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a b s t r a c t

The achievement of a balanced flow is one of the major tasks encompassed in the design of profile extru-

sion dies [1]. For this purpose numerical modeling codes may be a very useful aid. The research team

involved in this work has been working during the last decade on the development of numerical tools

to aid the conception of extrusion dies [1,2]. The design code developed so far carries out the automatic

search of a final geometry via an optimization routine coupled with geometry and mesh generators and a

3D computational fluid dynamics (CFD) code based on the finite volume method (FVM). This CFD code is

able to model the flow of polymer melts in confined channels, but is inadequate to deal with complex

geometries, since it is limited to structured meshes. This work describes the recent efforts made to

enlarge the scope of the design procedures, that are currently focused on the development of a modeling

code able to deal with unstructured meshes. This code solves the continuity and linear momentum con-

servation equations, with generalized Newtonian fluids, using a SIMPLE based approach. This paper

describes the developed numerical modelling code and its employment in a case study that involves

the design of a medical catheter extrusion die, focused on the search of a balanced flow distribution.

The results obtained show that the developed numerical code is able to deal with complex geometrical

problems, being thus a valuable tool to aid the design of extrusion dies to produce complex profiles.

Ó 2013 Elsevier B.V. All rights reserved.

1. Introduction

Polymer extrusion is a processing technique widely used in
thermoplastic industry to produce parts for medical, building,
automotive, electric and electronic applications, among others,
due to its ability to generate almost any cross-section geometry
profiles.

The design of a new product and corresponding extrusion die,
must take into account several issues namely, achievement of bal-
anced flow [2–4], avoidance of rheological defects, maximization of
the production rate [5–7] and maintenance, or increase, of the
product quality [1]. Profiles like window frames and catheters,
are some of the applications that involve the most complex
cross-section geometries produced by extrusion. Designing extru-
sion dies for the production of such geometries, requires a deep
knowledge, which is usually based on experimental trial-and-error
approaches, involving, therefore, the use of huge amounts of time
and material resources [8,9]. For these reasons, the extrusion die
design process can become too difficult to execute, or its cost can
increase up to prohibitive levels, when complex geometry thermo-
plastic profiles are concerned [10,11]. To assist in the design of

extrusion dies, there are some commercially available softwares,
e.g., POLYFLOW [12], Dieflow [13], HyperXtrude [14], FLOW 2000
[15] and PROFILECAD [16]; some of them are even able to solve
the so called inverse problem [17–19], i.e., to compute the
flow-channel cross-section required to produce a specific profile.
Despite all the available tools, the main decisions are left to the
designer [20], requiring, therefore, human intervention and knowl-
edge. In order to automatize the extrusion die design process, some
numerical codes have been developed, aiming to transfer much of
those decisions to the code, e.g., the work of Ettinger [21], where
the main parameters and optimization strategies required to
automatize the design of profile extrusion dies are identified. How-
ever, this is restricted to 2D approaches, which limits its applicabil-
ity. According to the authors knowledge, this methodology had not
been further developed. Other advances on automatic optimization
of profile extrusion dies have been made by Nóbrega et al. [3,5,22]
using several strategies, namely those encompassing: changes per-
formed in the flow channel parallel zone cross-section or die land,
or those involving modifications performed in upstream regions.
Despite of the promising results achieved, the numerical code used
for this purpose is limited to simple geometry problems, inherent
to the use of structured meshes. In order to extend this work to
complex geometries, the use of unstructured meshes [23] is
mandatory.
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The Finite Volume Method (FVM) [24] is a discretization meth-
od that can accommodate any type of grid, being, therefore, suit-
able to deal with complex geometries. The grid defines only the
control volume (CV) boundaries and need not to be related to a
coordinate system. The method is conservative by construction,
as long as surface integrals (which represent convective and dif-
fusive fluxes) are the same for the CVs sharing a common face.
The FVM approach is perhaps the simplest to understand and to
implement, since all terms that need to be approximated have
physical meaning, fact that justifies its popularity among engi-
neers. In addition to the discretization method, one has to select
the type of grid that will discretize the problem domain. Finite
Volume Method can be used with structured, block-structured
or unstructured grids. The disadvantages of structured grids are
its lack of adequacy for complex solution domains and the low
control over the distribution of the grid points, in locations where
the grid has to be refined for accuracy reasons [24]. The disadvan-
tage of block-structured grids is that the interfaces of adjacent
blocks must be treated in a fully conservative manner, which, in
some cases, involve additional iterative procedures to unify the
boundary conditions [24]. For very complex geometries unstruc-
tured grids are more flexible than structured grids or block-struc-
tured ones [25]. The elements, or control volumes, may have any
shape and there is no restriction concerning the number of adja-
cent cells meeting at a point (2D) or along a line (3D). In practice,
grids made of triangles or quadrilaterals in 2D, and tetrahedrons
or hexahedrons in 3D, are most often used, and combinations of
different type of elements can be made in the same grid. Such
grids can be automatically generated and, if desired, can be
orthogonal, or locally refined. The disadvantage of unstructured
grids is the irregularity of data structure, that can increase the
computation time required: since the matrix of algebraic equa-
tions system is irregular, the solvers are usually slower than those
corresponding to regular ones. On the other hand, computer
codes for unstructured grids are more flexible. They need not to
be changed when the grid is locally refined, or when elements
of different shapes are used. The most attractive feature of the
unstructured meshes is that they allow the calculation of flows
in or around geometrical features of arbitrary complexity without
requiring a long time spent on mesh generation and mapping. In
unstructured meshes, two different ways of defining the control
volumes are possible [24–26]: in the cell-centred method the un-
knowns are placed at the centroid of the control volume; in the
vertex-centred method they are placed on the vertices of the grid,
followed by a process known as median-dual tessellation, where-
by sub-volumes join centroids of the elements and midpoints of
the edges. The sub-volume surrounding a node forms the control
volume for discretization. Both cell-centred and vertex-centred
methods are used in practice, but cell-centred method is simpler
to understand and to implement, and, since a control volume al-
ways has more vertices than centroids, it has slightly lower stor-
age requirements than the vertex-centred method.

The objective of this work is to describe a numerical code able
to solve flow problems involving complex geometries, since it uses
unstructured meshes, to verify it and to illustrate its use on the de-
sign of a complex extrusion die required for the production of a
medical catheter. Here, the optimization of the design was done
manually, i.e., it required the user intervention in the generation
of the sucessive trials. However, the goal in the near future is to
automatize this process [20,21,27].

In the first part of this paper (Sections 2 and 3), the conservation
equations and its discretization are presented. In Section 4 the
implemented numerical code is verified. In Section 5 the code is
used to optimize the flow balance of an extrusion die for the pro-
duction of a medical catheter comprising five lumens. To reach
an acceptable flow distribution at the die exit, several geometry

corrections were made. Finally, in Section 6, the main conclusions
of the work are drawn.

2. Governing equations

The Navier Stokes equations were used to model the flow with
an incompressible and generalized Newtonian fluid under isother-
mal conditions. Taking this into account, the governing equations
are the mass conservation:

@ui

@xi
¼ 0 ð1Þ

and the ith momentum conservation equation:
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where ui is the ith velocity component, q the density, p the pressure
and sij is the deviatoric stress tensor, which for generalized Newto-
nian fluid is given by:
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where the shear rate, _c, is a function of the second invariant of the
rate of deformation tensor:
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A Bird-Carreau constitutive equation was employed to model
the shear viscosity dependence on shear rate:

gð _cÞ ¼ g0 þ
g0 ÿ g1

ð1þ ðk _cÞ2Þ
1ÿn
2

ð6Þ

being g0 the zero shear-rate viscosity, g1 the viscosity at very high
shear rates, k a characteristic time and n the power-law index.

Due to the explicit nature of the constitutive equation (Eq. (3))
it can be directly inserted in the momentum conservation equa-
tions, giving:
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which comprises (from left to right) the following terms: unsteady,
advective, diffusive and pressure source.

3. The numerical calculation procedure

The governing equations were discretized following the FVM for
unstructured meshes, which starts by integration on each control
volume (X) and time step (Dt). In this way, the integral form of
the equation can be written as a sum of integrals of each term,
which is described hereafter.

For the momentum conservation equation (Eq. (7)) the unstea-
dy term is considered constant inside the control volume, and its
integration over the time interval is discretized using a first order
(backward) differencing scheme [25]. This simple approach was
employed since the problems solved are steady and time evolution
is used just for relaxation purposes.

To avoid the decoupling between pressure and velocity fields,
the normal component of velocity at the cell faces, required for
the advective term, is computed using the Rhie and Chow [25]
interpolation scheme, whereas scalar velocity is computed using
a Total Variation Diminishing (TVD) interpolation scheme [25].
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The gradients required for the advective, diffusive and pressure
source terms were computed using the least square method and
the values from the previous time step ([25]).

For the momentum equation four boundary conditions were
considered:

– inlet, with imposed velocity ui = ui,inlet;
– outlet, null normal gradients @ui

@xi
ni ¼ 0;

– wall, with null velocity ui,wall = 0i and
– symmetry, ui,wallni,wall = 0.

As mentioned before, to couple velocity and pressure fields, the
normal velocities of the inner faces are computed using a Rhie and
Chow [25] based interpolation scheme:
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2
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where the gradient @p
@xj

values are estimated with least squares meth-
od, DVP is the P cell volume, DVnb is the neighbor’s cell volume, aP
and anb are the diagonal coefficients of cells P and nb of the momen-
tum conservation equation [25].

The mass conservation equation (Eq. (1)) is used to obtain a
pressure correction equation for each control volume. For this pur-
pose, the equation is integrated on the control volume, then, the
Gauss’ Divergence Theorem is applied and the velocity is written
as a sum of an estimated (u⁄) and correction (u0) velocities:

X

f
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¼ 0 ð9Þ

Computing the difference between the correct face velocity val-
ues, obtained with Eq. (8), and those obtained with a similar one to
compute the face estimated values u�

j;fnj;f , an expression for the
normal velocity face correction is obtained:
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Substituting Eq. (10) in Eq. (9) a equation for the pressure field
correction is obtained, for each cell:
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where the right hand side corresponds to the mass imbalance of
each cell.

The pressure field correction, together with Eq. (10), allow to
correct the normal face velocities. For the cell velocities a correc-
tion expression can be obtained by subtracting the momentum
conservation equations for the estimated and correct fields, which
gives:

X

nb

anbu
0
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0
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@p0

@xi
DVP ð12Þ

As in the main approach of SIMPLE [25], if the neighbors contri-
butions are neglected, an explicit expression to cell velocity correc-
tion is obtained

u0
i;P ¼ ÿ

DVP

aP

@p0

@xi
ð13Þ

where the pressure correction gradient is computed using a least
squares method [25].

The full calculation procedure is illustrated in the flowchart de-
picted in Fig. 1.

The process starts with estimated values for velocity and pres-
sure (u0 and p0). Then, the momentum conservation equations are
solved. Subsequently, the boundary velocities at the outlet are
computed using the appropriate boundary condition, and then cor-
rected in order to equalize the outlet flow to the inlet flow. After
updating the velocities on boundaries, the pressure correction sys-
tem is built and solved, enabling to perform the correction of pres-
sures and velocities. To avoid divergence, the pressures on the cells
are corrected with a relaxation factor [25] a (it is common to use a
value of 0.1), through the following equation: (see Fig. 2)

p ¼ p� þ ap0 ð14Þ

The process restarts if the error residuals are larger than a pre-
defined value.

4. Code verification

To verify the code, three typical benchmark problems were
tested: the Poiseuille flow between parallel plates, which has an
analytical solution, and the Lid-driven Cavity and flow around a
cylinder problems, whose numerical solutions are given by Ghia
et al. [28] and Bharti et al. [29], respectively.

4.1. Poiseuille flow between parallel plates

This problem was solved considering a Generalized Newtonian
fluid that follows a Power-law constitutive equation with n = 1
(particular case of a Newtonian fluid) and n = 0.7. For the mesh
sensitivity studies, four meshes were employed with 5, 10, 20
and 40 cells along the channel thickness, which were designated
by M0, M1, M2 and M3, respectively.

The numerical values predicted for the axial pressure gradient,
px, and maximum channel velocity (umax) were compared with
their analytical counterparts given by Eqs. (15) and (16). The re-
sults obtained, plotted in Fig. 3, allow to confirm that the predicted
numerical values tend to the analytical ones as the mesh is refined.

Fig. 1. Code flowchart.

Fig. 2. Poiseuille problem – geometry and boundary conditions.
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It is also worth to notice that with M1 the errors obtained are be-
low 2%.

px

K
¼

ÿ 1þ2n
nH U

ÿ �n

H
ð15Þ
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� �

1
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n

1þ 1
n

1ÿ
y

H

� �1þ1
n

� �

ð16Þ

For assessment purposes, the velocity profiles obtained for the
two cases considered (n = 1; K = 1 Pa s and n = 0.7; K = 1 Pa s0.7),
with mesh M3, are plotted in Fig. 4.

These results allow to confirm the code accuracy when dealing
with generalized Newtonian Fluids.

4.2. Lid-driven cavity

The Lid-driven cavity is another benchmark problem usually
employed to verify numerical codes. This problem consists of a
square channel with three fixed walls and a tangential homoge-
neous velocity boundary on the top, as shown in Fig. 5a. The flow
velocity was defined in order to have a Reynolds number (Re) of
100.

A mesh with 129 � 129 cells was used, as illustrated in Fig. 5b,
with smaller cells close to the walls, where higher velocity gradi-
ents are expected.

The results obtained with the developed numerical code and
those obtained by Ghia et al. [28] for the u and v velocity compo-
nents along L1 and L2 lines (see Fig. 5a), are shown in Fig. 6. Both
velocity components computed with the new code, evidenced a
good correlation with those of Ghia et al. [28].

The streamlines predicted by the developed numerical code and
by Ghia et al. are presented in Fig. 7a and b, respectively. The similar-
ity of both results, in terms of number, position and size of the vorti-
ces, comprises an additional validation for the implementation.

4.3. Flow around a cylinder

The flow around a cylinder, one of the most extensively studied
problems in fluid mechanics [29,30], was used in this work to

Fig. 3. Mesh sensitivity study for the ratio between analytical (A) and numerically

predicted (N) values, for maximum velocity umax and axial pressure gradient (px/K),

for the Poiseuille case study with Newtonian (n = 1.0) and Generalized Newtonain

(n = 0.7) fluids.

Fig. 4. Comparison between the analytical (A) and numerically predicteed (N)

normalized velocity profiles, for the Poiseuille case study with Newtonian (n = 1.0)

and Generalized Newtonian (n = 0.7) fluids.

Fig. 5. Lid-driven cavity: (a) boundary conditions; (b) mesh with 129 � 129 cells.

Fig. 6. Velocity for the Lid-driven cavity case study: (a) u velocity along L1 (Fig. 5a);

(b) v velocity along L2 (Fig. 5a).
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verify the accuracy of the numerical predictions on a complex
geometry.

The geometry used was, as suggested by Bharti et al. [29], a
square with edge lengths 2L, having a circle of diameter D in its
center, as illustrated in Fig. 8. As shown in this figure, due to sym-
metry reasons just half of the geometry was considered for the
numerical model, and adequate boundary conditions were em-
ployed. The other boundary conditions set, were a constant veloc-
ity of 1 m sÿ1 (corresponding to Re = 10) for the inlet, null gradients
at the outlet and a no slip wall condition, uwall = 0, on the cylinder
wall.

As suggested by Bharti [29], a geometry with L = 30.5D was
used, since it was found adequate to produce almost domain inde-
pendent results.

For the numerical models, the coarsest mesh employed (M0)
has 75 cells along each symmetry line, 10 cells allong each vertical
boundary, 20 cells along top boundary (Fig. 9a) and 100 cells along
the cylinder edge (Fig. 9b). On the bottom symmetry lines a pro-
gression factor was used.

The meshes M1, M2 and M3 were obtained based on M0, suc-
cessively doubling the number of cells along each boundary. The
number of cells in each mesh is 5148, 21,488, 88,854 and
355,298, respectively, for M0–M3. Here it is important to notice
that for the benchmark problem considered, Bharti et al. [29], used
101 cells along the cylinder edge, for the finest mesh.

To compare the numerical code predictions with similar results
obtained by Bharti et al. [29], two parameters, illustrated in Fig. 8,
were calculated: the length of wake (or recirculation) zone (Lw),
that is the dimensionless distance measured from the rear of the
cylinder to the point of the attachment for the near closed stream-
line on the downstream symmetry edge, and the angle of separa-
tion (hS), that is measured from the rear stagnation point to the
onset of the flow separation from the solid surface.

The results plotted in Fig. 10 allow to verify that the numeri-
cally predicted and benchmark results computed tend to slightly
different values. For the finest meshes used in both works circa
3.2% and 1.7% difference was obtained, respectively, for the length
of wake (Lw) and angle of separation (hS). However, as mentioned
before, the meshes employed in this work were much finer than
the ones employed by Barthi et al. [29], e.g., circa 8 times more
cells along cylinder edge were used in our meshes. Regarding the
number of cells along the cylinder edge, the meshes employed by
Barthi et al. [29] are equivalent to M0. Additionaly, Barthi et al. re-
fer [29] that their results were obtained with a accuracy of circa
1 ÿ 2% [29].

This case study allowed to conclude that the developed numer-
ical code allows to perform accurate computations on complex
geometries.

Fig. 7. Lid-driven cavity problem – streamlines: (a) new code; (b) Ghia et al. [28].

Fig. 8. Flow around a cylinder problem – geometry and boundary conditions.

Fig. 9. Flow around a cylinder problem – mesh: (a) full mesh; (b) close-up view

around the cylinder.

Fig. 10. Mesh sensitivity study for the ratio between benchmark (B) and numer-

ically predicted (N) values, for the length of wake (Lw) and angle of separation (hS),

for the flow around a cylinder case study.

N.D. Gonçalves et al. / Journal of Non-Newtonian Fluid Mechanics 200 (2013) 103–110 107



5. Design of a catheter extrusion die

The developed code was used to optimize the flow distribution
in an extrusion die designed for the production of a medical cath-
eter profile, that comprises a complex geometry cross-section with
five internal channels (lumens), shown in Fig. 11a.

The material employed was a polypropylene homopolymer
extrusion grade, Novolen PPH 2150, from Targor. Its rheological
behaviour was experimentally characterised in capillary and rota-
tional rheometers, at 230 °C [3]. The shear viscosity data were fit-
ted with the least-squares method by means of the Bird-Carreau
constitutive equation (Eq. (6)), considering g1 = 0 Pa s, yielding
the following parameters: g0 = 5.58 � 104 Pa s, k = 3.21 s and
n = 0.3014.

The inlet velocity was set in order to have a outlet average
velocity of circa 1.2 mminÿ1.

The full flow channel geometry comprises the region depicted
in Fig. 11b and an additional convergent circular region that

connects this region to the extruder. However, since this conver-
gent region will not influence the flow distribution, the flow was
modeled just in the geometry shown in Fig. 11b.

Due to the different restrictions promoted to the flow along the
channel cross-section, which is a direct consequence of the differ-
ential thicknesses comprised by the profile, the flow will be natu-
rally unbalanced, resulting in different average linear velocities at
the flow channel outlet, which is commonly referred as an unbal-
anced flow distribution [2]. Since it is not possible to produce the
required geometry when the flow is not properly balanced, one
has to find a strategy to obtain a more even flow distribution.

To analise the flow distribution at the outlet section, the geom-
etry is divided into 4 Elemental Sections (ES) [31], as shown in
Fig. 12a, where the average velocity is computed.

The quality of the flow distribution was evaluated by an objec-
tive function that is always positive and becomes zero when all the
ESs reaches the bulk average velocity, that is given by

Fig. 11. Medical catheter: (a) profile cross-section; (b) flow channel geometry

(dimensions in mm).

Fig. 12. Catheter cross-section: (a) elemental sections; (b) controllable parameters.

Fig. 13. Catheter mesh: (a) outlet face mesh; (b) global domain mesh with circa

390,000 cells.

Fig. 14. contribution of each ES for the objective function.
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where V i is the average flow velocity at ES i, V is the global outlet
average flow velocity, Ai is the area of ES i and A is the total outlet
area.

The contribution of each ES to the objective function can be
quantified by Fobj,i that gives information on the local flow unbal-
ance. These values were employed to guide the flow channel geom-
etry corrections. Thus, for each trial, the ES that had a greater
contribution to the objective function was identified, and the

appropriate controllable geometric parameters(s) that affect its
velocity was (were) changed, with a view to improve its
performance.

The relevant dimensions of the cross-section of the catheter are
shown in Fig. 11a. In order to be able to balance the flow distribu-
tion at the channel outlet, some geometric parameters can be
changed to control the flow distribution. These are the angles
and distance to the cross-section centre, one for each hole (lumen),
as illustrated in Fig. 12b. The changes in these parameters are not
expected to affect the catheter performance, since the channels (lu-
mens) functionality is maintained when their cross area is kept

Fig. 15. outlet average velocity (normalized by outlet global average velocity).

Fig. 16. catheter – outlet: (a) geometry changes; (b) outlet velocity field.

Fig. 17. objective function evolution in consecutive trials.
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unchanged. The initial values of these parameters were
r1 = 1.15mm,h1 = 45°, r2 = 0.9 mm, h2 = 100° and r3 = 0.7 mm.

To compute the flow field a mesh with circa 390,000 cells was
used, comprising triangular prisms (circa 166,000) in constant
cross sector zones and tetrahedrons (circa 224,000) elsewhere.
The typical meshes used on the outlet face and on the global do-
main, can be seen in Fig. 13a and in Fig. 13b, respectively.

The contribution of each ES for the objective function is pre-
sented in Fig. 14, and the evolution of the average velocity in each
ES, normalized by the outlet global average velocity, is presented in
Fig. 15, where it can be seen that after five trials a similar average
velocity was attained in all ES. The methodology used to improve
the performance of the die in subsequent trials was previously de-
scribed. According to it, and as an example, in Fig. 14, one can see
that on trial T0, ES3 is the one that contributes more to the global
objective function, and in Fig. 15, it can be seen that it has the high-
est average flow velocity. To correct this problem, on trial T1 a
change on the controllable parameters was done (Fig. 16a), in order
to increase the restriction of the flow in this ES (ES3). There were
several possibilities to achieve this objective, including a change
on r2 (trial T1), h2 (trial T2) or a combination of both (trial T3).
As one can see in Fig. 17, the change on h2 led to better results than
the change on r2, and the combination of changes in both parame-
ters resulted even in a better improvement on performance. Hav-
ing this in mind, and because the ES with higher contribution to
objective function remained ES3, on trial T4 h2 was changed again.
Finally, as the main contribution to the objective function changed
to ES4, and its average velocity is higher than the other ES average
velocities, r3 was decreased on trial T5 in order to restrict the flow
in this ES.

As one can see in Fig. 17, after five trials the objective function
decreased circa one order of magnitude. The improvements ob-
tained for the velocity field are depicted in Fig. 16b, evidencing that
the final flow distribution is significantly better than the initial
one.

6. Conclusions

In this work a numerical code able to deal with complex geom-
etries and unstructured meshes, developed to predict the flow field
of polymer melts in confined channels, using generalized Newto-
nian flow models, was described and verified. The developed code
was then used to improve the flow distribution in a complex pro-
file extrusion die, for the production of a medical catheter. The re-
sults obtained show that the developed numerical code is a very
useful tool to aid the design of extrusion dies used in the produc-
tion of complex geometry profiles.
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