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Castelo Branco - Portugal
eduardo@est.ipcb.pt

3 IBB - Institute for Biotechnology and Bioengineering
Center of Biological Engineering - University of Minho
Campus de Gualtar, 4710-057 Braga - Portugal
irocha@deb.uminho.pt

Summary. Artificial Neural Networks (ANNs) have shown to be powerful tools for
solving several problems which, due to their complexity, are extremely difficult to un-
ravel with other methods. Their capabilities of massive parallel processing and learning
from the environment make these structures ideal for prediction of nonlinear events. In
this work, a set of computational tools are proposed, allowing researchers in Biotech-
nology to use ANNs for the modelling of fed-batch fermentation processes. The main
task is to predict the values of kinetics parameters from the values of a set of state vari-
ables. The tools were validated with two case studies, showing the main functionalities
of the application.
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1 Introduction

The productivity of the manufacturing processes is of paramount concern of any
company that wishes to survive in the market. The strong competition leads
to the search for new strategies and to the investment in alternatives to tra-
ditional methods. Under this scenario, the use of fermentation techniques is
steadily growing as a solution to achieve the production of targets with high
economic value such as recombinant proteins, antibiotics and amino-acids. Also,
they have been replacing traditional processes in areas such as the production
of bulk chemicals, given their low energy requirements and environmental costs.
However, these processes are typically very complex, involving different transport
phenomena, microbial components and biochemical reactions. The nonlinear be-
havior and time-varying properties limits the application of traditional control
and optimization techniques to bioreactors.
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A fermentation process can be described as any process that produces a spe-
cific product through the mass culture of a microorganism [13]. The yield, in
this case, means increasing the cell reproduction rates, or the production of
compounds from these cells, per unit of time. The factors influencing a fermen-
tation process range from the physical and chemical conditions of the medium
(temperature, pH, etc.), sources of energy (glucose, oxygen, light) and nutri-
ents (nitrogen) supplied to the culture. Traditionally, empirical methods based
on Monod equations have been adopted for the optimisation of these processes.
Each strain of a microorganism has its own specificities and the way it is grown
also gives rise to distinct culture behaviour.

The modelling task is essential to achieve the optimization of these processes,
since it provides simulated data that are often difficult to measure directly from
the culture. One important example is the kinetic behaviour, which depends on
factors involving cellular catalysts, intracellular phenomena and characteristics
of the population [9], among other complex aspects which makes its collection
impossible to be carried out in real-time. Usually, the kinetics is estimated by
the measurement of other variables of the process, which in most cases can only
be obtained at the end of the experiments. Work in this field has led to the
development of tools that attempt to address problems specific to a particular
culture, with limited generalization capabilities. Another major problem is the
complexity of the models, which use mathematical computations that require
lots of processing resources [15, 16].

This work aims to demonstrate that Artificial Neural Networks (ANNs) are
adequate to this task, due to their features of massive parallel computing and
representation, ability to learn, adaptability and generalization [4]. ANNs, and in
particular Multilayer Perceptrons (MLPs) used in this case, are mainly charac-
terized by the topology of connections between neurons, the training algorithm
and the activation function [3, 2]. The choice of which ANN will be used to
represent a process depends on the characteristics of the problem in question
[7]. There are several methods to reach the desired solution, that range from ex-
haustive search, to local optimization techniques and also the use of Evolutionary
Algorithms [5, 14].

The main contribution of this work is the development of computational tools
that allow a Biotechnology researcher, with very limited programming skills,
to be able to model fermentation processes using ANNs. These will be used to
predict the values of kinetic parameters from state variables. A number of tools
will be provided to create ANN models from data, to evaluate a set of distinct
ANN topologies and also to create artificial data to test ANN models.

2 Modelling Fermentation Processes

A fermentation process can be modelled by a set of Ordinary Differential Equa-
tions (ODE), which give the values of state variables at a particular instant.
In these equations, there are a number of kinetic parameters to be determined,
which is often a quite complex task. Several authors suggested that the best
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Fig. 1. Grey Box Model structure

approach is to use a hybrid model, where the contribution of various sources of
information is merged for the construction of a single model [9, 6, 11, 17]. This
approach was adopted as a basis to this work.

The kinetic component is, therefore, modelled using mechanisms that do not
require an a priori knowledge of the process. These mechanisms are known as
black box models, since only the inputs and the outputs of the system are known,
while its internal processing is hidden since it is unknown or too complex. The
data used for the construction of the kinetic component of the model can be
obtained from real experiments. On the other hand, the structure of the ODEs
is typically obtained from literature or biochemical knowledge. This component
relies on mechanistic models, which are visible and can be interpreted (white
box models). The merging of the two models in a single model leads to a hybrid
structure, known as grey box models (Figure 1).

3 Description of the Computational Tools

3.1 Methodology

The software tools were all implemented using Java and an object-oriented ap-
proach. The main concerns in development were the modularity to allow code
re-usage and the clear separation of the user interfaces and core functionality
implementation. The tools are available at http://darwin.di.uminho.pt/bionn.

The computational tools developed in this work contemplate the white box
and the grey box modelling strategies. The value of the state variables is always
given by ODEs and the numerical simulation is performed using ODEToJava, a
package of ordinary differential equation solvers [1]. The kinetic behavior can be
modelled by two different strategies: heuristic approaches (white box) defined by
some expert or taken from literature or the use of ANNs (black box approach).
In this last case, a grey box modelling strategy is followed. The tools have been
divided into two main groups: the ones related with white box models and the
latter related to the grey box models.
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3.2 White Box Interface

The White Box interface (Figure 2) includes a number of functionalities in the
manipulation and simulation of white box models. In this area, it is possible to
produce simulated data from white box heuristic models under different scenar-
ios. The application considers a list of predefined fed-batch processes and models.
It is possible to create new processes through the development of a Java source
file that defines its behaviour, that is introduced and compiled at run-time. The
simulated data generated in this area can be used to train and test ANNs in
the grey box interfaces (next section), without the need to collect data from real
cultures. The following list of functionalities is available:

Fig. 2. Functionalities included in the White Box interface

Feeding Profiles Generation. The feeding profiles, i.e. the amount of substrate to
provide to the culture at each time, represent the inputs of the simulation.
Through this panel multiple profiles can be created with constant, linear,
random, saw wave or sinus functions. Using different feeds to create data
allows a broader spectrum of training examples.

White Box Process Simulation. This simulation uses heuristic models for gen-
erating the kinetics coefficients, which are then introduced into the ODE
models. For each feeding profile, a distinct simulation can be conducted re-
sulting in the values for state variables and kinetic parameters over time.

Mixing Examples. A number of files with simulations can be handled, and used
to create new files through composition, cutting, interpolation or sampling
data. These can create more comprehensive sets of examples or decrease the
size of some collections without losing its generality.

Introducing Noise. The introduction of noise on data serves to create data sets
that increase the generalization abilities of the ANN model. This can be
useful when the set of available data is not rich enough to provide a good
training process for the ANN.
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White Box Simulation Graphs. The graphs allow for a better visualization of
the data generated by the mathematical model. The preview is done in two
separate graphs for the state variables and kinetics coefficients. It also allows
visual comparisons between results of different simulations.

3.3 Grey Box Interface

The tools related to the grey box models include the training and evaluation of
ANNs from experimental or simulated data and also the calculation of the model
kinetic variables to integrate in the overall simulation (Figure 3). The following
list of functionalities is available in this area:

Fig. 3. Functionalities included in the Grey Box interface

Evaluate ANNs. This tool can assess various configurations of ANNs, varying
the input and output variables, the number of nodes in the hidden layer
(all ANNs are MLPs with one hidden layer, completely connected), training
algorithm and the number of training epochs. Each model is evaluated by its
training error and generalization error in a validation set. It is thus possible to
determine which parameter combinations will lead to more accurate models.

ANN training. An ANN with a given configuration (typically the one that re-
sulted from the above study) can be trained. It then can be used to predict
the kinetic variables, integrated within the grey box model.

Grey Box Process Simulation. Enables the simulation of the fermentation pro-
cess. Trained ANNs calculate the kinetic coefficients from state variables and
ODEs simulate the mass-balance equations that determine the evolution of
the values of the state variables.

ANN Evaluation Graphs. Show the errors from the evaluation of ANN config-
urations. They provide information on the settings, data and variables that
were used in the training. The graphs allow a better interpretation of the
error curves (both in training and validation sets).
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Grey Box Simulation Graphs. Show data resulting from grey box model simula-
tions. They show the evolution for each state variable and kinetic coefficient.
It is also possible to compare two simulations and thus examine, for exam-
ple, the difference between the curves obtained in the simulation model with
grey box and the ones obtained with white box models.

4 Case Studies

4.1 PR Process

This process represents a Saccharomyces cerevisiae culture and was studied by
Park and Ramirez (PR) [10]. The model equations (ODEs) are the following:

dx1

dt
=

4.75A(x2 − x1)
0.12 + A

− ux1

x5
(1)

dx2

dt
=

x3x4e
−5x4

0.1 + x4
− ux2

x5
(2)

dx3

dt
= (A − u

x5
)x3 (3)

dx4

dt
= −7.3Ax3 − u(x4 − 20)

x5
(4)

dx5

dt
= u (5)

where x1, x2, x3 and x4 are the concentrations of secreted protein (units/L), total
protein (units/l), cells (g/l) and substrate (g/l) respectively; x5 is the fermenter’s
volume (l) and u the feed rate (l/h). The specific growth A (h−1) is the only
kinetic parameter and follows substrate inhibition kinetics:

A =
21.87x4

(x4 + 0.4)(x4 + 62.5)
(6)

4.2 Ecoli Process

This case study consists of an Escherichia coli culture. The kinetic behaviour
is complex, presenting various coefficients and kinetic points of discontinuity
which make this model a real challenge for the ANNs. The model is given by the
following equations [12]:

dX

dt
= (μ1 + μ2 + μ3)X − DX (7)

dS

dt
= qsX +

Fin,SSin

W
− DS (8)

dA

dt
= (k3μ2 − k4μ3)X − DA (9)

dO

dt
= (−k5μ1 − k6μ2 − k7μ3)X + OTR − DO (10)
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dC

dt
= (k8μ1 + k9μ2 + k10μ3)X − CTR − DC (11)

dW

dt
� Fin,S (12)

being D the dilution rate, Fin,S the substrate feeding rate (in kg/h), W the
fermentation weight (in kg), OTR the oxygen transfer rate and CTR the carbon
dioxide transfer rate.

The kinetic behavior is expressed in four variables: the rates μ1 to μ3 and qs.
A set of heuristic rules to calculate these values from state variables was defined
in [12] and it is not shown here given its complexity. However, since it involves
conditional branches it is discontinuous and also nonlinear.

4.3 Methodology

Using the previous white box models, a set of simulations was conducted with
distinct feeding profiles. These were then be used to perform ANN evaluations
and to test grey box models. To achieve this objective, it was necessary to follow a
structured methodology to withdraw the best use of the case study. Overall, this
approach has been structured into five steps: model selection; generation and
selection of cases for training, selection of architecture and parameters; ANN
training and simulation of the fermentation process.

5 Results

5.1 PR

For this case study, 22 distinct feed profiles were used: 4 random, 4 linear and
3 constants profiles and also included 11 optimum feed profiles (obtained by
optimization with Evolutionary Algorithms [8]). All feedings have 31 values,
which were linearly interpolated. Each of the profiles was used to generate a
data file and all files were merged. Afterwards, the final training data set was
obtained by sampling only 150 examples. This set of examples was used to test
different ANN configurations by using 10-fold cross validation.

The first set of tests was conducted using only one state variable (1 ANN
input). Then, other tests were performed in which all except one state variable
were used. The results were compared, taking as a basis for comparison the
case in which all state variables available were used as inputs. The comparative
results showed that the best configuration would be the use of only the variable
X4, a result that was expected given the expression used to compute A.

Regarding the number of hidden nodes, it was shown that the use of one
intermediate node would already be viable to predict the kinetics accurately.
However, 6 hidden nodes provided better generalization errors. So, an ANN
with this configuration has been trained and used to simulate the process. In
Figure 4 the results of the simulation to the process with this ANN are shown.
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Fig. 4. Top: Simulation of the process PR (White Box). Bottom: Simulation of the
process model with grey box model.

5.2 Ecoli

For this case study, 21 different feed profiles were used: 5 random, 5 linear, 4
constants and 7 optimum profiles. All feedings contained 26 values and each of
the profiles was used to generate the data files. The method of selection of the
state variables that influence the kinetic coefficients of the process was similar to
the one used for PR. In this case, the conclusion was that the best configuration
would be the use of variables OTR, CTR, X, A and F. This configuration was
used to simulate the process using ANNs to compute the kinetic parameters,
obtaining the result shown in Figure 5:

Fig. 5. Top: Simulation of the process Ecoli (White Box). Bottom: Simulation of the
process with grey box model.
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6 Conclusions and Further Work

A set of computational tools were developed to aid in the modelling of fed-batch
fermentation processes. These can be used to handle data from real experiments
or using simulated data. It is thus possible to shape a process without the need
to know the mathematical description of its mechanism, since learning is made
directly from examples created from experimental data, showing the potential
of the application of ANNs in this type of problems.

It is possible to introduce new fermentation processes at run-time, enabling
the application for a multitude of cases. It not only seeks to provide a solution to
a specific case, but serves as a platform for a layman in ANNs to evaluate and use
multiple models for each culture. This is also possible since user interfaces are
implemented in a simple and intuitive way. The modularity of the application
makes it scalable; the main modules can easily be used for future work. The
core implementation of the functionalities is detached from the user interface, to
make code understanding and re-use easier.

The implementation of several graphs allows making visual comparisons be-
tween results, providing easier analysis of the factors influencing the course of
the process. Thus, it is possible to identify potential optimizations that can be
made, such as to change the feed profile. These optimizations can be tested
within the tool, thereby avoiding some real experiments that brings, necessarily,
increased costs for research.

In the future, a major aim is to improve the capabilities of the application with
new tools. A major concern is to create an interface to make the introduction of
new processes easier, without having to write Java code.
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