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Abstract

Background

Functional integration of motor activity patterns enables the praducif coordinated
movements, such as walking. The activation of muscles by weightsunadation of
activation signals has been demonstrated to represent the spatickecomponents that
determine motor behavior during walking. Exoskeleton robotic devieesaav often used in
the rehabilitation practice to assist physical therapy of iddals with neurologicdl
disorders. These devices are used to promote motor recovery by prayidiagce force tp
the patients. The guidance should in principle lead to a muscle cdadirsamilar to

physiological human walking. However, the influence of robotic devioe locomotoy

patterns needs still to be characterized. The aim of this stadyto analyze the effect |of
force guidance and gait speed on the modular organization of watkiaggroup of eight
healthy subjects.

Method

A group of healthy subjects walked on a treadmill with and witholobtic aiding at speeds
of 1.5, 2.0 and 2.5 Km/h. The guidance force was varied between 20%, 40%, 709©%e)d
level of assistance. EMG recordings were obtained from sevemudegles of the dominant
leg and kinematic and kinetic features of the knee and hip joints were extracted.

Results

Four motor modules were sufficient to represent the variety ofvimehhgoals demanded
during robotic guidance, with similar relationships between mugzdterns and
biomechanical parameters across subjects, confirming that thelinmensional and
impulsive control of human walking is maintained using robotic force gua&laThe
conditions of guidance force and speed that maintained correct adectic(not natural
modular control were identified.

Conclusion

In neurologically intact subjects robotic-guided walking at variouse guidance and speged
levels does not alter the basic locomotor control and timing. Thisvalthe design ¢
robotic-aided rehabilitation strategies aimed at the modulationotdrrmodules, which are
altered in stroke.

—

Introduction

Control of locomotion has been largely studied in animal models, provigengackground
knowledge essential to the comprehension of the motor control in humamsl[ttjeories for
training walking after neuronal damage. Spinal pattern generatbrsh \are regulated by
supraspinal control, have been regarded as the responsible for the locdmttionhumans
and other vertebrates. Using fMRI, Jadnal. [2] found evidence that the supraspinal
network of quadrupeds is maintained in humans. Motor patterns are thougtd tesdt of



interactions between the activity of the CNS and the periphemits representing the
biomechanical characteristics and the afferent sensorial actjdties

Nowadays, the neurorehabilitation field has been adopting roboticedemicassist physical
therapy on individuals with neurological disorders [4,5]. However, thestilisa lack of
basic knowledge on the effect of robotic gait training on human locomatidnts recovery
in injured humans. Most theories supporting the conventional therapy techricpibased
on data from experiments with animal models [6-9] and such theonesbiezn transferred
to design improved assisted gait training with robotic assistaHowever, little is known on
the neurobiological substrate of gait control in healthy humans to suphgordesign of
training strategies delivered with automated machines or mluavices. This lack of
knowledge is preventing the development of a sound and strong thedratioavork that is
optimally suited to the robotic treatment of patients with injured brain or spréh[T0,11].

Recent studies have been devoted to understand how the CNS orchdbeateuronal
responses corresponding to the planned movements, coordinating a large oluddaggees
of freedom of the musculoskeletal system [11-18]. The current evidemgests that the
nervous system controls complex motor tasks by using a low-dimensiomédination of
motor modules and activation signals [19,20].

In previous studies [12,16,21], the hypothesis that muscle activationngatii@ing walking

are produced through the variable activation of a small set of maidules (also called
synergies) was tested by means of non-negative matrix ilmtion (NNMF) [22-24]. It has
been proposed that human walking is mediated by muscle activations that can beaagresse
the effect of few activation impulses at specific phaset®fgit cycle delivered to muscle
weightings [25].

The assist-as-needed control concept emerged to encourage themadiore of the patient.
This approach is intended to manage simultaneous activation ofnéfifleogor pathways and
afferent sensory pathways during training. Zero-impedance contdé has been proposed
to allow free movement of the segments. Also, the concept of aMumnel that allows a
range of free movement has been proposed [26]. However, such robotiesdesed further
research to show their suitability for walking training andrtledfiects on over-ground gait
[27-33].

Furthermore, it is not only important to assist as needed toctgristervene but also to
know what can be achieved by the available robotic tools. Resultsfedsaility study
supported the idea that a decentralized approach that exploresdhwtoc pattern of the
patient can be effective in treatment of muscle spasadiéy neurological damage [34]. The
present study is directed to reveal the capacity of robotce fguidance and gait speed in
affecting muscle synergies. According to our view, this infolonais essential for designing
the correct reference and control systems to develop an assiseded robotic rehabilitation
protocol for walking. It can be argued that robotic-guided walkiag be used to induce
synergistic muscle activation patterns during walking thathiige beneficial for the
recovery of stroke survivors. Robotic guidance force (GF) is the anudumt the patient
receives. In a recent study, it has been concluded that walkihg irokomat robotic trainer
(Hocoma, Zurich, Switzerland) with minimal (0%) GF can be addelby similar motor
modules and activation signals as overground walking [22]. However, sheoeevidence on
the effect of adding a GF on the main modular organization of physialogalking in
healthy humans. Therefore, the first hypothesis to be testddsistudy is if using GF in



robotic-aided walking alters the main impulsive synergistiecstire of walking. The second
hypothesis is that the GF and walking speed provided by the Lolgaitdtainer can be set
in order to adequately shape the muscle weightings during humandteonSince these

weightings are modified after a neurological lesion [20]ifieation of the second hypothesis
would set the bases for designing rehabilitation strategisrabotic training. To verify the

two hypotheses, healthy subjects walked at different speeds ange@éntages in the
Lokomat gait orthosis.

Methods

Participants

Eight healthy participants (6 males and 2 females; age = 25.7yedrg; body weight = 69.5
+ 9.8 kg; height = 1.76 + 0.08 m) with no neurological injuries or djairders volunteered
in the study. The participants had no previous experience with robastedswalking. The
local ethic committee (CSIC) provided ethical approval for this study.

Procedures

By varying GF, the robot torque can be controlled from 0 to 100% anefdherthe amount
of GF can be modulated to challenge the user. At 100% GF, the robot preuidistantial
assistance while at 0% GF, it does not assist the subjegtimdvement and, therefore, it
increases the demand of active participation.

At the beginning of the experiment, the robotic gait orthosis wassi&di to the patient’s
anatomy. Hip width, length of upper and lower leg, size and positidheofeg cuffs were
individually adjusted to assure comfort. The range of motion was abepteatch a natural
pattern preventing foot dragging, if needed. After being fitted sexlred by a safety
harness, the participants were asked to walk on the Lokomat roltbtisisrat speeds of 1.5,
2.0 and 2.5 km/h speed and robotic GF of 100%, 70%, 40% and 20% with a fixed body
weight support (BWS) level of 30%. This value of BWS was chosen tdeencamfortable
walking with the robotic orthosis at high speeds. Moreover, it hasdie®m that changes in
BWS do not alter significantly motor modules [16]. For assisting pdattar flexion, foot
lifters based on springs were present during the robotic aidedngalkach walking trial
lasted 60 s. The participants were instructed to follow the robatatagce aided by the
Lokomat's visual representation of biofeedback values. The visual OHek values,
designed to motivate the patient to improve the walking performgsjcevere displayed
step-by-step in line graphs representing the walking performanceheviast 10 steps.

The participants were instructed to follow the robotic movementsdardo maintain a
constant biofeedback value during each trial. All the combinations etlsped GF were
recorded after a familiarization interval of 60 s for each coathon. In addition, treadmill
walking without the robotic orthosis and without BWS was measuredllf@articipants at
speeds of 1.5, 2.0 and 2.5 Km/h speed. The ten central gait cycles inoeadion were
selected for the analysis.

Bipolar electrodes (Ag-AgCl, Fiab S.p.A.) were mounted to record EBals from the
rectus femoris (RF), vastus lateralis (VL), semitendinosug), (8iceps femoris (BF),
gastrocnemius medialis (GM), gastrocnemius lateralis (&td, tibialis anterior (TA) of the



dominant leg of each participant, using a wireless EMG acauisgystem (BTS Pocket
EMG, Myolab) with a sampling rate of 1 KHz. Electrode sitesewketermined following the
SENIAM [35] recommendations. The skin was shaved and cleaned with algobolto
electrode positioning. The data were wirelessly streamed duregréadmill and robotic-
guided walking conditions and analyzed using Matlab 7.0 (The Matlswhidtick, MA) and
SPSS statistical software (v. 18.0 IBM).

In the robotic-guided walking condition, the knee and hip angles in theéasgdgtne and the
forces exchanged against the machine at the knee and hip j@rgsrecorded from the
analog output of the Lokomat. In the treadmill walking condition (walkvithout the aid of
Lokomat), an electrogoniometer was used to measure the kneepgiet in the sagittal
plane. In all conditions, a foot switch was placed beneath theohé¢lbé dominant leg to
identify and segment the gait cycles. The values of the visofddaiback from the Lokomat
were recorded for every gait cycle and used for offline validation of eath tr

EMG signal analysis

The raw EMG data were band-pass filtered ¢8der Butterworth digital, bandwidth 20-400
Hz, roll-off rate of 12 dB/decade) to attenuate DC offset, motitfaets, and high frequency
noise. The EMG signals were rectified and were smoothed us®H@int root mean
squared (RMS) algorithm. The smoothed EMG signals were integpojagr each stride
cycle in order to obtain average stride cycles with 101 points.eStydles were then
averaged to obtain time-normalized gait cycles with 101 points. &oin enuscle and
participant, each time-normalized EMG signal was amplitude-na@daby its maximal
value obtained in all the conditions of speed and GF. Although averaging of EM®imase
decreases the variability of the signal, inter-trial valiigbis reduced in the stereotyped
muscular activity in the Lokomat [22]. These normalized EMG sgymadre computed to
obtain the average of the group, for each muscle and condition of speedFamdo@ler to
assess the structure of control rather than the precise wefghtlividual muscles. For each
subject and for the average of the group, the EMG signals bfcemclition were combined
into anm x t matrix (EMG&), wherem indicates the number of muscles (seven muscles in this
case) and is the time base (101 values that represents the gait fegoie0% until 100%)

[9].

An NNMF algorithm [22] was applied to the EMGnatrix for the extraction of motor
modules from each subject in each condition. The number of modules anti@acsignals,

n, was varied between two, three, four and five, and the NNMF algoritund the
properties of the modules by updating two matricesmax n matrix, which specifies the
relative weighting (motor modules) of a muscle in each aaivaignal, and an x t matrix,
which specifies the activation timing of each activation signhks€é two matrices were
multiplied to produce am x t matrix (EMG) in an attempt to reconstruct the EMG signals.
EMG; was compared to EM{y calculating

Y S (EMGy(i, |) - EMG, (i, )) 0

izl j=1

The result was used for iterative optimization luatiocal minima was found on the motor
modules and the activation signals that minimizedetrror.



The variability accounted for (VAF) was calculateddetermine the minimum number of
activation signals needed to adequately reconsihis, of each subject and of the average
of the group. The VAF was calculated as the ratithe sum of the squared error values to
the sum of the squared EM@alues, as follows:

Z"jlztj _(EMG(i, })~EMG, (i, j))?
S 1I——(EMG (i, §))?

VAF was calculated for each muscle and for eachditiom within the gait cycle. In order to

ensure the quality of reconstructed signals widanh region of the gait cycle, VAF was also
calculated within seven phases [9] of the gaite&yt) initial double support, 2) mid stance,
3) terminal stance, 4) pre swing, 5) initial swi®jy,mid swing, and 7) terminal swing. We
analyzed the VAF results from the computed activasiignals from the average EMG of the

group.

In order to visually analyze the possible existepicghared motor modules for all conditions,
the activation signals were also computed recoctstig the signal by means of the same
motor modules [36] (those obtained in treadmill ki using 2.5 Km/h speed) for all
conditions.

The percentage contribution of 7 different periggait subphases) to total muscle activity
(EMG envelopes) and activation signals during staand swing was calculated for all
combinations of GF and speed. This separation vgasl i0 compute the contribution of
muscular activation signals for statistical comgami of activation signals between treadmill
and robotic walking. Thus, activation signals wieneestigated by calculating the integral of
the signal amplitude for the period of each subglaisthe gait cycle. These integrals over
the 7 intervals are related to the timing of musadévation which was compared between
normal and treadmill walking.

Kinematic and force analysis

The kinematic and force data were averaged per stucle in order to obtain data time
normalized, expressed as a percentage of thegatatycle, i.e., 0 to 100%.

The angular range of motion (ROM) in the sagittahp for hip and knee was computed by
subtracting the minimum joint angle from the maximjoint angle for Lokomat trials for
each condition of GF and speed. The ROM in thettshgilane for knee during the treadmill
walking was also calculated, for each speed. Tihree t{% of gait cycle) at which the
minimum and maximum angles occurred were also ohated.

The kinetic range of forces (ROF) in the hip ane&ijoints of the Lokomat was found by

subtracting the minimum joint force from the maxmmyoint force for robotic-guided
walking trials for each condition of GF and spead also for each gait phase.

Statistical analysis

The differences in motor modules and activatiomalig) across subjects for treadmill and
robotic-guided walking, and among subjects in rabassisted walking were tested using a



three-way ANOVA and Tukey’s post hoc analysis. BHuotivation signals were computed
reconstructing the signal by means of the same mmumlules (those obtained in treadmill
walking using 2.5 km/h speed) for all conditions @mnder to test uniform modular
organization for all conditions of walking.

The consistency of the activation signals betwedotic and treadmill walking - at the same
speeds- was tested with a Pearsons’s correlatialysas of the integrals in the 7 intervals
during the gait cycle.

Results

Muscle activations

The average EMG recorded from each muscle acrdgscssi for all conditions is illustrated
in Figure 1. Significant variations were found acting to the demand. In general, mean
muscle activations were found to be increasing withincrease in walking speed, for all
percentage of GF (Figure 1). In particular, it vedsserved that across walking speeds the
muscle activation was significantly increased fo¥®and 40% GF if compared to other GFs.

Figure 1 Dependence of muscular activation on the level of robotic GF and walking

speed for each investigated muscléeft panel: group average activation is represefae
treadmill and robotic walking (free walking on aadmill and walking with four levels of GF
in the robot-aided condition) against speed. Rpgimtel: the integral of the average EMG
envelopes are represented in a contour plot witle\a€ls; interpolation was done to represent
walking speed with respect to the treadmill (uretesl) and robotic walking (four levels of
GF) conditions.

The quadriceps muscles during robotic-guided walkiantributed with greater activity than

during treadmill walking, for all GF levels. It cdre observed that GM and TA muscles
contributed less significantly to the mechanicamdad imposed during robotic-guided
walking. The activation of the hamstrings muscleaswn general similar for all the

conditions although a generalized reduction ofvétgtivas observed during the transition to
the swing phase during robotic-guided walking.

Partial contributions at gait phase of recordedaiassto the total muscle activity per stride,
revealed the highest correlation for VL, ST and BRen comparing treadmill to robotic-
guided walking.

Robotic-guided walking kinematics and forces

To determine whether the subjects modified thet joimectories in response to the altered
mechanical demand, we examined the average knelei@jaints trajectories and ROM. The

resulting angular patterns and ROM (sagittal) @f ipp and knee joints during the robotic-

guided condition were examined. Figure 2 illussatbe average knee and hip angular
trajectories, pooled for each testing conditionlse Bngular pattern and ROM of the knee
shows a common pattern of trajectory during allditons, as no significant differences were
found. Although the robotic exoskeleton guides jthiets of the limb subjects through pre-

programmed trajectories, a small amount of variamas found on the pooled trajectories,
which in general increased with decreasing the amoluGF.



Figure 2 Average kinematic trajectories of the hip and knee joints (sagittalfluring the
gait cycle in the robotic-guided walking condition.

The ROM at the hip with 20% GF, reduced with insieg GF, regardless of speed. The
ROM at the knee with 20% GF and 1.5 Km/h speed wsigsificantly reduced when
compared to other combinations. It should be camedlthat variations in ROM that resulted
from variations in walking speed may be explaingdte dependence of the trajectory on
walking speed in the Lokomat robot. In generalhldbe knee and hip joints ROM increased
with increasing speed and GF, except for the camdivith 20% GF, in which the hip ROM
decreased with increasing speed.

To determine whether the subjects modified theepadtof joint forces during the gait cycle,
we examined the average knee and hip exoskeleiunf¢oces. In general, the subjects were
able to walk with a similar kinematic pattern impdsby the robot but changes in the
mechanical pattern were observed (Figure 3). Th& R€re decreased with the decrease of
GF and the increase of speed.

Figure 3 Average joint forces during the gait cycle in the robotic-guided walking
condition.

The main deviations across combinations in theacten forces were found in the transition
from stance to swing phases. For the hip joint,olgerved that with 20% and 40% GF, as
the leg moved to prepare the swing motion andaitatiit, the relative hip extension and
flexion forces were small. Nevertheless, for higif (70% and 100%), the hip force
patterns required a more complex strategy as dsbggerted significantly higher hip flexion
forces at mid-swing. This reveals a strategy thadopted to pull the leg towards swing that
is accentuated with augmented mechanical demarjd¢B72n the instruction to follow the
robotic guidance aided by visual representationbiofeedback values). This behavior
correlates with the increased RF (hip flexor) atstimnd decreased activity of the hamstrings
(hip extensor).

For the knee joint, the ROF decreased with theedser of GF and the increase of speed. The
ROF using 20% and 40% GF was reduced when compargdher levels of GF. The main
differences in forces across combinations for fhiist were observed in the transition from
stance to swing. For 20% and 40% GF, the limb predueduced extension torques during
pre-swing, followed by reduced flexion torquesrdtial swing. In turn, using 70% and 100%
GF resulted in increased knee extension torqugseaswing followed by increased knee
flexion torques at initial swing.

Motor modules

A minimal VAF value of 80% in each gait cycle porti was required to consider the
reconstruction quality satisfactory. Preliminargtgeled to exclude dimensionality five since
inclusion of a & module did not improve substantially the recoretan quality. Four motor
modules accounted for robot-aided walking with VABove 80% for all muscles and gait
phases. The computed motor modules, activationasigand EMG envelopes for all
conditions of GF and speed are represented in &ijuModule 1 consisted mainly of flexor
activity from the RF (hip flexor, also knee extensand activity of the VL (mainly a knee
extensor). This module was mainly active during thielstance phase. Module 2 mostly
consisted of activity of the ST (knee flexor) and @ip extensor) muscles at terminal swing



and midstance. Module 3 consisted mainly of agtivitf the GM and GL (ankle
plantarflexors) and this module was primarily agtiuring late stance. Module 4 consisted
mainly of activity of the TA (ankle dorsiflexor).hls module was mainly active during
midstance and along the swing phase.

Figure 4 Four modules are sufficient to reconstruct the EMG envelopes of all éhtesting
conditions with a VAF higher than 90%. Representation of this modular control is
organized in three columns, one for each gait sp&eerage and standard deviation of the
EMG envelopes of the seven muscles (left). Aveagkstandard deviation of motor
modules (center). Activation signals (right), wittin gray lines representing the results of
each subject of the study, and thick black lingsegenting the group average.

Modular control in treadmill walking

The calculated motor modules on treadmill walkimmpfemed the assumption that low-

dimensional organization is present and similar mgmsubjects and speeds (no significant
difference, Additional file 1: Table S1). The tdstr dependent variables confirmed no
significant differences in activation signals amapjects (P > 0.05) and no significant
difference between speeds (P > 0.05).

Modular control in robotic-guided walking

The calculated motor modules during robot-aidedkingl were similar among subjects
(Additional file 1: Table S1). Results showed thetivation signals are quite different among
subjects, for the same conditions of GF and speeel {.03). Activation signals shown to be
significantly different for variations of speed ass GF conditions (P < 0.05). The results
showed that motor modules on the robot-aided wglldondition were similar for each

subject between conditions (P > 0.05). The caledlaverage of motor modules among
subjects reflected high similarity for all condigm

From the correlation analysis of activation signtie robotic-guided walking using 20% GF
and 1.5 Km/h speed resulted in the lowest simylanith respect to the other conditions
(Additional file 1: Tables S1-S4). This result wesnfirmed by the fact that the subjects
reported discomfort during this condition. Robalead walking with 100% GF resulted in the
lower similarity with the treadmill walking condatin. As for all the conditions of robot-aided
walking with GFs of 40% and 20% we found signifittrhigh similarities with respect to
treadmill walking, except for the combination oR2@F and 1.5 Km/h speed.

The robot-aided condition of 20% GF and 1.5 Km/eexspwas characterized by significantly
different timing of activations (Figure 4 and Figub6). The motor modules exhibited
remarkable changes during 20% GF at 1.5 Km/h spmedlition with respect to all
experimental conditions (Tables 1, 2 and 3) fosabjects.



Table 1Kinematic trajectories of the hip and knee joints in the sagittal planaluring robotic-guided walking

Hip Knee
Min (1) Max (2)ROM (3)SD (4)Time (Min) (5) Time (Max) (6)Min (1) Max (2)ROM (3)SD (4)Time (Min) (5) Time (Max) (6)
20% GF 1.5 Km/h speetll6,47 23,49 39,96 14,10 41,20 80,40 12,40 51,02 38,62 11,76 0,40 70,40
2.0 Km/h speed14,3724,38 38,75 11,64 48,40 85,20 7,56 57,52 49,96 13,29 99,20 70,80
2.5 Km/h speed13,0119,86 32,87 8,42 49,20 85,60 6,25 62,52 56,27 15,07 97,60 70,80
40% GF 1.5 Km/h spee€ll5,5526,99 42,53 10,91 48,00 81,60 7,33 56,68 4935 11,21 0,40 71,20
2.0 Km/h speed15,6028,77 44,36 7,91 50,40 84,40 567 60,39 54,72 12,27 0,40 71,20
2.5 Km/h speed13,7928,07 41,85 5,78 51,20 86,40 3,99 63,24 59,26 11,23 98,80 71,20
70% GF 1.5 Km/h spee€ll3,9028,48 42,38 6,27 51,60 84,80 502 59,97 5495 9,82 0,40 73,20
2.0 Km/h speed14,1230,00 44,12 5,06 51,20 83,20 431 60,18 5586 9,12 98,80 71,60
2.5 Km/h speed13,6031,67 45,28 6,54 50,80 84,80 352 61,65 58,13 10,23 99,20 71,20
100% GF1.5 Km/h speed12,2929,54 41,83 7,13 49,60 84,00 497 60,32 55,35 11,42 100,40 72,00
2.0 Km/h speed12,8030,28 43,08 3,92 52,80 85,60 3,11 60,92 57,81 7,04 100,00 72,80
2.5 Km/h speed13,0831,44 44,52 2,42 51,20 83,60 2,75 61,26 5851 5,99 98,80 71,20
D Minimum angle
(2) Maximum angle
3) Range of motion ((2) - (1))
(4) Standard deviation
(5) Correspondent % Gait cycle of the minimum
(6) Correspondent % Gait cycle of the maximum

Minimum and maximum angles (with corresponding timing), ROM and standardidesiéor the average group.



Table 2Joint forces in the sagittal plane during robotic-guided walking. Minimun and maximum forces and ROF per gait phase for
each condition

A) Hip Kinetics - Forces actuating in robotic hip joint

Phase 1 Initial double

Phase 2 Mid stance Phase 3 Terminal stanPhase 4 Preswing Phase 5 Initial swing Phase 6 Mid swing Phase 7 Terminal ROF
support (0-10% GC) (10-30% GC) (30-50% GC) (50-60% GC) (60-73% GC) (73-87% GC) swing(87-100% GC) (1)
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
20% GF 1.5 Km/h speed -252 -206 -229 -12 -9 240 117 244 -194 110 -349 -202 -340 -245 593
2.0 Km/h speed -257 -193 -195 -18 -11 172 41 182 26-1 45 -287 -130 -288 -238 470
2.5 Km/h speed -228 -173 -200 -1 3 129 -61 96 -171 -43 -226 -161 -204 -153 357
40% GF 1.5 Km/h speed -460 -428 -444 -160 -155 85 3 1 107 -184 37 -497 -195 -483 -410 604
2.0 Km/h speed -397 -298 -384 -95 -93 31 -171 36 91-1 -134 -374 -200 =377 -296 433
2.5 Km/h speed -364 -290 -324 -22 -20 104 -214 89  292- -221 -315 -287 -328 -246 468
70% GF 1.5 Km/h speed -683 -610 -639 -158 -151 6 77-1 24 -168 21 -557 -165 -632 -485 707
2.0 Km/h speed -645 -592 -601 -133 -130 0 -325 -6 304- -9 -508 -98 -615 -423 645
2.5 Km/h speed -643 -535 -551 -94 -90 39 -453 -11 454~ -190 -287 -178 -533 -295 682
100% GF 1.5 Km/h speed -714 -518 -507 152 160 232 306- 157 -316 18 -535 -336 -707 -536 946
2.0 Km/h speed -756 -591 -572 185 195 291 -479 261 -559 14 -541 -17 -636 -339 1046
2.5 Km/h speed -854 -694 -680 -25 -21 45 -654 7 2-66 15 -507 -18 -738 -385 899
B) Knee Kinetics - Forces actuating in robotie&rjoint
Phase 1 Initial double  Phase 2 Mid stance Phase 3 Terminal stanPhase 4 Preswing Phase 5 Initial swing Phase 6 Mid swing Phase 7 Terminal ROF
support (0-10% GC) (10-30%GC) (30-50%GC) (50-60% GC) (60-73% GC) (73-87% GC) swing(87-100% GC) (1)
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
20% GF 1.5 Km/h speed 28,4 121 -14 70,3 47,1 103 10-1 454 -232 -116 -225 -33 =27 135 367
2.0 Km/h speed -14 93,2 -13 27 24,1 74,6 =77 31,1 221- =79 -227 -47 -42 136 363
2.5 Km/h speed 20,3 80,3 =27 23,1 7,53 30,2 -95 88,0 -138 -62 -148 -35 -30 144 292
40% GF 1.5 Km/h speed 156 262 118 152 102 195 -13894,2 -297 -150 -283 8,94 249 249 559
2.0 Km/h speed 143 232 86,5 139 97,1 127 -105 89 19-2 -101 -218 -12 0,22 220 451
2.5 Km/h speed 83,5 185 49,4 117 77,6 121 -66 75,4 -152 -61 -168 -18 -8,8 242 410
70% GF 1.5 Km/h speed 251 364 169 246 124 183 -25 17 1 -270 =37 -240 -8,5 1,09 362 633
2.0 Km/h speed 250 343 173 243 116 187 -23 109 -311-42 -286 6,97 13,2 333 654
2.5 Km/h speed 248 344 172 249 87,7 172 49,9 84,5 226- 68,3 -244 -36 -26 330 588
100% GF 1.5 Km/h speed 236 408 74,6 229 -68 76,9 9 -7 -26 -286 -23 -165 50,7 62,5 394 695
2.0 Km/h speed 256 392 19,9 243 -88 17,9 -108 37,4 -324 79,7 -308 -12 -5,4 348 716
2.5 Km/h speed 286 415 88,2 281 -5,4 98,5 -33 101 351- 98 -324 33,9 43,2 407 766

(1) ROF is the range of forces




Table 3Values of correlations of contributions of activation signals along the gaitycle
between treadmill and robotic walking computed for the same velocity of wing

Lokomat 20% Lokomat 40% Lokomat 70% Lokomat

G.F. G.F. G.F. 100% G.F.
Activation Treadmill 1.5 0.55 0.76* 0.75 0.72
signal 1 Km/h
Treadmill 2.0 0.88** 0.83* 0.86* 0.83
Km/h
Treadmill 2.5 0.68 0.84* 0.84* 0.80
Km/h
Activation Treadmill 1.5 0.90** 0.90** 0.41 0.57
signal 2 Km/h
Treadmill 2.0 0.88** 0.88** 0.75 0.68
Km/h
Treadmill 2.5 0.84* 0.55 0.63 0.63
Km/h
Activation  Treadmill 1.5 0.93** 0.99 0.96** 0.98**
signal 3 Km/h
Treadmill 2.0 0.97* 0.99 0.98** 0.93**
Km/h
Treadmill 2.5 0.90** 0.97 0.98** 0.98**
Km/h
Activation  Treadmill 1.5 0.41 0.78 0.06 0.06
signal 4 Km/h
Treadmill 2.0 0.91** 0.13 0.26 0.08
Km/h
Treadmill 2.5 0.73 0.72 0.75* 0.75
Km/h

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

We tested the computation of activation signalshwiked modules (Figure 5) across
conditions. From this analysis, the activation aighwas similar across all 15 combinations,
the activation signal 2 was similar for treadmilalking and robotic-guided walking using

20% and 40% GF at low speeds, the activation signahs similar between treadmill and

robot-aided walking for all conditions with GF >%0and the activation signal 4 was similar
between treadmill and robot-aided walking at 20%a®&# low speeds.

Figure 5 TOP: Motor modules (M) and average computed activation signals (A) of all
conditions of GF and speed (right) tested with a fixed matrix of module@eft) (2.5 Km/h
speed).BOTTOM: Group average of variability accounted f@dAF) according to the
number of motor modules. Means £ SD of VAF for seeen gait phases and for all the
conditions investigated. Four modules are sufficienmeconstruct the EMG envelopes of all
the testing conditions with a VAF higher than 9086dll muscles and gait sub-phases.

We tested the consistency of the reconstructedvadicin signals between robotic and
treadmill walking (Table 3) by determining if stgth of contribution (association estimated



with correlation analysis) of activation signalsnisintained with changes in GF for the same
speeds. From this analysis, it is observed thahgmf activation signals shows in general
small differences between the two conditions, as loa observed in the overview of the

activation patterns with on/off timing patterns ragothe gait cycle (Figure 6). In particular,

the timing of activation signals is highly or ab$ moderately maintained in robot-aided
walking at 2 and 2.5 km/h (Table 3), except for #etivation signal 4 at 40% GF, 70% GF

and 100% GF.

Figure 6 On/off timing patterns of the four activation signals within a gait cycle forthe
different conditions of speed and mechanical constraint§.hreshold definition for
activation signal onset was to set the activatigna ON when the activity exceeds the triple
SD range. Average knee angle profile within a ggaife is presented for reference (top)

We computed the total variability accounted forraliscles, conditions and gait sub-phases
based on the number of motor modules extracted.v@hability accounted for by 4 motor
modules was >90% for the average of all musclesditons and gait sub-phases (Figure 6).
A lower number of modules would not ensure thatrtteelular representation is able to cope
with the complete set of kinematic and dynamic taists introduced by the robot during
our testing conditions.

Discussion

We investigated the effect of GF when walking widh exoskeleton on the muscular
activation patterns and biomechanical parametetseafthy humans. The findings indicate
that a low-dimensional and impulsive control of lamwalking is maintained with variations

of robotic GF, despite changes in muscle weightingjshas been concluded that in

neurologically intact subjects robotic-guided walkiat various GF levels does not alter the
basic locomotor control and timing of muscular \aatiion patterns.

Recent studies have provided evidence of a modolatrol of synergistic lower limb muscle
groups during locomotion of healthy [36-39] andjsuats with neurological damage [22]. A
simulation-based study reported changes in the fapdaontrol with specific biomechanical
tasks using emulated subject’s responses [38].

Understanding how the CNS coordinates the mustidtgauring robotic-guided walking is
crucial for the design of the robotic therapy [4D].a recent study, it was concluded that
motor modules observed in subacute stroke patigduisg locomotion are different from
those used by healthy controls, despite similaruisipe activation signals [22]. Also,
alterations of the muscle activation patterns dunobotic-guided with respect to treadmill
walking in healthy subjects with fixed mechanicahthnd, have been reported [27].

The experimental protocol in the present study designed to test and characterize the
effects on the modular control of walking, musclaiveations and biomechanics of the

variations on mechanical demand imposed by a nmdrexoskeleton. Our focus was on
guidance force and velocity whilst the effects oflyp weight support have been reported
elsewhere [29]. We are currently investigating th#ects of biofeedback on the

neuromuscular patterns during robotic walking veiitoke survivors.



Four motor modules were sufficient to describe itingscular activations for all recorded
muscles in all subjects and across conditions.alk heen concluded that similar motor
modules and activation signals are extracted frammotic walking at 30% BWS and
overground walking for the included pool of healtbybjects [22]. The experimental data
also revealed similar relationships between motodutes and biomechanical parameters
across subjects. This gives the support to anadyrke characterize the effects of robotic
guidance on the coordination of lower limb musclksring locomotion. The main
characteristic roles of motor modules during rabgtiided walking have been identified.
Also, the motor modules controlling lower limb milesc produced variations in muscle
activation as a result of the robotic assistanaedile 1 mainly provides body support during
the early stance phase. This module increasesiitsiloution in response to increased robotic
guidance. Module 2 is a major responsible of legrentent during terminal swing and
preparation towards initial stance. Module 3 maitiytributes to control the propulsion of
the foot during terminal stance phase. Module 4/iges mainly contribution to control the
ankle during initial stance and initial swing. Hitgvels of robot-aided walking (or higher
GF) in general induce significantly different muesdchctivation patterns if compared to
treadmill walking, in agreement with results by JJ18hese results support the idea that the
nervous system may use a modular control stratagyttzat flexible modulation of module
recruitment intensity may be sufficient to meeg&achanges in mechanical demand.

Our analysis showed that in general there is naigaificant difference in the timing
provided by the activation signals between robatted walking and treadmill walking when
compared at the same walking speed. Neverthelesgls® observed particular conditions
with less stereotyped muscle coordination and nréchkoutput (activation signals and
motor modules in robotic-guided walking at 1.5 Krsffeed and with 20% GF), that may not
contribute to promote a convenient motor pattern.

In conclusion, the results of this study indicdtattthe main modular organization of control
in physiological walking in healthy humans is imgeal maintained when adding a GF with
a robotic trainer. A low-dimensional, burst-likepoisive control, with activation impulses

well timed with respect to the gait phases is inggal maintained, with the exception of

particular conditions that are uncomfortable foalttey subjects and result in deviations in
modules and timing of activations (20% GF and 1rb/lK speed). The results indicate that
the muscle weightenings can be shaped by changenGFE, according to the view that such
weightings during locomotion are more flexible treantivation primitives [22]. These results

support the idea that robotic guidance does ndbrdithe fundamental control structure in

intact physiological pattern and gives strengthhi® concept that the robotic trainer can be
effective in shaping the motor modules with detewdi conditions of GF and gait speed
while maintaining the impulsive control of locommti Accordingly, it can be speculated that
stroke locomotion rehabilitation with robots may dehieved by shaping motor modules by
adjusting GF and speed. This speculation is basemlipobservation of the control structure
during robotic-aided walking and must be confirmeth further research a) including neuro-

musculoskeletal models that allow to explain thetgbution of muscles and b) to analyse
the retention of induced modifications of gait dsraction of dose and training intensity.

It is still controversial whether if an ischemiceen affects motor modules nor their activation
signals. Recent research studies led to differesults. We distinguish between locomotion
and aiming movement: whilst the first one couldnb&inly exploited at the CPG level, the

later should be mainly coded as a combination pfagpinal descending command and a
muscle weight coding at spinal level. This scenaria agreement with the results of Cheung



and colleagues [42] (i.e. motor modules may begovesl), since the stroke is a cortical
damage that should not interfere with the spinalircp of muscle weightings, once the
direction of aiming is given.

The rhythmic activity of locomotion can be imaginad a more decentralized process in
which the modulation of muscular activation respomnal the integration of peripheral and

supraspinal input under the control of the rhythemayating networks of CPG. The three

studies (Clark et al. [12], Gizzi et al. [22] andheling et al. [42]) agree that a modular
organization (of walking and reaching) is showrstioke patients. Our previous results from
Gizzi and colleagues appear different to Clarkiglgt but not contradictory: as reported in

[12] a central role in the reaction to CVA couldthe distance in time from stroke. Whilst in

[22] subacute patients were examined, in Clarkigdytpatients were recruited in their

chronic phase. In that work the authors stateddratperimposition of motor modules from

healthy controls can happen as an adaptation tiestThis result was not reported for

subacute patients, but both studies agree thatdheation signals, although for chronic

patient may be also collapsed, may be maintainedelUthese premises, it is reasonable to
consider that there is an adaptation of strokeepttito cope with a (partly) disrupted

contribution from supraspinal centers in the regton of healthy-like motor modules.

Conclusion

In conclusion, if motor modules are modified inok& with maintenance of the activation
impulses, robot therapy can be more adequatelyaltatd. The results of this study provide
the basis for proposing a novel closed-loop constodtegy for intensive gait training in
which robotic trainer parameters (GF and gait speedld be optimally controlled directly
exploring the motor protocol of the patient to shape modular control of synergistic
muscles, inducing the required timing of activitgngrated by central pattern generators.
Further work with personalized neuro-musculoskéletadels is required to verify the
contribution of investigated muscles to net tortpleng into account the learning effect on
the training time [43]. Also, such models are taapglied to compute the interaction torques
from the commonly available kinetic information timerapeutic exoskeletons. It should be
kept in mind that gait is the result of very comxpiateractions. Any planning efforts to
design robot therapy to develop motor modules lvélp to determine whether the capacity of
a central pattern generator characteristic may ctonsurface when appropriate sensory
experience is provided or might be a developmentdéitermined function of restricted
neuronal circuits [44].
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