities. Also,
it is useful during a project maintenance phase, offering higher level analysis,
making it easier to understand the systems. The pattern inference capability is
our tool’s second proposed component. After reversing source code into PSM
and PIM, the tool should be able to infer patterns based on these models.

Existing studies on pattern inference provide some guidelines about how to
implement this functionality [13,16,11]. The suggested approach propose, that
a given software should be analyzed and mapped onto an adequate, previously
defined, metamodel [20]. This metamodel should contain static and structural
information, along with some dynamic information (such as method invocation).
From this representation, a knowledge base (of facts and rules representing the
system information) will be extracted to an external format. These facts will
be analyzed searching for design patterns. A set of rules representing design
patterns should be defined beforehand, to allow pattern searching.

There are several proposed intermediary data representations, resulting from
different approaches. These approaches may be organized in multiple categories,
being them: graphs which preserves the elements hierarchy, matrix, syntactic
form and programming language (such as Prolog). Having this intermediary
representation is then possible to start the inference pattern. This process con-
sists in the comparison of the intermediary representation, against previously
defined patterns, in the same language.

2.4 Available tools

A number of “round-trip” and “reverse engineering” MDA tools were analyzed.
Some of them offer Integrated Development Environment (IDE) capabilities,
allowing some degree of code and model manipulation during software develop-
ment (such as ArgoUML and Fujaba [12]). Other tools are focused on a more
efficient analysis, offering a higher level of details on the models (like Ptidej [8]).
Still other tools combine both functionalities (for instance Together and Visual
Paradigm). The Ptidej tool claims to be the most precise tool, being able to
recover the highest level of UML elements [8].

Regarding pattern identification, the most relevant tools are Reclipse [19]
and Ptidej, which are able to infer patterns on UML models. Also, only Fujaba
and Ptidej are able to perform high level operations on the models.

ArgoUML offers high level diagrams based on source code, as well as some
IDE functionalities, such as a code editor, a compiler and a debugger. However,



6 MapIt: A model based pattern recovery tool

this tools’ diagrams are very simple, and it provides no patterns inference. Re-
clipse is also a plugin for an IDE, so it offers the common functionalities (code
editor, compiler, debugger, deployment, etc.), it provides also pattern inference
functionalities, and is able to display UML models. However, the pattern infer-
ence is not easy to use, and it is also not very accurate, since there are some
problems with the software analysis, shown by the incomplete UML diagrams.
Like ArgoUML, jGrasp offers some IDE functionalities, and high level diagrams.
However, its diagrams are even more incomplete than ArgoUML, and the code
editor is not as complete as those provided by others IDEs (such as NetBeans or
Eclipse). Ptidej focus in model analysis and pattern inference. However, it offers
neither IDE features, nor model transformations functionalities.

In conclusion, we have found that none of these tools is able to fully cover
the range of functionalities desired for our proposes. Also, using these tools
separately may not be convenient since they receive the input files in distinct
formats (some in class files, other in text files, and others in Java archives).

3 Requirements for a pattern recovery tool

As seen in the previous sections, no tool is able to conjugate all the proposed
functionalities in a single development environment. The tools closer to such
objective are Ptidej, Fujaba and jGrasp, however they are an “incomplete” so-
lution. By developing MapIt, our pattern recovery tool, we aim to provide an
alternative for these tools, by merging the proposed functionalities in a single
environment.

The topics discussed above can be reduced to three main functionalities that
the tool implements (see Figure 1). They are resumed as: the reverse MDA
process from source code into PSM, the design patterns inference on a PSM,
and the reverse MDA process from PSM to PIM.

Fig. 1. Representation of the tool functionalities.

The tool’s functionalities operate independently from each others. The de-
veloper may chose to use one, two or all of the functionalities in the desired
order, accordingly to his/her needs. The functionalities are meant to be used
separately, and at the same time complement each other.



MapIt: A model based pattern recovery tool 7

3.1 Source code Metamodel

This functionality corresponds to the source code to class diagram (PSM) ab-
straction, represented in Figure 1 on the left. The process to do such should
start with the structural analysis of the project’s source code, analyzing then
each of the Java files. To achieve this, semantic analysis is used on the source
code, using a Java parser. The extracted information should be mapped onto
an intermediary representation. An adequate way to represent it is by a meta-
model, which is complete, accurate and at the same time not overloaded with
useless information. But, even if not all of the software information is needed for
the proposed objectives, the metamodel is ready for future functionalities. The
source code to metamodel process is common to all of the three functionalities
provided by the tool, since all of them occur over the inferred metamodel.

3.2 Source code to PSM

The second functionality consists in achieving a PSM, departing from the source
code. In practice, this process will start from the metamodel, taking advantage
of the functionality presented above. This functionality is represented in Figure
1, in the middle.

Since the metamodel contains some irrelevant information when considering
a PSM, its elements must be processed in order to select the relevant infor-
mation. To implement this functionality, a graphical property was assigned to
each metamodel element. The metamodel elements must be then visually repre-
sented according to the UML notation. An effort was made to make this diagram
interactive, allowing the user to visually rearrange the model elements.

In conclusion, a relation between metamodel elements, UML entities, and a
visual representation must be defined. This will allow us to define how each Java
element will be represented and displayed to the user.

3.3 PSM pattern inference

Pattern inference on models allows us to have a high level information repre-
sentation. This process, represented in Figure 1, on the top right, occurs over
previously reversed information. This information is also used for other results.
In this case, to generate the PIM (see below). Not only was the inference process
specified, but also how to customize it. Pattern inference is then parameterized
and easily extensible.

The pattern inference process starts with the knowledge base creation. This
process depends upon two major factors. First, it depends upon correctly defining
the patterns used in the inference process. Second, it depends upon achieving an
appropriate knowledge base, correctly representing all the system’s information.
Creating the knowledge base is a critical step, since overloading the knowledge
base with information will slow down the inference process, while having too
little information will hinder the pattern recognition capabilities of the tool.



8 MapIt: A model based pattern recovery tool

It is easy to understand that the intermediary representation, the knowl-
edge base, and the patterns are somehow related. This relation is the possibility
to achieve transformations between them, in the presented order. To start, a
knowledge base, based on source code is created. After an analysis of possible
alternatives, it was decided that a Prolog interpreter could handle the knowledge
base. So, a tool which implements information mapping and exchange with that
external tool was developed.

Good results on this process are only expectable if there is a standard and
well defined way to represent a design pattern. Additionally, this representation
will make it possible to interpret an external pattern definition, and use it on the
analysis process. These representations are then used on the external tool, which
should contain the knowledge base. This external definition of patterns is called
the “pattern catalog”. It consists of a set of user defined patterns. A customized
set of rules may be created and used to identify these patterns on a model. A
set of rules based on Erich Gamma book was developed for test purposes. The
catalog implementation is done in an external user defined file.

The patterns visual representation is similar to the PSM representation. Its
major distinctive characteristic is that of highlighting patterns on the represen-
tation.

3.4 PSM to PIM

The model abstraction process is usually related with information simplification
or reduction. This process mainly consists in reducing the elements’ information,
quantity, or even change their information. As result, a PSM is transformed in
a more generic model, the PIM, represented in Figure 1, on the bottom right.

The abstraction process could be treated as model filtering or as model trans-
formation. Also, this process produces a model, and as such, a visual representa-
tion is needed. Considering it as a transformation process, it is somehow based on
the MDA Explained book [11] approach. That book presents a set of transforma-
tion rules, in the forward direction. Their reverse form allows a fully automated
reverse transformation. For each metamodel element, a transformation rule was
then defined, and that rule transforms that element considering the whole of the
application context.

4 The MapIt tool

To achieve source code into PSM transformations, the mapping process was com-
pletely defined. To start, a parser will analyze the source code, and preserve the
extracted information in a metamodel. That metamodel has a representation for
each Java element, as well as the information needed to preserve their hierarchy.

The used metamodel has a mapping for each Java attribute and method,
which are part of a Java element. Java Classes and Interfaces have a respective
mapping as well. The notion of Java element was created to represent the Class



MapIt: A model based pattern recovery tool 9

and Interface abstractions. All these elements are assembled in a Java package
representation.

Only two different relationship cardinalities were considered for simplification
purposes, since it is widely recognized that their inference is difficult [9]. These
difficulties are more evident when performing static analysis, since many times
the collections are “raw”, meaning that they don’t specify their type. Since
their type is unknown until software execution, these collections are therefore
impossible to infer. One of the considered relationships was the association,
understood as a “one-to-one” relation (1..1). This relationship is present when
a class contains a reference to another class or interface. The other relationship
was the aggregation, understood as a “one-to-many” relation (1..∗). In this case,
we represent the property of a class containing a reference to a set/list of classes
(or interfaces). Also, we enrich our metamodel by adding method invocation
information, from one class to another class (or interface). This provides us with
more information not only for PSM and PIM, but also for the pattern inference
process.

As static analysis results, a set of Prolog facts are produced creating the
knowledge base, by parsing all the elements and filtering them. These facts are
used on the pattern inference process.

Incomplete patterns inference may also be achieved, resorting to Prolog
anonymous variables. To do such, for a given pattern, each of its components
may be changed by an anonymous variable, in its representation. Making all the
permutations among all the pattern elements, all possible incomplete patterns
will be found.

4.1 PSM to PIM abstraction

To achieve PIM from PSM, a set of transformation rules is needed. Also, PIM
and PSM must both be completely specified to allow transformations from PIM
to PSM. To achieve this, they are both modeled in UML. In short, it is possible
to say that the PIM models derive from the PSM, by removing the Java platform
specific elements from the PSM.

As described in [11], models transformation is achieved by applying well
defined rules on model elements. These rules describe how elements from one
model are mapped into another model, at a different abstraction level. That book
presents a set of rules to achieve PIM into PSM transformations. The adopted
approach was to define the book rules on the reverse form. The transformation
process is then defined as the process of removing or filtering elements for a given
model. All of the PSM elements will be processed and transformed into higher
level elements, resulting in a PIM model. This PIM still contains some platform
specific details, since it is obtained from a PSM.

The used transformation rules are encoded in Java methods, and for each
element a different rule exists. Each method (for each PSM element) receives as
argument not only the information about the element being processed, but also
the information about all its upper elements in the hierarchy. This is the only
way to achieve model-wide transformations.



10 MapIt: A model based pattern recovery tool

4.2 PSM pattern inference

Fig. 2. Example of identified pattern in a PSM diagram (produced by MapIt).

In the pattern inference process, the PSM is analyzed, and the relevant struc-
tural information is preserved. This information is preserved in an internal rep-
resentation, which is the basis for the pattern inference process. This represen-
tation is handled by a Prolog interpreter, which creates a knowledge base from
the information therein.

Here, the solution was to include the Prolog technology to handle these rep-
resentations. Thus, the Prolog knowledge base keeps all the software facts, ex-
tracted from an intermediary PSM representation. There are a set of Prolog
facts that are generated from the software representation. A class existence in-
formation is expressed in a class/1 fact. For an interface, the same approach is
taken with interface/1. Aggregation, composition or association information
is represented as contains/2, between two classes or a class and an interface.
Heritage relationships are represented with the extends/2 fact. Implementation
properties are also considered, as implements/2. The additional invocation in-
formation is represented with the fact calls/3, between two classes and one
method.

Once the Prolog knowledge base is populated, it can be questioned for pat-
terns. As soon as the pattern catalog is parsed, this module will interact with
the Prolog tool to search matching patterns with the provided catalog rules. It
is possible to conclude that this may be considered a property satisfaction prob-
lem, for a selected rule, on a given knowledge base. Figure 2 presents an example
of a pattern identified in a PSM. In this figure the composite pattern has been
inferred, it can be seen that OnlineEvent and ComplexEvent extend Event,



MapIt: A model based pattern recovery tool 11

and ComplexEvent contains one-or-more Events, creating then the composite
pattern among these classes.

Different precision levels on rules definitions will result in distinct results.
While a lenient rule will find more patterns, their precision level will be lower.
A more strict rule will find less, but more precise, patterns (i.e. it will identify
less “false” patterns instances).

4.3 Implementation

The parsing process is composed by two phases. First the information is ex-
tracted as represented from the source code, converted in metamodel elements.
Only then is it possible to establish the relations between the elements. The
parser extracted information is then mapped into an adequate metamodel, since
metamodels are recognized to be the best information representation for pattern
inference [8]. The Prolog integration uses the GNUProlog interpreter and engine
to handle the knowledge base. The two previously presented functionalities are
abstracted by a module which handles interaction with the interpreter, and loads
also the pattern catalog.

The referred pattern catalog is a textual file, containing a set of Prolog
rules (with some restrictions). On each line, a rule should be defined as follows:
pattern name/arity#(prolog rule), were pattern name is the design pattern
name, arity is the rule’s number of arguments and prolog rule is the Prolog
rule, representing a design patten. A rule example (for the Composite pattern)
is depicted in the Figure 3.

Fig. 3. Prolog rule representation for the Composite pattern.

A NetBeans plugin, depicted in Figure 4, provides the final user interface,
enabling access to the presented functionalities. With this approach the use of
the tool becomes integrated into the software development environment. Also,
the user may take advantage of the IDE functionalities while using this tool. We
made an effort to make all these module’s functionalities as generic and reusable
as possible. This will allow us to easily improve or change it. This was mainly
achieved due to the metamodel capability to express both PIM and PSM, so
only one metamodel representation was made.



12 MapIt: A model based pattern recovery tool

Fig. 4. The MapIt plugin.

The last implemented functionality was the automation of models transfor-
mation. It required a set of transformation rules to be fully specified (which may
be easily extended). These rules were implemented as follows. A Java class is
mapped onto a PIM class. Also, a Java association is mapped on a PIM asso-
ciation. For a Java public attribute, a PIM public attribute is created. A Java
method is transformed onto a PIM operation, in an adequate way. A private Java
attribute which contains the correspondent getter and setter, is transformed into
a public PIM attribute. Also, for each element, properties such data type should
be removed or adjusted. Absent PIM elements such as Java interfaces or other
project files (Extensible Markup Language (XML) files, for instance) will not
exist in the PIM.

Resorting to the presented approach, a fully working tool was achieved. In
several tests it was possible to generate models with success for multiple kinds
of software. Also, in some of these models design patterns were inferred (some
known patterns, and other developed patterns). Finally the achieved PSM suc-
cessfully provided a higher abstraction level representation of the analyzed sys-
tems.

5 Case Study

Embedded and pervasive software ranges from autonomous monitoring systems
to highly graphical and interactive systems such as automobile infotainment
systems. We are particularly interested in this kind of systems and the challenges
they present. As an example of a graphical and interactive application with
reasonable complexity we decided to analyze JHotDraw.

JHotDraw is an image manipulation software, that allows composing simple
shapes (like squares, circles, text, etc.). A number of factors lead to the choice of
this particular tool. First, since it is open-source software, the source code is easy



MapIt: A model based pattern recovery tool 13

to obtain. Second, this software has an adequate size, with about 160 classes and
9000 code lines, which makes it a good case study. Also, this software has the
property of being developed by a team which includes Erich Gamma, resulting
in a design pattern based software. This software allowed us to test the tool’s
behavior in a reasonably complex environment. Also, the software was used to
test the analyzed tools, allowing a comparison of the achieved results.

Our plugin was installed in NetBeans 6.9, and the software was imported into
our IDE. That is to say that the conclusions were obtained with all the tools in
the same conditions. The analyzed tools are the ones considered more relevant in
this area, consisting in ArgoUML, jGrasp, Ptidej and Relipse (or Fujaba). At the
moment, ArgoUML is the most outdated tool, updated in December 2011 (less
than a year ago, considering the time of writing). On the other hand, jGrasp was
updated in September 2012. Some of these tools were released some years ago,
but they are being constantly updated. These frequent updates are somehow
indications about the tools’ importance and need.

After importing the software with each of the tools, each one of the three
MapIt main functionalities were tested. With this approach it is possible to
compare all of the tools. The MapIt tool successfully applied each of the func-
tionalities to the source code, producing the three expected outputs, that is: the
PSM diagrams, the patterns inference and the PIM diagrams.

When testing the MapIt tool, both source code to PSM and PSM to PIM
functionalities produced the expected results, allowing us to obtain high level
diagrams based on the source code. These diagrams contain the Java elements
and their relations, as represented in Figure 2. Also, both functionalities are fully
automated as proposed, with no software size restrictions. The code to PSM
functionality produced an UML class diagram as expected, and all the expected
UML elements and their relations were represented, based on the metamodel
instance. Also, this process did not require user interaction. As expected, the
JHotDraw software analysis resulted in a large number of elements being shown
in the PSM diagram. As the representation is interactive, it allows for the ad-
justment of the elements positions. This functionality eases the analysis of large
diagrams, meaning there is no restriction on the maximum size of the analyzed
software. Another functionality developed to ease the analysis process supports
the simplification of diagrams, by representing the metamodels elements only
by their name. The PSM to PIM module produced similar results, producing a
higher lever UML class diagram. This model is obtained by applying previous
defined rules to the PSM elements. Here again, the software dimension is not a
restriction to the use of this functionality, and the produced results are similar.

When using the pattern inference functionality, the user must select whether
to use the embedded pattern catalog or, otherwise, select an external one. All the
inferred patterns are identified and listed to the user. The higher the number of
patterns in a software, the more useful this functionality becomes. Some analyzed
tools, like Fujaba, present all the patterns at once, and that makes it hard to
understand the patterns arrangement. The achieved results proved the viability
to include the pattern inference functionality on a model analysis tool. Also,



14 MapIt: A model based pattern recovery tool

this shows how it is possible to include an external technology (Prolog) in this
process, taking advantage of that language’s capabilities.

6 Discussion

After testing the MapIt and the selected tools with the described approach it was
possible to identify some topics for discussion. Comparing the resulting tool with
the proposed objectives some considerations can be made. First, the proposed
functional objectives were generally achieved, and the viability of the approach
is considered as proven. Then, other non-functional objectives such as usability
improvement (in comparison to other tools), or facilitating the tool’s installation
and usage were also addressed by resorting to Netbeans. This IDE is a widely
known tool, so installing and using the plugin will be familiar to developers.

As presented here, integrating the proposed functionalities in one single tool
was an overall achieved objective. All the three previously proposed functional-
ities were implemented, and are available in a single tool. The modules which
handle the Prolog and parsing functionalities where implemented in a convenient
way, allowing to easily change them in further work.

Fig. 5. MapIt diagram (top) and Ptidej diagram (bottom) for the same classes subset.

When comparing the obtained results against the other tools’ results, we
achieved some interesting conclusions. Comparing to the detail of the obtained
models, the other tools’ models were generally less elaborated. Even if all the
tools (apart from Reclipse/Fujaba) were able to recognize all the Java elements
(classes and interfaces), many of them were not able to correctly recognize all



MapIt: A model based pattern recovery tool 15

Fig. 6. Another example of MapIt diagram (top) and Ptidej diagram (bottom) for the
same classes subset.

their relations. Specifically ArgoUML, jGrasp and Ptidej, failed to recognize
some of the relationships. The Reclipse/Fujaba tool was only able to repre-
sent the inheritance relationship, and the Ptidej tool missed some other rela-
tions. Once again it was possible to conclude that collection inference is hard
to achieve, since all the tools showed difficulties when doing it. Also, regarding
relations between models elements’, ArgoUML and Reclipse were not able to
recognize typed collections. In the presented tool, none of these problems are
present, so the results concerning models’ elements and their relations are con-
sidered satisfactory. Figure 5 compare a subset of classes of JHotDraw, in both
MapIt (top) and Ptidej (bottom). It is possible to identify that even if the hi-
erarchical relations are present, a relation is missing between PoligonTool and
PoligonFigure in the Ptidej diagram. Another example is shown in Figure 6,
where the Ptidej diagram shows no relationships. These are examples of several
missing relationships, showing that, in this case, our tool achieves better results
than Ptidej when creating PSM diagrams. Moreover, selecting the classes for
analysis in Ptidej is not as straightforward as in MapIt, since it requires a jar
file or a set of class files, while MapIt requires only to select the files in the IDE,
as shown in Figure 4.

The quality of the elements in the model varies depending on the tool. Only
two tools achieved satisfactory results, producing model elements in UML nota-
tion, being them Reclipse/Fujaba and Ptidej. It was possible to conclude that
Ptidej achieved the best results. Even if Fujaba/Reclipse represented detailed
diagrams, some information (about relations) was missing. Ptidej tool achieved
the best results, however the produced diagrams are static (being then impos-
sible to rearrange the elements on the screen). Only a few analyzed tools were
able to infer patterns in the diagrams, specifically Reclipse/Fujaba and Ptidej.

The pattern inference (and representation) process occurred based upon the
obtained models. The two tools allowed the use of external catalogs to define
the patterns to infer. However, these tools used Java representations (or other
specific formats) to represent the patterns. In the presented tool a more flexible
format is proposed (using Prolog rules). We were not able to test the pattern



16 MapIt: A model based pattern recovery tool

inference functionality in the other tools. In some of them the functionalities
does not provide any output, in others it was not clear how to use it. Our tool
was able to infer patterns within the JHotDraw code.

None of the analyzed tools has the model abstraction functionality, so it is
not possible to compare it. However, regarding the examples presented in the
MDA Explained book [11], it is possible to conclude that the obtained models
have a high abstraction level, close to a PIM (as expected).

Finally, one last issue regarding improvements to the tool should be ad-
dressed. The pattern inference module may be improved expanding the pattern
catalog, simply by adding new rules. The model abstraction module can handle
different implementations for the transformation process. However, it requires
these transformations to be written at the code level. Changing the tool sup-
ported language may have one of two consequences: changing the parsing module,
or, changing the parsing module and the metamodel (if the new language does
not match the metamodel).

Since we used the same software to test all of the tools, this allowed us to
achieve some conclusions. As stated before, all the analyzed tools have some
points where they may be improved. Also, in some cases (as the relationship
inference, or the UML diagrams representation), our tool achieved better results
by providing more accurate or detailed models.

Our tool takes also advantage of the integration of the three different func-
tionalities in a single environment. Ptidej offers UML diagrams and pattern
inference, however lacks code editing functionalities. ArgoUML and jGrasp in-
cludes code editing functionalities and UML diagrams, but no pattern inference.
Reclipse includes code editing functionalities, UML diagrams and pattern infer-
ence, however the achieved models were very incomplete. Also, none of the tools
contains PSM to PIM abstraction functionalities. We developed the MapIt as
a tool which aims to cover all the developers needs in a single tool by combin-
ing all the needed functionalities, and at the same time in a single development
environment.

7 Conclusions and Future Work

In this paper the reverse MDA process and pattern inference were approached.
Three distinct model functionalities were analyzed, detailed and implemented in
form of the presented tool. The first functionality was the generation of (UML)
diagrams from source code. The second one, was the inference of design patterns
from the generated models. The third and last functionality was the PSM into
PIM model abstraction. The PIM is a model which has no relation with the
target platform details. However, the PIM obtained with this tool are not exact
PIM in the sense that they still contain some degree of platform details. However,
those models’ objective remains the same - to raise the abstraction level.

Like in other software areas, ubiquitous and pervasive systems have evolved
in many ways. They are present in our lives more than ever, and offering increas-
ingly more sophisticated functionalities. As the computational power evolves, so



MapIt: A model based pattern recovery tool 17

does these applications complexity. Nowadays ubiquitous and pervasive applica-
tions are complex, offer more possibilities and the users’ demands require such
complexity. The presented tool’s major purpose is to help in two distinct sce-
narios. The first one is to help in the maintenance of legacy systems, by helping
software analysis. The second purpose is to help model oriented software mi-
gration, by integrating software in the MDA process, and by enabling analysis
at more abstract level. Our tool tends to facilitate application migration by
providing high level analysis of the software, for example, using patterns.

During this work, some tools were analyzed and it was possible to conclude
that some of them aim to implement the presented functionalities. However,
they present shortcomings (as described) on several points, where this tool is
able to succeed. The use of Prolog (and the catalog customization) to help the
pattern inference process improved the achieved results. As final result of this
work, a fully functional tool which implements the described functionalities was
achieved. Despite having some room for improvement, the proposed objectives
were achieved and implemented as tool functionalities. Considering that the
MapIt might provide more functionalities than these tools (such as the diagrams
abstraction), or at least, tries to provide an improved development environment
(by improving the functionalities) and focusing in distinct issues (like the soft-
ware migration), we consider that our tool might be an interesting contribution.

The support for other languages (such as C#, C++, etc.) is left as future
work. Also, extending the pattern catalog (by using other pattern catalogs) is
suggested. Finally, migrating the plugin to other IDEs (such as Eclipse) allows
more users to have access to it. The integration of the Prolog inference engine
on the plugin should also be considered.

Also, for future work, we are interested in scenarios such as integrating a
system like JHotDraw into a mobile computing platform. To do such, we are
considering performing a high level analysis, to identify relevant software com-
ponents (patterns). Here, we could use a mobile computing oriented pattern cat-
alog, possibly developing a new one, to identify relevant patterns (rather than
using a generic catalog). Once the patterns are identified, we would know which
code sections would need to be changed, refactored and which could remain
unchanged when migrating the code. This approach would help us migrating
the code into another environment, by selecting the crucial code elements. The
growth in the mobile computing paradigm leads us to focus our development on
software migration issues, particularly to mobile computing environments.

Another considered scenario was the JHotDraw migration into a cloud and
mobile computing environment. In this case, we considered the possibility to
split the tool into two components. The first component would be the interface,
which will be in the mobile application, displaying the graphical editor. The
second component would be the backend, where the image processing and storing
would be handled, which would be stored in a cloud environment. In this scenario
we consider a similar approach, by raising the abstraction level. However, in
the pattern inference process, we would consider two kind of patterns (or two
catalogs). One kind of patterns would help us to identify the components which



18 MapIt: A model based pattern recovery tool

should be migrated to the mobile environment. The other kind would guide us to
select the components to migrate to the cloud environment. With this approach
would be possible to divide the software in two components and adapt it to a
different context, even if the original software is a common desktop application.

References

1. Moria Abadi and Yishai A. Feldman. Automatic recovery of statecharts from
procedural code. In Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2012, pages 238–241, New York, NY,
USA, 2012. ACM.

2. Christopher Alexander and Sara Ishikawa Murray Silverstein. A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, 1977.

3. Frank Buschmann, Regine Meunier, Hans Rohnert, and Peter Sommerlad. Pattern-
Oriented Software Architecture. John Wiley & Sons, 1996.

4. James Corbett, Matthew Dwyer, John Hatcliff, Shwan Laubach, Corina Pasare-
anu, Robby, and Hongjun Zheng. Bandera: extracting finite-state models from
Java source code. In Proceedings of the 22nd international conference on Software
engineering, pages 439–448. ACM, 2000.

5. Liliana Favre. Model Driven Architecture for Reverse Engineering Technologies:
Strategic Directions and System Evolution. IGI Global, 2010.

6. Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
2002.

7. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
- Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

8. Yann-Gaël Guéhéneuc. Un cadre pour la tra caabilité des motifs de conception.
PhD thesis, Université de Nantes, 2003.

9. Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Recovering binary class relation-
ships: putting icing on the uml cake. In Proceedings of the 19th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, OOPSLA ’04, pages 301–314, New York, NY, USA, 2004. ACM.

10. K. Jinto and Y. Limpiyakorn. Java code reviewer for verifying object-oriented
design in class diagrams. In Information Management and Engineering (ICIME),
2010 The 2nd IEEE International Conference on, pages 471–475. IEEE, 2010.

11. Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained - The Model Driven
Architecture: Practice and Promise. Addison-Wesley, 2003.

12. R. Kollman, P. Selonen, E. Stroulia, T. Systä, and A. Zundorf. A Study on the Cur-
rent State of the Art in Tool-Supported UML-Based Static Reverse Engineering. In
Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE’02),
pages 22–. IEEE, 2002.

13. Stephen Mellor and Marc Balcer. Executable UML: A Foundation for Model-Driven
Architecture. Addison-Wesley, 2002.

14. Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1. Object Manage-
ment Group, 2003.

15. Naouel Moha and Yann-Gaël Guéhéneuc. Ptidej and décor: identification of design
patterns and design defects. In Companion to the 22nd ACM SIGPLAN conference
on Object-oriented programming systems and applications companion, OOPSLA
’07, pages 868–869, New York, NY, USA, 2007. ACM.



MapIt: A model based pattern recovery tool 19

16. Oscar Pastor and Juan Carlos Molina. Model-Driven Architecture in Practice.
Springer-Verlag, 2007.

17. Tarja Systä. Static and Dynamic Reverse Engineering Techniques for Java Soft-
ware Systems. University of Tampere, 2000.

18. Frank Truyen. The Fast Guide to Model Driven Architecture - The Basics of Model
Driven Architecture. Object Management Group, 2006.

19. Markus von Detten, Matthias Meyer, and Dietrich Travkin. Reverse engineering
with the reclipse tool suite. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, pages 299–300. ACM, 2010.

20. Roel Wuyts. Declarative reasoning about the structure of object-oriented systems.
In In Proceedings of the TOOLS USA ’98 Conference, pages 112–124. IEEE, 1998.


	MapIt: A model based pattern recovery tool
	Introduction
	Background
	Models and transformations
	Reversing the MDA process
	Pattern Inference
	Available tools

	Requirements for a pattern recovery tool
	Source code Metamodel
	Source code to PSM
	PSM pattern inference
	PSM to PIM

	The MapIt tool
	PSM to PIM abstraction
	PSM pattern inference
	Implementation

	Case Study
	Discussion
	Conclusions and Future Work


