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Abstract. In this study, we propose an extended version of the Hooke and Jeeves algorithm that uses a simple heuristic to
handle integer and/or binary variables and a filter set methodology to handle constraints. This proposal is integrated into a
multistart method as a local solver and it is repeatedly called in order to compute different optimal solutions. Then, the best
of all stored optimal solutions is selected as the global optimum. The performance of the new method is tested on benchmark
problems. Its effectiveness is emphasized by a comparison with other well-known stochastic solvers.
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INTRODUCTION

In this paper, we consider solving the challenging nonlinear constrained mixed variable optimization (MVO) problem
containing both continuous and integer decision variables

min f (x,y)
subject to gi(x,y)≤ 0, i = 1, . . . ,m

lx ≤ x≤ ux, ly ≤ y≤ uy

(1)

where x∈Rnx , y∈Zny (in particular y∈ {0,1}ny ), nx is the number of continuous variables, ny is the number of discrete
variables (integer or binary), lx and ly are the vectors of the lower bounds for the continuous and discrete variables
respectively, and ux and uy are the vectors of the corresponding upper bounds. We will use n to represent the total
number of variables of the problem. There are two types of approaches to solve this kind of problem: deterministic and
stochastic methods which include most of the well-known metaheuristics. The most common deterministic approaches
for solving MVO problems are branch and bound techniques, outer approximation, general Benders decomposition
and extended cutting plane methods. The main advantage of these approaches is that they may guarantee to find the
global optimum, although they also require large amounts of computational time. Deterministic methods suffer from
the problem of dimensionality. In general, the complexity rises exponentially with the dimension of the problem. On
the other hand, stochastic approaches for global optimality are common and easy to implement. Their convergence
studies usually prove that the global optimum will be obtained in infinite time with probability one. One of the most
widely used stochastic algorithms is the so called multistart. It is a popular algorithm due to its simplicity and wide
applications. Genetic and evolutionary algorithms for solving problems like (1) are presented in [1, 2]. Known swarm
intelligence based optimization algorithms, such as ant colony optimization, have been used to solve MVO problems
[3]. Heuristics are also common. For example, in [4], an effective exhaustive enumeration method where only a portion
of all candidate suboptimal solutions realized during the search are examined and poor points are discarded in favour
of more promising ones, is proposed.

Recent derivative-free methods for locating local minimizers of MVO problems are presented in [5, 6]. In the
first paper, the generalized pattern search algorithm for linearly constrained (continuous) optimization was extended
to mixed variable problems and the constraints are treated by the extreme barrier approach. The second performs a
minimization of a penalty function distributed along all the variables. Continuous and discrete search procedures, as
well as a penalty parameter updating rule are the main parts of the presented method.
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In this paper, to globally solve MVO problems, a multistart method that uses an extended Hooke and Jeeves (HJ)
coupled with a filter based method as a local search procedure, is presented. Although the concepts of exploratory and
pattern moves of the original HJ method [7, 8] are used, extensions to handle mixed integer variables and inequality
constraints throughout the filter set methodology [9], are included.

In the next section, we present the multistart HJ filter based method for solving MVO problems like (1) and in the
last two sections we show the numerical results and conclude the paper.

MULTISTART HOOKE AND JEEVES FILTER BASED METHOD

Multistart methods are very popular when globally optimal solutions are mandatory. Using a classical nonlinear local
solver, the basic idea is to repeatedly run the local solver starting from randomly selected points, reaching different
optimal solutions. Local and global solutions found during the search process are stored and the best is selected as the
proposed globally optimal solution. A multistart method has a limited guarantee that it will converge in probability
to a global optimal solution, i.e., the probability that the globally optimal solution will be found tends to one as the
number of runs of the local solver increases.

The herein implemented multistart HJ filter algorithm uses uniformly distributed starting points within the bounds
[lx,ux] and [ly,uy] to find multiple minima, including the global minimum. The numbers randomly generated inside
[ly,uy] are rounded to the nearest integer.

The local solver is a derivative-free pattern search method that is prepared to handle inequality constraints by means
of a filter methodology [1, 9]. The main steps of each iteration of the multistart algorithm are:

Step 1 Generate a starting point (x,y);
Step 2 Produce a minimizer (x+,y+), running a local solver L starting from (x,y);
Step 3 Check stopping conditions.

The stopping conditions aim to find a solution within an error of εtol or an approximation when the number of
function evaluations reaches N f emax.

The local solver L herein proposed is a Hooke and Jeeves filter (HJ-Filter) based algorithm. The extensions consider
two crucial approaches. One is related with the definition of the pattern in the HJ search procedure to take care of
continuous as well as discrete variables. The other uses the filter methodology to handle the inequality constraints.

The local search procedure is an iterative method that is applied to a sampled point (x,y) and provides a trial point
(x+,y+) that is an approximate minimizer of the problem (1).

Using a filter methodology [9], the basic idea is to interpret (1) as a bi-objective optimization problem aiming to
minimize both the objective function f (x,y) and the nonnegative constraint violation function θ(x,y) = ‖g(x,y)+‖2

2,
where v+ = max{0,v}. The filter technique incorporates the concept of nondominance, borrowed from the field of
multi-objective optimization, to build a filter set that is able to accept trial approximations if they improve the constraint
violation or objective function value. A filter F is a finite set of points (x,y), corresponding to pairs (θ(x,y), f (x,y)),
none of which is dominated by any of the others. A point (x,y) is said to dominate a point (x′,y′) if and only if
θ(x,y)≤ θ(x′,y′) and f (x,y)≤ f (x′,y′).

A rough outline of the HJ-Filter method is the following. At the beginning of the iterative process, the filter is
initialized to F = {(θ , f ) : θ ≥ θmax}, where θmax > 0 is an upper bound on the acceptable constraint violation.

The search begins with a central point, the current approximation (x̄, ȳ)← (x,y), and defines a sequence of at least n
trial approximations along, first the positive and then the negative, of the unit coordinate vectors ei ∈Rnx and e′i ∈Rny ,
with a fixed step size αx ∈ (0,1], as follows:

x+ = x̄±αxDei and y+ = ȳ± e′i, i = 1, . . . ,n, (2)

where D ∈ Rnx×nx is a weighting diagonal matrix. First, when (x+,y+) falls outside [L,U ], where L = (lx, ly)T and
U = (ux,uy)

T , the point is projected onto the search space [L,U ]. Then, each time a trial point is found that improves
over (x̄, ȳ), reducing θ or f by a certain amount (see (3) below), and is acceptable by the filter, the (x+,y+) is accepted
and replaces (x̄, ȳ).

When the search along the n coordinate vectors terminates, the most nearly feasible point (it may be a feasible one)
among the accepted trial points is selected. Let that point be denoted by (xin f ,yin f ). If (xin f ,yin f ) 6= (x,y), the search is
successful and the vector (xin f ,yin f )− (x,y) defines a promising direction, known as pattern direction; otherwise the
search is considered unsuccessful, and a restoration phase is invoked.

When a successful search occurs, a move along the pattern direction is carried out. The sequence of searches along
the n coordinate vectors, as shown in (2), are conducted but with (xin f ,yin f )+((xin f ,yin f )−(x,y)) substituted for (x̄, ȳ).



At the end, the most nearly feasible point among the generated trials is selected. When a new acceptable (xin f ,yin f ) is
found then it is accepted as the new iterate, replaces (x̄, ȳ), and the pattern move is repeated. If, on the other hand, all
possible trial approximations (x+,y+) are dominated by the current filter, then all are rejected, and the search returns
to the previous selected iterate.

To avoid the acceptance of a point (x+,y+) in (2), or the corresponding pair (θ(x+,y+), f (x+,y+)), that is arbitrary
close to the boundary of F , the trial (x+,y+) is considered to improve over (x̄, ȳ) if one of the conditions

θ(x+,y+)< (1− γθ ) θ(x̄, ȳ) or f (x+,y+)≤
(
1− γ f

)
f (x̄, ȳ) (3)

holds, for fixed constants γθ ,γ f ∈ (0,1). We note that if a sequence of trial points is feasible, the condition (3)
guarantees that the trial approximation (x+,y+) must satisfy the second condition in order to be acceptable. This
way the optimal solution is guaranteed. We also note that whenever a point is acceptable, the point is added to the filter
F , and all dominated points are removed from the filter.

When it is not possible to find a non-dominated trial approximation, a restoration phase is invoked. In this phase,
the most nearly feasible point in the filter, (xin f

F ,yin f
F ), is recuperated and the searches along the n coordinate vectors,

as shown in (2), is repeated, but with (xin f
F ,yin f

F ) substituted for (x̄, ȳ). If a non-dominated trial approximation is found,
this point becomes the central point of the next iteration. Otherwise, the iteration is unsuccessful, the search returns
back to the current (x̄, ȳ), the step size αx is reduced, and a new search, as shown in (2), is repeated about (x̄, ȳ).
When αx falls below αmin, a small positive tolerance, the search terminates since first-order convergence has been
attained [8].

NUMERICAL RESULTS

This section aims to analyze the performance of the presented extended HJ-Filter when integrated as the local solver
into the Multistart function from MATLAB™ Optimization Toolbox, to solve a set of 12 MVO benchmark
problems ( f1 – f12), fully described in the Appendix of the paper [1]. From here now, this version will be denoted
by M+HJ-Filter. We also present a comparison with the filter-based genetic algorithm (FGA) in [1] and the hybridized
ant colony algorithm with a local search (Acomi2) in [3]. The parameters of the M+HJ-Filter algorithm are set after
an empirical study as follows. The number of randomly generated starting points in the multistart is 10 and the
parameters for the stopping conditions are εtol = 10−3 and N f emax = 10000. In the local solver, we set γθ = γ f = 10−8,
αmin = 10−4 and θmax = 102 max{1,θ(x̄, ȳ)}. A solution is considered feasible when θ(x,y)≤ 10−8.

Each problem was solved 30 times and the average of the best results are reported. Table 1 lists the known global
optimal solution, ‘ f ∗’, the average of the best objective function values (over the 30 runs), ‘ favg’, the average number
of function evaluations, ‘N f eavg’, and the success rate, ‘SR’, in %. For each run, the best objective function value is
identified as the feasible point that has the least function value among all the located local and global optimizers. In
the Multistart function, a new optimizer is identified by checking its objective function value and the vector itself
with those of previously located optimal solutions. A tolerance of order 10−6 is used in the relative difference of f
and of (x,y). Furthermore, a run is considered to be successful if the best obtained solution has an error of εtol relative
to f ∗. For a fair comparison, εtol is set to 10−4 when a comparison is made with [1, 3] on the problems f3, f6, f7,
f9, f10 and f11. The character ‘–’ in the table means that the required information is not available in the cited paper.
Bold values show the best obtained results by M+HJ-Filter, FGA and Acomi2. Compared with FGA and Acomi2,
the presented M+HJ-Filter algorithm for MVO problems is both effective and efficient for solving the reported test
problems.

CONCLUSIONS

We presented a multistart approach that uses an extended version of the Hooke and Jeeves, coupled with a filter
based method as a local solver for solving MVO problems. The proposed HJ-Filter algorithm relies on a simple
heuristic to be able to handle integer and/or binary variables, and the inequality constraints are handled by the popular
filter set methodology. The integration of the HJ-Filter solver into the Multistart function turned out to be very
effective. Furthermore, neither analytic nor numerical derivatives are required in the proposal. The new algorithm
has been tested with benchmark problems and compared with two stochastic methods, one is a recent filter-based
genetic algorithm and the other relies on the ant colony swarm approach. From the comparison, we conclude that the



TABLE 1. Comparison of M+HJ-Filter with FGA [1] and Acomi2 [3]

M+HJ-Filter FGA Acomi2

Prob. nx ny f ∗ favg N f eavg SR favg N f eavg SR favg N f eavg SR

f1 1 1 2.00000 2.0000 391 100 2.0005 440 100 – – –
f2 1 1 2.124 2.1245 1150 100 2.1245 1769 100 – – –
f3 2 1 1.07654 1.0767 3855 100 1.0767 8074 100 1.1459 4250 60
f4 2 1 99.24521 99.2401 156 100 99.2401 1225 100 – – –
f5 3 4 3.55746 3.5580 4517 100 3.8956 10172 42 – – –
f6 3 4 4.5796 4.5797 5443 97 5.1322 8125 53.3 4.5796 731 100
f7 1 1 -17.0000 -16.9997 1214 100 -17.0000 999 100 -17.0000 307 100
f8 3 2 -32217.4 -32217.4 180 100 -32217 6053 100 – – –
f9 2 3 7.66718 7.6847 2492 100 7.7406 4720 80 7.6672 363 100
f10 1 1 -2.444 -2.4444 185 100 -2.4444 230 100 -2.4444 270 100
f11 1 2 3.2361 3.2362 1488 100 3.4208 5616 50 23.475 1180 0
f12 1 1 1.125 1.1250 286 100 1.1256 428 100 – – –

herein presented multistart HJ-Filter method behaves rather well and performs better than the other two in comparison.
Future developments include some parameter testing and a convergence study of the algorithm when solving real world
applications, namely those concerned with water or transport network design.
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