
Using Abstract Interpretation to Produce Dependable Aerospace Control
Software

Rovedy Aparecida Busquim e Silva, rovedyrabs@iae.cta.br
Nanci Naomi Arai, nancinna@iae.cta.br

Luciana Akemi Burgareli, lucianalab@iae.cta.br
Laboratorio de Engenharia de Software / Instituto de Aeronautica e Espaco (IAE), Brasil

Jose M. Parente Oliveira, jparente@ita.br
Divisao de Ciencia de Computacao / Instituto Tecnologico de Aeronautica (ITA), Brasil

Jorge Sousa Pinto, jsp@di.uminho.pt
HASLab / INESC TEC & Universidade do Minho, Portugal

Abstract

In the context of software dependability, the software veri-
fication process has an important role. Formal verification of
programs is an activity that can be inserted in this process to
improve software reliability. This paper presents the defini-
tion of an approach that employs a formal verification tech-
nique based on abstract interpretation. The main goal is to
apply this technique as a formal activity in the software veri-
fication process to help software engineers identify programs
faults. The applicability of the proposed approach is demon-
strated by a case study based on embedded aerospace control
software. The results obtained from its use show that abstract
interpretation can contribute to software dependability.

1. Introduction

Accidents caused by errors in software are a reality in
critical real-time systems. To find faults throughout the soft-
ware development life cycle and develop dependable soft-
ware, software verification and validation processes must be
used. Formal methods, complementary to traditional soft-
ware verification and validation methods, are recommended
in standards specifically used in the aerospace area such as
ECSS-E-ST-40C [9].

The formal verification of programs based on abstract
interpretation is the focus of this work. The goal is to com-
plement the software testing and simulation activities. The
testing activity may provide a partial verification of the soft-
ware behavior using a subset of selected input data. A test-
generation tool would necessarily pick only a subset of the
billions of possible entries to execute the application [7]. On

the other hand, the results given by a tool based on abstract
interpretation are valid for all the range of values proposed
by the user. In this context, the approach presented here
proposes the application of abstract interpretation to verify
embedded aerospace control software by the Frama-C static
analyzer [7].

The paper is organized as follows. Section 2 presents
briefly the background in formal methods, formal verifica-
tion of programs, and abstract interpretation. Section 3 de-
scribes the verification approach. Section 4 shows the prac-
tical experience. Section 5 presents related works. Finally,
Section 6 is the conclusion, with a discussion about specific
issues and future work.

2. Background

2.1. Formal Methods

Formal methods are abstract interpretations, which differ
in the way the abstract semantics is obtained [4]:

- model-checking, where the abstract semantics is ob-
tained manually by the user in the form of a finitary
model of the program execution;

- deductive methods, where the abstract semantics is
specified by verification conditions by the user in the
form of inductive properties that satisfy (true at each
program step, such as loop invariants) these verifica-
tion conditions;

- static analysis, where the abstract semantics is com-
puted automatically using the predefined approxima-
tions possibly manually parameterizable by the user.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55626615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2.2. Formal Verification of Programs

Formal verification of a program is related to the use of
formal methods at the level of implementation of programs.
In general, an implementation of program is divided into
syntax and semantics around the programming languages.
Most often in the software development process, the devel-
opers are concerned with the syntax of a program, and the
semantics is implicitly considered. The main focus is to
build an executable object source, and the correction of the
program is obtained through testing and simulation. How-
ever, in the context of formal verification of a program, the
semantics has an important role to play in the development
of software applications because it is concerned with rigor-
ously specifying the meaning or behavior of programs. A
way to perform formal verification of programs is to use
static analysis based on abstract interpretation. A static an-
alyzer based on abstract interpretation is built by a rigorous
mathematical theory.

2.3. Abstract Interpretation

Abstract interpretation considers abstract semantics,
which is a superset of the concrete program semantics. Con-
crete program semantics is the most precise semantics that
very closely describes the actual execution of the program
and formalizes the set of all possible executions of this pro-
gram in all possible execution environments [4].

Abstract interpretation can be understood through two
main views. The first encompasses a semantic to depict the
abstract information (derived from concrete semantic) and
an abstract function to relate the abstract to the concrete in-
formation. The second encompasses an algorithm to evalu-
ate the semantic information interactively [3].

The basic idea of abstract interpretation is to transform
the program from a concrete domain to an abstract domain
to infer results without running the program. Thus, a static
analysis technique relates abstract analysis to executions of
the program [5].

A static analysis tool based on abstract interpretation is
built by combining abstract domains. It applies an abstract
transformer in the program, and an over-approximation of
the least fix point of this transformer is computed iteratively
by extrapolation operators such as widening and narrowing
[1].

According to Bouissou [2], static analysis by abstract in-
terpretation has been very successful in automatically ver-
ifying complex properties of real-time, safety-critical em-
bedded systems.

3. Proposed Verification Approach

3.1 Tool

Frama-C is a platform dedicated to the static analysis
of source code written in C constructed as plug-ins. The
plug-in of interest is the Value Analysis, which is based on
abstract interpretation, and automatically computes sets of
possible values for the variables of the analyzed program
[7]. The Value Analysis/Frama-C can be useful to detect
bugs, prove their absence, and get familiar with foreign
code. It is most useful for embedded code because it does
not demand dynamic allocation and uses few functions from
external libraries [7].

3.2 Approach

The verification approach is based on the following
steps:

1. Identifying an analysis context for the case study;

2. Adapting the source code to conform to Value
Analysis/Frama-C execution;

3. Running the analysis and refining the results;

4. Addressing the alarms.

The first step is to identify the analysis context. It is nec-
essary to define an entry point for the analysis. The software
documentation is essential to conduct this step.

In the second step, it is necessary to adapt the source
code: verifying libraries related to the Real Time Opera-
tional System (RTOS) and the hardware access as well as
the mathematical functions to detect missing functions that
must be provided by the appropriate source code.

In the third step, the idea is to refine the analyzer results.
Because static analyzers based on abstract interpretation are
always sound and always terminate, they are necessarily in-
complete [1]. Therefore, false alarms can occur. To improve
the results, arguments can be passed to the analyzer; how-
ever, this will cost more time to determine whether each
alarm is true or false.

The purpose of the fourth step, is to address the alarms.
The process consists of picking an alarm, investigating its
causes, watching variables values, and keeping track of the
anomalies encountered as well as the code changes. It could
be necessary to interact with the developers when severe
anomalies are suspected or their causes are doubted.

4 Case Study

The case study is based on a spacecraft with four stages
capable of launching satellites weighing maximum 350 kg

2



at altitudes up to 1000 km [10]. Its embedded software per-
forms the initiation, verification, and control of the vehi-
cle. The source code consists of approximately 15 KLOC
of C language distributed in 120 files. The selected part
of source code is related to the flight control task, which is
the most critical part of the code. For simplification issues,
only functions related to the first stage were analyzed. The
main functions in the first stage are navigation and event
control algorithms. The case study has 12306 SLOC, 47
statements, 12155 if assignments, 9 loops, 50 calls, 2 gotos,
and 3 pointer access. This data are results produced by the
Metrics/Frama-C plugin.

The case study considered two scenarios where the sen-
sor measurements were treated in different ways. The first
scenario considered the maximum range of values accepted
by the sensors. In the second scenario, a different approach
was adopted. All the sensors measurement values obtained
from a flight simulation were used as input to the Value
Analysis/Frama-C.

Following the steps of the proposed verification ap-
proach, the first activity was to prepare the analysis context.
The main function, which is the entry point for the analy-
sis, was created. In this step, the Software Requirements
Specification (SRS), Data Dictionary (DD), and Software
Design Document (SDD) were essential for looking up in-
formation. The logic model in the SRS, represented by Data
Flow Diagram (DFD), helped identify the input data for the
functions. For example, the input for the navigation algo-
rithm is the flight nominal data and the sensor values that
must be provided.

Following the second step, the first activity was to ad-
dress the include files. The method used was to exclude all
the include files of the source code and to include them one
by one in the next executions as required. This way, it was
possible to detect a number of include files that were unnec-
essary. Then, the missing functions were addressed. For the
RTOS libraries, an implementation of functions was pro-
vided with similar behaviors to the real ones. For the sen-
sors measurements, the analysis was parameterized adding
non-determinism through the Frama C float interval and
Frama C interval functions. For the hardware output,
functions were created to examine the intermediate results
through the tool functions. For mathematical functions,
functions from the Frama-C itself were used when avail-
able or functions with similar behaviors to the original ones
were implemented. After that, it was possible to run the
verification, but the first results were imprecise as expected
because no refinement was made. Becoming familiar with
the source code was a complementary result of this step.

The next step was to make the verification more precise.
Frama-C asserts, parameters, and functions were studied
and used to refine the analysis, address some false alarms,
and improve the results. In the analyzed case study, the vari-

ous large loops and several control flow statements required
special attention to be dealt with. Options were used as -
slevel for unrolling loops and control flow statements to ob-
tain more accurate results. However, these options usually
slow down the analysis execution; therefore, it was neces-
sary to strike a balance between the required precision and
the time spent by the analysis.

In the last step, three warnings related to float opera-
tion were found. By examining the function, it was pos-
sible to ignore them. This is because the analyzed source
code is related to control algorithms, software with floating-
point computations. These kinds of messages appear when
a floating-point operation could result in an infinite value or
Not a Number (NaN).

The main proposal of the Value Analysis/Frama-C is to
provide valid results for all the range of values proposed by
the user, as opposed to what a test-generation tool would
typically do.

The first scenario is often a useful method for using the
Value Analysis/Frama-C. In this case, the analysis was per-
formed smoothly and provided valid ranges of values for
the variables. As a conclusion, it was possible to infer that
the implemented algorithms are working properly without
any bugs, divisions by zero, invalid pointer access, buffer
overflows, and other run-time errors.

In the second scenario, Value Analysis/Frama-C worked
as C interpreter [6]. As a result, the analysis gave variables
profiles very similar to the simulation. To compare them,
three linear velocity parameters (Vx,Vy,Vz) were chosen,
and the plots are shown in the Figure 1. The results obtained
from the flight simulation and the Value Analysis/Frama-C
are so alike that the plots are indistinguishable, and in spite
of having six plots, it is possible to observe only three.

Figure 1. Values computed by Frama-C x Sim-
ulation data.

3



5 Related Work

This section presents research works related to formal
verification of programs. Vijay makes a survey of auto-
mated techniques for Formal Software Verification and con-
cludes that, instead of the false alarms emitted, the static
analysis techniques based on abstract interpretation scale
well at the cost of limited precision [8]. In an experiment
on static analysis of the XEN Kernel, Pucetti [11] concludes
that abstract interpretation is the most promising technique
to extract runtime level bugs from the code with little user
assistance. Bouissou [2] shows the results of an ESA funded
project on the use of abstract interpretation to validate crit-
ical real-time embedded space software. In this paper, two
tools are presented: a static program analyzer (ASTREE)
and an abstract interpretation tool for studying numerical
programs coded in C (FLUCTUAT). The conclusion is that
the performance of this new generation of tools has dramat-
ically increased.

6. Conclusions, Discussion, and Future Work

The presented work applies a static analysis tool based
on abstract interpretation for formal verification on embed-
ded aerospace control software. It has advantages compared
to the other two fundamental formal approaches described
in the section 2.1. When compared to deductive methods,
the proposed approach has the advantage of automation, be-
cause it is not necessary to include so many annotations in
the source code. In relation to the model checking, the static
analysis can avoid the state space explosion problem.

Some results obtained are worth being discussed. In the
analysis context, it was possible to detect an error related
to the domain of sensor values in the Data Dictionary. The
recommendation is to review the document. Several inclu-
sions were detected of unnecessary include files. Consider-
ing that it is an embedded source code, the best approach is
to maintain only the necessary source code. Therefore, the
recommendation is to remove the unnecessary include files
from the source code. The analysis detected global parame-
ters being passed by value in a function related to the sensor
measurements. The recommendation is to delete parameters
and to perform the analysis of global variable usage.

The main benefit of the proposed approach is to con-
tribute to the development of dependable software systems
through the application of formal methods to remove soft-
ware faults. Removing software faults directly improves
dependability because they are no longer potential causes
of failure. Adding formalism in the dependability analysis
will increase the software quality and decrease the probabil-
ity of a lost mission in the aerospace field. Of course, this
approach alone is not appropriate. It must be a complemen-
tary activity in the software process verification, which help

to reduce cost in the software validation process.
Future works could include exploring the Frama-C

plug-in related with the deductive verification working
together Value Analysis.

Acknowledgments
This research was sponsored by Agencia Espacial Brasileira
(AEB). This work is partially funded by ERDF - European
Regional Development Fund through the COMPETE Programme
(operational programme for competitiveness) and by National
Funds through the FCT - Fundacao para a Ciencia e a Tecnologia
(Portuguese Foundation for Science and Technology) within
project FCOMP-01-0124-FEDER-020486.

References

[1] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, and X. Rival. Static Analysis and Verification of
Aerospace Software by Abstract Interpretation. In AIAA In-
fotech@Aerospace 2010, number AIAA-2010-3385, pages
1–38. American Institute of Aeronautics and Astronautics,
April 2010.

[2] O. Bouissou, E. Conquet, P. Cousot, R. Cousot, J. Feret,
K. Ghorbal, E. Goubault, D. Lesens, L. Mauborgne, A. Miné,
S. Putot, X. Rival, and M. Turin. Space Software Valida-
tion using Abstract Interpretation. In In Proceedings of the
International Space System Engineering Conference, Data
Systems in Aerospace (DASIA 2009), volume SP-669, pages
1–7, Istambul, Turkey, May 2009. ESA.

[3] A. Cheng. Abstract Interpretation Webpage.
http://www.eleceng.adelaide.edu.au/personal/acheng/public/
absInt/absIntMain.html, 2012.

[4] P. Cousot. Abstract Interpretation in a Nutshell.
http://www.di.ens.fr/˜cousot/AI/IntroAbsInt.html.

[5] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, volume 82, pages 238–252, Los An-
geles, California, New York, September 1977. ACM Press.

[6] P. Cuoq, B. Monate, A. Pacalet, V. Prevosto, J. Regehr,
B. Yakobowski, and X. Yang. Testing static analyzers with
randomly generated programs. In A. Goodloe and S. Per-
son, editors, NASA Formal Methods, volume 7226 of Lecture
Notes in Computer Science, pages 120–125. Springer Berlin
Heidelberg, 2012.

[7] P. Cuoq and V. Prevosto. Frama-C’s value analysis plug-in
20110201 carbon version, 2010.

[8] V. D’Silva, D. Kroeningn, and G. Weissenbacher. A Survey
of Automated Techniques for Formal Software Verification.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(7):1165–1178, 2008.

[9] ECSS. ECSS-E-ST-40C Space Engineering - Software,
March 2009.

[10] IAE. Instituto de Aeronautica e Espaco - Projeto VLS.
http://www.iae.cta.br/?action=vls, 2011.

[11] A. Puccetti. Static Analysis of the XEN kernel using Frama-
C. Journal of Universal Computer Science, 16(4):543–553,
2010.

4


