
A (ir)regularity-aware task scheduler
for heterogeneous platforms

Artur Mariano1, Ricardo Alves1, Joao Barbosa1,2, Luis Paulo Santos1 and Alberto Proenca1

1Department of Informatics, University of Minho, Braga, Portugal
2Computer Sciences Department, University of Texas at Austin, Texas, USA

{amariano,ricardoa,jbarbosa,psantos,aproenca}@di.uminho.pt

Abstract. This paper addresses the design, implementation and validation of an effective scheduling scheme
for both regular and irregular applications on heterogeneous platforms. The scheduler uses an empirical per-
formance model to dynamically schedule the workload, organized into a given number of chunks, and follows
the Heterogeneous Earliest Finish Time (HEFT) scheduling algorithm, which ranks the tasks based on both
their computation and communication costs. The evaluation of the proposed approach is based on three case
studies – the SAXPY, the FFT and the Barnes-Hut algorithms – two regular and one irregular application.
The scheduler was evaluated on a heterogeneous platform with one quad-core CPU-chip accelerated by one or
two GPU devices, embedded in the GAMA framework. The evaluation runs measured the effectiveness, the
efficiency and the scalability of the proposed method. Results show that the proposed model was effective in
addressing both regular and irregular applications, on heterogeneous platforms, while achieving ideal (≥100%)
levels of efficiency in the irregular Barnes-Hut algorithm.
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1 Introduction

Current high-end computational platforms explore a diversity of multi/many core processors and co-processors
that together have the potential to deliver a huge computational power. These platforms, commonly referred
to as heterogeneous platforms (HetPlats), typically include multi-core CPU-chips and many-core, highly pro-
grammable, Graphical Processing Units (GPUs) and, to a lesser extent, specialized devices such as DSPs
and/or FPGAs. Leveraging this latent computational power is mandatory, if high performance and energy
efficient computing is to be achieved.

Efficiently exploiting HetPlats is, however, a very challenging task. Different devices exhibit diverse pro-
gramming and computing models together with various computing capabilities, diverse development languages,
tools and environments, and disjoint memory address spaces. This diversity results in increased programming
and platform tuning complexity, which strongly impacts on programming productivity. The development of
efficient applications for HetPlats requires time-consuming code optimization and often hinders performance
portability if the configuration of the target heterogeneous system is modified.

To foster wider adoption of HetPlats, researchers have been proposing frameworks that aim to hide from
the programmer some of the above cited challenges, thus increasing both programming productivity and per-
formance portability. Even though applications developed using such frameworks will seldom achieve the per-
formance levels of highly optimized codes, the tradeoff is that performance is still within acceptable bounds,
while programming effort is strongly reduced and migration onto differently configuration systems is facilitated,
if not automatic. These frameworks, including StarPU [4], Harmony [11], MDR [22] and GAMA [6], to name a
few, address issues such as the management of the heterogeneous platform (e.g., launching, synchroninsing and
terminating computing kernels), scheduling and data management.

Scheduling, understood as mapping the workload tasks onto devices and defining their order of execution [25],
has been shown to be strictly related to the observed performance levels [15, 1]. A good schedule – whose goal
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in the case of this paper is to minimize the application execution time – should take into account the different
devices computing paradigms suitability to the tasks at hand, the devices relative computing capabilities and
the costs of data movement within the system. Therefore, schedulers include, either explicitly or implicitly,
a performance model to predict how a task will perform on a device, given the current system state, thus
enhancing decision making. The accuracy of such predictions depends on many factors, such as the workload
and computing system complexity, and the correctness of the available information.

The above cited frameworks for HetPlats include scheduling mechanisms devised for regular workloads. How-
ever, the scheduling problem is further aggravated if irregular workloads are considered. Whereas data parallel
regular workloads exhibit similar computing requirements and memory access patterns per data element, irregu-
lar workloads present widely varying computing requirements and memory accesses across data elements. These
variations strongly impact on the accuracy of the scheduler performance model and might result in poor overall
performance if not explicitly taken into account on the scheduling policy. Although harder to schedule than
regular applications, irregular applications are a substantial part of both scientific and technological applications
[23]. In particular and due to the large Theoretical Peak Performance (TPP) of some accelerators, some irreg-
ular applications have been ported to GPUs. Good performance levels are usually achieved by re-designing the
algorithm at the cost of very time consuming code tuning, in function of the underlying architecture [7, 21, 24].

This paper addresses the design and evaluation of an efficient scheduling policy for irregular workloads on
HetPlats. Our goal is to demonstrate that such efficient scheduling is indeed possible for this most difficult
irregular case, while maintaining the previously achieved successful results for regular workloads. The GAMA
framework [6] was selected to validate the proposed scheduler policy, and compared with a static, manually
parametrised, scheduler. Three different case studies are examined, including two regular algorithms (SAXPY
and FFT) and one irregular algorithm (the Barnes-Hut n-Body solver).

This paper contributions include:

• the design of a scheduler and associated performance model aimed for both regular and irregular workloads
on HetPlats;

• the validation of a scheduling policy, built upon the proposed performance model, that efficiently handles
regular and irregular workloads.

The reminder of this paper is organized as follows. Section II presents the related work, including frameworks
and scheduling strategies addressing HetPlats. Section III presents the proposed dynamic scheduler. Section
IV introduces the evaluation environment and methodology, whereas Section V presents the validation of the
proposed method. Section VI concludes the paper.

2 Related work

The development of applications to run on HetPlats is too time consuming, due to different programming
models, workload distribution and data management. Several frameworks addressing HetPlats were released
since 2008, aiming to increase programming productivity while simultaneously maintaining performance within
acceptable bounds. These frameworks, which include StarPU, Harmony, MDR and GAMA, provide both a
programming and an execution model, automatically orchestrating workloads and data movements in regular
applications. The GAMA framework, however, also addresses irregular applications on HetPlats.

StarPU is a runtime system that provides a high-level, unified execution model for task scheduling on
heterogeneous platforms [4]. StarPU’s scheduler aims to minimize the cost of transfers between processing units
and use the data transfer cost prediction to improve the task scheduler decisions [2]. The scheduling decisions
are supported by an empirical, history-based performance model, which predicts the execution time of a task
on each system device. The performance model is calibrated, either at runtime using linear regression models,
or offline for non-linear models [3]. The system keeps track of each replicated data on the platform, determining
whether accessing a particular data block requires a transfer or not.

Harmony aims to simplify parallelism management, dynamic scheduling and on-line monitoring-driven per-
formance optimization, for heterogeneous many core systems [11]. Harmony’s dynamic scheduler is based on
mapping kernels to devices and variables to memory spaces as the program is being executed [10]. The schedul-
ing operation lasts while the window of kernels fetched from the program, continuously updated, is not empty.
The scheduler includes a performance model to predict the execution of kernels based on the used variables, the
information about its PTX assembly code, and the history of previous execution of the same or similar kernels.
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The Model Driven Framework (MDR) design is based on several performance models with impact on run-time
decisions, including mapping and scheduling tasks to computing units (CU)s and copying data between memory
spaces [22]. It thus models task execution, while orchestrating the data-movement within the platform. The
workloads are represented as parallel-operator directed acyclic graphs (PO-DAGs). The scheduling decisions are
based on four identified criteria: suitability, locality, availability and criticality (SLAC). Empirical performance
models are used to estimate the execution time of each kernel, whereas analytical models are used to estimate
communication costs.

The GPU and Multi-core Aware (GAMA) framework under development aims to bridge the programming
model between the CPU-chip and accelerators such as GPUs [6]. CPU-cores and GPU Stream Multiprocessor
(SM) units are referred to as CUs. Identical CUs that share a common level of memory are grouped together
into devices following the hierarchical memory system in HetPlats. The grouping into devices enables the use
of the platform specific programming and execution model allowing cooperation and synchronization among
CUs. The system employs a global address space to tackle the distributed memory model of any particular host
platform. It also employs a relaxed consistency memory model to favour performance.

An application in GAMA is a collection of data-parallel jobs submitted to a run-time system, for scheduling
among the available computational resources, where the dependencies among jobs are solved with explicit
synchronization barriers. The goal of the run-time scheduler is to reduce the time to solution of any given
application. Since in most cases the granularity is too coarse to enable a balanced scheduling policy, the run-
time system recursively employs a user-defined dice operation to adjust it to the device specification, resulting
in the creation of execution tasks of the same job. The execution of these tasks must be assumed as out-of-order,
unless a synchronization barrier is explicitly issued.

Other frameworks to address HetPlats were proposed, including Qilin [20], Merge [19], Anthill [12] and
HyperFlow [9], but none of these addresses irregular applications or presents relevant scheduling differences
from the previous presented frameworks. Anthill, for instance, employs both First Come First Served (FCFS)
and Dynamic Weighted Round Robin (DWRR) scheduling policies, which are not particularly designed to
schedule irregular workloads.

Other works have proposed scheduling models for HetPlats [17, 8]. These models are supported by empirical
schedulers, based on historical data gathered in run-time. The closest study to the work in this paper has
focused on irregular reduction applications arising from unstructured meshes [16]. The authors proposed a
multi-level partitioning framework with a work-stealing based scheduler, which considers granularity issues
when distributing the workload. However, the proposed scheme is mostly appropriate for irregular reductions
– particularly relevant in the field of Computational Fluid Dynamics – and not to the most general case of
irregular data parallel workloads.

3 A (ir)regularity-aware scheduler to HetPlats

This paper proposes a new scheduling strategy to address both regular and irregular applications in HetPlats.
To test and validate the scheduler, the GAMA framework was used as a test-bed. Applications in the GAMA
framework are organized as a set of jobs, each with a set of computation tasks and associated data domains,
which form the workload.

Regular applications have been successfully scheduled by partitioning the workload according to either
the computing capability of each CU or the performance model information, either under static or dynamic
scheduling schemes. The efficient scheduling of irregular applications, on the other hand, necessarily requires
dynamic scheduling schemes, capable of balancing the load on the system during the life-time of the application’s
execution [5, 18, 13].

The proposed scheduler is organized in two phases: (i) to build an initial empirical performance model and
(ii) to dynamically schedule the workload, organized into a given number of chunks i.e., sets of tasks that belong
to the same job. Phase (ii) aims to overcome the ineffectiveness of performance models to schedule irregular
applications. Its assignment policy is inspired on the Heterogeneous Earliest Finish Time (HEFT) scheduling
algorithm, which ranks the tasks based on both their computation and communication costs, assigning every
unscheduled task ti to the device dj that minimizes the EFT value of the task ti [26].

The scheduler uses a hierarchic queuing system where each CU has its own private Local Queue (LQ) and
share a High Level Queue (HLQ) with all the other CUs. At the beginning of the application, its tasks are
stored in the High Level Queue (HLQ). The scheduler dynamically assigns these tasks to each LQ at runtime,
which worker threads later pop and execute.
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Figure 1. A scheduling behaviour during the application’s lifetime. The figure
shows a snapshot of the local queues before scheduling each chunk.

The empirical performance model is designed to estimate the execution time of a pair (task(size), device),
and is built and fed with a sampling process. This process equally divides a workload sample (10% by default)
and assigns the resultant parts among the available workers. The execution times of these sampling tasks
are stored on the performance model. The rest of the workload sample remains in the HLQ, to be scheduled
afterwards. The estimated execution time for a task on a device is computed as the median of measured trials
for that task on that particular device.

As shown in Figure 1, the workload is continuously assigned in chunks (5 in this case), after the sampling
process. The scheduler assigns a chunk of tasks whenever it is signaled by a worker thread, in a demand-driven
fashion. This happens when the number of tasks in one particular LQ is lower than a fixed parameter (4 by
default). This scheme differs from the original HEFT, since for an application with N tasks, the proposed
scheduler dynamically assigns N

x tasks for each run, where x is the number of runs. A possible refinement
for later work is to balance the workload during the execution of the last chunk, either with work-donation or
work-stealing (shown in Figure 1), especially relevant to address dynamic task spawn, that is likely to become
implemented in GAMA in the future.
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Figure 2. Illustration of the default assignment policy, for a given chunk c. Rect-
angles represent tasks, each color represent a different job (�, �, � and � represent
tasks from different jobs) and the width of each rectangle represents the estimated
execution time of that task.
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The assignment of each chunk of tasks follows a pre-configured assignment policy. In this policy, the number
of tasks assigned to each device is defined according to the load of each device at each instant and the suitability
of each device to the task under assignment, as estimated by the performance model. Figure 2 further details
the default assignment policy, for a given case: the scheduler assigns a given chunk c, in this case of 4 tasks,
among the available workers. It aims to minimize the execution time of the LQs and also to minimize each
worker idle time, favouring the application time-to-solution (TTS).

The performance model is implemented as a dual-level Hash Table to favour efficient accesses, as shown in
Figure 3. The first level Hash Table contains the jobs to which tasks belong, whereas the second level Hash
Table contains the measured execution times for different sized tasks of the same job. With this dual level
scheme, access to both data elements is expected to be done in constant time.
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Spline* s;
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Figure 3. Dual-level Hash Table Performance Model.

The scheduler includes a work tracking facility, which keeps track of each task on the system. The estimated
execution time of an LQ on each moment, referred to as TLQ, for an application with m jobs, is given by
equation 1. λwt(j, w) represents the number of tasks associated with job j on the local queue of the worker
w, according to the Work Tracker module; εpm(j(s), w) represents the performance model estimation for the
execution time of a task i, with data domain size si, of job j and to be executed on the worker w.

TLQw =
m−1∑
j=0

λwt(j,w)−1∑
i=0

εpm(j(si), w) (1)

The number of tasks to assign to each worker at each moment, when scheduling a chunk of T tasks belonging
to job j, is computed through a system of n linear equations and n unknowns, n being the number of workers.
It is based on balancing and minimizing the execution time of all the LQs in the system. The equation system
is given by:



TLQ0 + t0 × εpm(j, 0) = TLQ1 + t1 × εpm(j, 1)

TLQ1 + t1 × εpm(j, 1) = TLQ2 + t2 × εpm(j, 2)

...

TLQn−1 + tn−1 × εpm(j, n-1) = TLQn + tn × εpm(j, n)

t0 + t1 + t2 + ...+ tn = T

(2)

where tw represents the number of tasks to assign to the worker w. This system is always possible and
determined. Its solution may include negative values, which are set to 0, and positive values are proportionally
adjusted to the number of tasks to assign, T . In this context, negative values represent overloaded queues.
This is corrected by further (chunk) assignments, which attempt to correct the system load imbalance, as an
alternative to migrating (stealing/donation) tasks from those queues.
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4 Evaluation environment and methodology

The scheduler evaluation runs were performed on a computational heterogeneous platform, whose devices, a
CPU-chip and two GPU boards, are specified in Table 1. The system runs Linux Ubuntu 11.10 (Kernel 3.0) with
CUDA 5.0 (beta release). The test code was compiled with GCC 4.6 and NVCC 5.0, with -O2 optimizations in
both compilers. All trials were executed and measured 25 times, filtered by the k-best algorithm, for k = 3.

Device type CPU-chip GPU board

Number 1 2
Manufacturer Intel NVIDIA

Code Core i7-960 GTX 580
Code Name Bloomfield GF110

Year 2009 2010
Architecture Nehalem Fermi

#CUs 4 cores 16 MT-SIMD
CU frequency 3.20 GHz 772 MHz

SMT 2x 48x
Vector Support SSE 4.2 -

Compute Capability - 2.0
L1 Cache 32KB iC + 32KB dC 64KB per CU
L2 Cache 256KB per core 768KB, shared
L3 Cache 8MB, shared -

Single Precision TPP 102 GFLOPS 1581 GFLOPS
TDP 130 Watt 244 Watt

Main Memory 8GB 1.5GB

Table 1. Target hardware platform.

The scheduler was submitted to performance trials with three different case studies: two regular algorithms,
the SAXPY and the FFT, and one irregular algorithm, the Barnes-Hut n-Body solver. The SAXPY algo-
rithm has low computation requirements per memory access, which suggests that may be memory bound.
The FFT implementation, based on the Cooley-Tukey algorithm, is particularly suited for the CPU and is a
compute-bounded case. The Barnes-Hut algorithm is irregular since not only (i) the computation involved when
calculating the net force for a given body is different for different bodies but also (ii) data accesses for each
body do not follow any predictable pattern.

The evaluation runs measured (i) the execution times of both the dynamic and the best static scheduling
decisions, (ii) the CPU/GPU workload distribution, (iii) the efficiency η of the pair (framework,scheduler) and
(iv) the scalability of accelerators.

The first set of evaluation runs measured the execution time of the case studies, both with the proposed
scheduler and the static scheduler. The results of both schedulers were compared by presenting the execution
time of the application when statically scheduling the workload among the quad-core CPU-chip and one of the
GPUs, in all possible variations on multiples of 10%. This methodology was also the base of similar studies
that evaluated the performance other scheduling mechanisms [20, 15]. Both schedulers were also compared with
CPU and GPU libraries of the algorithms under study.

The second set of evaluation runs measured the workload distribution delivered by the proposed scheduler,
among the CPU-chip and one GPU. These trials measure the relation of the GPU usage in function of the input
data set size.

The third set of evaluation runs measured the efficiency η of the GAMA framework, when supported by
the proposed dynamic scheduler, according to a well defined formula defined in [4], shown in equation 3. It
expresses how well the framework takes advantage of the multiplicity of architectures on the platform, based
on the computational power Ψ of the platform and each device individually.

η =
ΨHetP lat

ΨD0 + ΨD1 + ...+ ΨDn

(3)

where ΨHetP lat represents the computational power associated associated to the whole platform and ΨDi

represents the computational power associated to the device i, when the framework forces the whole workload
to run exclusively on that device. With regard to a particular algorithm, the computational power of a device
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i (or a platform p) is given by the ratio between its input size and the execution time that device Di delivers,
as shown in equation 4.

ΨDi
=

input size

execution time
(4)

Finally, the scalability of the dynamic scheduler was assessed, when adding one or more GPU boards accel-
erators to a system with a single CPU-chip.
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Figure 4. Execution time of several workload distributions for the SAXPY, FFT
and Barnes-Hut algorithms in GAMA, with dynamic and static schedulers, on a
CPU+GPU setup configuration. SAXPY was executed with an input-set of 227

elements in each vector, FFT with 225 double precision elements and the Barnes-
Hut algorithm with a 215 particles system.

5 Validation

Figure 4 shows the execution times of the three algorithms under study, in the GAMA framework, comparing
several workload distributions for the static and the dynamic schedulers. The results are obtained using the
quad-core CPU and a single GPU.

Figure 4(a) shows the results of the SAXPY algorithm where the best workload distribution given by the
static scheduler lied between assigning 60%+40% and 50%+50% of the workload to the CPU+GPU. The
dynamic scheduler lied in this band, delivering the best performance among the entire set of trials.

Figure 4(b) shows that scheduling the whole FFT workload on the CPU-chip was the most efficient static
solution, since the devised FFT implementation is particularly suited for the CPU. The performance of the
dynamic scheduler delivered slightly worst levels of performance, since small parts of the workload were scheduled
to the GPU, due to the sampling process. These results do not match the vision that every CPU/GPU-only
algorithm is necessarily severely affected when small parts of the workload are assigned to the less appropriate
device [15].

Figure 4(c) shows the static and dynamic workload distributions for the net force calculation of the Barnes-
Hut implementation in GAMA. Once again, the dynamic scheduler automatically reached the fastest workload
distribution. The remaining jobs of the algorithm were calculated in OpenMP, and they were not considered in
measurements.

These results show that the devised scheduler delivered the highest levels of performance when compared
with all the possible static workload distributions in both the regular SAXPY and in the irregular Barnes-Hut
algorithm. In particular, the dynamic scheduler was able to automatically find an efficient workload distribution,
relieving the programmer from parameterize the static scheduler to achieve efficient workload distributions..
With respect to the FFT, based on a CPU-tailored Cooley-Tukey implementation, the small gap to the best
performance result was due to assigning some workload to the GPU during the sampling process.

Memory transfers are another critical issue in dynamic scheduling in HetPlats, were accelerators may incur
in substantial memory access latencies [14]. This is also relevant in GAMA, which currently allocates pinned
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memory, accessed by accelerators through PCIexpress channels. Figure 5 shows the relation of both CPU’s and
GPU’s usage and the input set size for the case studies.

These experimental measurements suggest that, except for the FFT, larger input data-sets lead to higher
computational-communication ratios and/or higher overlapping of computation with memory transfers and
higher GPU usage, as expected. These results do not apply to the FFT implementation, since the CPU-chip is
the most adequate for the Cooley-Tukey algorithm.
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Figure 5. CPU and GPU workload distribution under dynamic scheduling, for
SAXPY, FFT and Barnes-Hut. SAXPY experiments ranging from 218 to 228 ele-
ments in each vector. FFTs performed with 220 to 225 double precision elements
and the Barnes-Hut algorithm with 212 to 217 particles systems.

The impact of the input data size on memory transfer efficiency is especially noticeable in the Barnes-Hut
algorithm. As shown in Figure 5(c), the scheduler found no benefit in assigning workload to the GPU, to
systems with 214 or less particles.

Plots in Figures 6, 7, 8 capture alternative implementations: static and dynamic versions with GAMA versus
CPU and GPU-only highly efficient versions of the presented case studies. For SAXPY, GAMA is compared
with Lapack++ (CPU-only) and cuBLAS (GPU-only), as shown in Figure 6.

0

100

200

300

400

500

600

700

800

24 25 26 27 28

E
xe

cu
tio

n 
T

im
e 

(m
s)

Size (power of two)

Dynamic

Static

cuBLAS

Lapack++

(a)

0

20

40

60

80

100

120

24 25 26 27 28

E
ffi

ci
en

cy
 (

%
)

Size (power of two)

Dynamic

Static

(b)

Figure 6. (a) Execution time in milliseconds for the SAXPY algorithm in GAMA,
with dynamic and static schedulers, cuBLAS and Lapack++. (b) Efficiency η in
percentage for GAMA, with dynamic and static schedulers.

The results shown in Figure 6(a) evidence that the proposed dynamic scheduler is equally or more efficient
than the best static workload distribution, across a wide range of input data-sets. GAMA also overcame both
cuBLAS and Lapack++, suggesting that the evaluated SAXPY implementation is able to efficiently leverage
both architectures in the test-bed platform. The efficiency η, for both the dynamic and the best static workload
distributions, is shown in Figure 6(b). The results show that these schedulers are similar with regard to efficiency,
except for the SAXPY executing with 227 elements in each vector, where the dynamic scheduler obtained better
results.
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For the FFT, GAMA is compared with both cuFFT (GPU) and the parallel FFTW (CPU) libraries, as
Figure 7(a) shows.
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Figure 7. (a) Execution time in milliseconds for the FFT algorithm in GAMA,
with dynamic and static schedulers, cuFFT and the FFTW’s parallel version. (b)
Efficiency η in percentage for GAMA, with dynamic and static schedulers.

cuFFT is considerable faster than both GAMA versions and the FFTW library, set to work with four threads,
the same number of x86 workers running on GAMA. The static scheduler, which was set at assigning the whole
workload to the CPU, obtained faster executions than the dynamic scheduler, due to the sampling process to
build the performance model.

GAMA achieves the best efficiency η levels with the static scheduler, as Figure 7(b) shows. These efficiency
levels went over 90%, whereas the dynamic scheduler delivered efficiency levels from ≈65% to ≈90%. Even
though the execution times of the dynamic scheduler are not significantly different from the static scheduler,
the levels of efficiency η are considerably smaller when compared with the static scheduler.

With respect to the Barnes-Hut algorithm, GAMA is compared with a developed OpenMP version (CPU)
and an implementation presented by Martin Burtscher et al., highly tuned to deliver major performance levels
on the GPU Fermi architecture [7], as shown in Figure 8(a). Moreover, its implementation is very hard to port
to other architectures, and the used algorithm does not work on multiple devices.

Martin Burtscher’s version ran substantially faster than GAMA, especially for larger input set sizes. On
the other hand, the OpenMP version was considerably slower than GAMA, either when using the static or the
dynamic scheduler. While Martin Burtscher’s version was more than 12 times faster than GAMA with the
dynamic scheduler, GAMA was ≈4 times faster than the OpenMP version.
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Figure 8. (a) Execution time in milliseconds of the Barnes-Hut algorithm running in
GAMA, with both dynamic and static scheduling, along with the devised OpenMP
and Martin Burtscher’s implementations. (b) Efficiency η of GAMA, when using
the dynamic and the static schedulers.

The dynamic scheduler in GAMA achieved more than 100% of efficiency twice, for systems with 214 (η '
104%) and 216 (η ' 105%) particles, as shown in Figure 8(b). These results show that both the GAMA
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framework and the dynamic scheduler can properly take advantage of the resources on the platform when
running an irregular algorithm such as Barnes-Hut, in such a way that their cooperation is extremely effective.
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Figure 9. Scalability tests for 3 setup configurations: CPU-only, CPU+GPU and
CPU+2xGPU, for SAXPY, FFT and Barnes-Hut. SAXPY experiments ranging
from 218 to 228 elements in each vector. FFTs performed with 220 to 225 double
precision elements and the Barnes-Hut algorithm with 212 to 217 particles systems.

The results in Figure 9 show the scalability tests for SAXPY, FFT and Barnes-Hut algorithms with different
configurations (CPU-only, CPU+GPU and CPU+2xGPU). Figure 9(a) shows the SAXPY algorithm results:
the CPU+GPU and the CPU+2xGPU configurations are up to 1.3x and 1.17x faster than the CPU only
configuration, respectively. Despite having a slight increase in performance when adding a GPU, the algorithm
decreases in performance when adding a second GPU. These results can be justified by the fact that the SAXPY
algorithm is memory bound which can be troublesome on heterogeneous platforms since it is not possible to
hide memory transfer latencies between devices with computation. This not only limits scalability, but also
impairs performance.

Figure 9(b) shows the scalability results for the FFT algorithm. Adding a GPU in the FFT algorithm cripples
performance and a second GPU increases the problem. This happens both due to the sampling process and the
high tailorness of this particular FFT algorithm to the CPU-chip. Due to the performance modeling empirical
scheme, each GPU executes part of the workload, thus creating a performance bottleneck. This problem is
increased with every new GPU added to the system, sinte they all execute work parts.

Figure 9(c) shows the scalability results for the Barnes-Hut algorithm. The CPU+GPU configuration is
up to 2.8x (214 particles system) and the CPU+2xGPU is up to 1.5x (217 particles system) better than the
CPU-only configuration. Depending on the input data set size, it may be appropriate to use either one or two
GPUs. However, the scalability is reduced among the plotted input data set sizes, since the shared PCIExpress
channels become saturated at some point.

6 Conclusions

This paper presented a new dynamic scheduling model to simultaneously address regular and irregular applica-
tions on heterogeneous platforms. This scheduling scheme is based on an empirical performance model and on
dynamically assigning chunks of tasks according to the load of each device at each instant, on a similar fashion
to the HEFT policy. This model has been shown to be effective in addressing (ir)regular applications, in the
presented evaluation runs with the SAXPY, the FFT and the Barnes-Hut n-Body solver, two regular and one
irregular algorithms.

The results showed that the proposed scheduler distributed the workload according the best band of workload
static distributions, for the three case studies. The performance of the FFT was hurt when building the initial
performance model, running the sampling process that forces every CU on the system to run some tasks.
However, the performance impair that arises due to the sampling process has shown to be nearly negligible.

In the GAMA framework, GPUs have direct access to the host memory (pinned memory), using PCIExpress
channels. These channels have long latencies, that GAMA hides by overlapping data communication with
computation: the larger the input data set size, the higher the assigned workload to the GPU, as seen for both
the SAXPY and the Barnes-Hut algorithms.
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With the devised scheduler, GAMA did beat open-source libraries such as Lapack++ (CPU) and cuBLAS
(GPU) for SAXPY and FFTW (CPU) for the FFT. On the other hand, the performance of the proposed sched-
uler on a CPU+GPU configuration was substantially lower than cuFFT (GPU) and than Martin Burtscher’s
Barnes-Hut implementation (GPU). These latter implementations are faster, particularly due to the use of the
device main and scratch-pad memories, while GAMA uses exclusively host memory.

The efficiency of GAMA for both the SAXPY and the Barnes-Hut algorithms achieved higher levels with the
dynamic scheduler than with the best static solution. On the other hand, the best static workload distribution
of the FFT was better than the dynamic scheduler, achieving more than 90% of efficiency across the range of
tested input data set sizes. In the Barnes-Hut, the dynamic scheduler achieved ideal cases, by delivering more
than 100% of efficiency in two particular input data set sizes.

The scalability of the proposed scheduler was noticeable for one and two GPUs, depending on the work-
load size and algorithm. However, the tested case studies are not especially scalable, which motivates the
implementation of additional case studies in the future.

The usage of GPU accelerators by the dynamic scheduler was noticeable lower than expected, which happens
due to the current structure of GAMA. As GAMA allocates the algorithm data-structures on the host memory,
they are accessed by GPUs through long latency, shared PCIExpress channels, which impairs performance.
GAMA project is however planned to include a software cache mechanism, which enables the accelerators
memories to be used as data storage banks. As a result, this mechanism will very likely mitigate memory access
latencies, especially in algorithms with significant data reuse, thus increasing algorithms performance.

Next planned work to improve this scheduler includes an implementation and assessment of the stealing
and/or donation methods, which may help to mitigate or even correct eventual workload imbalance. This may
especially arise from dynamic task spawn, a feature GAMA is expected to include soon, and from irregular
applications in general.
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