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Abstract

The task of image classification is one of the elemental problems of computer
vision and the basis for a multitude of real world applications. To achieve accu-
rate and efficient image classification, the joint optimization of the reconstruc-
tion and classification error is needed. Unfortunately, this is a hard non convex
problem. In this thesis a novel optimization strategy is proposed, in which a
Convolutional Autoencoder for dimensionality reduction and a fully connected
Neural Network classifier are combined to simultaneously produce supervised
dimensionality reduction and predictions. This methodology can be beneficial
in enforcing explainability of Deep Learning architectures and the resulting la-
tent space can also be utilized to improve traditional classification algorithms.
Experimental results showed competitive results against state-of-the-art Deep
Learning methods.

Keywords: Artificial Neural Networks, Deep Learning, Dimensionality Re-
duction, Classification, Autoencoders, Image Classification.
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Chapter 1

Introduction

Image classification refers to the task of categorizing images into one of several
predefined classes. This task is one of the fundamental problems in computer
vision and it is the basis of other computer vision tasks such as segmentation and
detection [RW17]. Traditionally, the process of image classification consists of
two steps; first handcrafted image features are extracted via feature descriptors,
such as SIFT [Low04] and SURF [BETVG08], and subsequently these features
are used as input to a trainable classifier. The main limitation of this approach
was the fact that the accuracy was heavily depended on the design of the feature
extraction step, which was a time consuming and labour intensive task [RW17].
Nowadays, Deep Learning models and especially Convolutional Neural Networks
(CNNs) have been shown to overcome this limitation and have become the
state-of-the-art-for image recognition, classification, and detection tasks [RW17,
HdP20, Mal16].

In other cases, the images are directly treated as high-dimensional vectors,
where each variable correspond to an image pixel. Unfortunately, the resulting
ultra high-dimensional data have some non intuitive characteristics. As pre-
sented in [AHK01], the ratio of distances of a data point to its nearest and
furthest neighbors tends to 1 as dimensionality grows, making not only the
calculation of distances extremely computationally expensive but also affecting
negatively the performance of classification methods. The emerged Dimension-
ality Reduction methods have been proven to be very effective in retaining the
structure of data, making them a useful tool.

Dimensionality reduction is a widely used preprocessing step that facilitates
classification, visualization and the storage of high-dimensional data [HS06].
Especially for classification, it is utilised to increase the learning speed of the
classifier, improve its performance and mitigate the effect of overfitting on small
datasets through the noise reduction property of dimensionality reduction meth-
ods [WCP14]. The majority of supervised dimensionality reduction techniques,
exploit the data and label pairs contained in the training dataset in order to
learn the best dimensionality reduction mapping and then use those mappings
as input to a standard classification algorithm. These methodologies are the
most common and lead the dimensionality reduction mapping to separate the
inputs or manifolds that have different labels from each other [WCP14].

Artificial Neural Networks have been traditionally used for dimensional-
ity reduction. Autoencoder Networks, which are a nonlinear generalization of

1
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PCA [HS06], have shown widespread success in producing powerful feature rep-
resentations [DAMS19]. They allowed the feature extraction to be learnable
and automatic, providing a flexible and scalable solution to the problem of di-
mensionality reduction and feature extraction [DAMS19]. Most importantly,
autoencoders, on the contrary to traditional dimensionality reduction method-
ologies, allow the utilization of Deep Learning architectures, such as convo-
lutional networks, taking image local structure into consideration during the
feature extraction process [GLZY17].

In this work, we propose a methodology for supervised dimensionality re-
duction and classification based on a Neural Network architecture that simul-
taneously optimizes the classification loss and the reconstruction error, aiming
to improve both classification performance and model explainability. The most
well established example of this approach in statistical Machine Learning is the
Linear Discriminant Analysis (LDA), which finds the best linear mapping, re-
garding between-class scatter against within-class scatter. However, LDA needs
to solve a difficult non-convex problem, especially for a non-linear dimension-
ality reduction mapping [WCP14]. To overcome this obstacle, we propose a
novel optimization strategy which exploits a Convolutional Autoencoder for di-
mensionality reduction and a Neural Network classifier, entitled Convolutional
Supervised Autoencoder (CSAE). Motivated by LDA, we also focus on explain-
ability, providing visualizations of the generated latent space. Furthermore, we
show that the aforementioned latent space can greatly enhance the classification
performance of traditional algorithms. Hereby, the major contributions of this
study are summarized:

• Novel approach for supervised non linear dimensionality reduction and
classification of image data, focusing on explainability through the gener-
ated latent space.

• Utilization of the optimized low dimensional representations by traditional
classification algorithms to improve their performance.

• Extensive study of the resulting classification boundaries and their prop-
erties, through the resulting low dimensional representations.

• Extensive experimental analysis on real world benchmarks and biomedical
image datasets to show the applicability of the proposed approach.
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Chapter 2

Background

Supervised methods are the methodologies that are intended to find the relation-
ship between independent variables and the dependent variable. The discovered
relationship can be represented by a structure entitled as a model, which is capa-
ble of describing and explaining phenomena. There are two kinds of supervised
models: regression models and classification models or classifiers. Regression
models map the input space to a real valued domain, while the classification
models map the input space to predefined response values or classes [MR05].
Image Classification is the special case of the classification problem for imaging
data, belonging to the elemental problems of computer vision, while being a
base for other related problem such as image segmentation [RW17].

High dimensional data such as images are possessed by a number of unusual
characteristics, which can lead to issues during data mining. Notable examples
of such properties being scattering of points in the surface and corners of the
space along with absence of points in the center of the space. A common pre-
processing step to mitigate the effects of these phenomena is dimensionality re-
duction (DR). These methods attempt to reduce dimensionality while retaining
the fundamental characteristics of the data. Specifically, this step can offer data
visualization, alleviate noise contained in the input, while particularly for the
classification problem can increase the classifier’s learning speed and mitigate
overfit [WCP14, ZJ14]. In this chapter background knowledge concerning the
discussed topics and proposed methodologies is thoroughly presented in order
to fully grasp the content of this thesis.

2.1 Generative Models for Classification

Contrary to modeling the conditional distribution of the response Y given the
predictors X, namely P (Y = k|X = x), an alternative approach is utilized. In
more detail, the predictors distribution is modeled separately in each of the
classes (each value of Y ). In what follows, the Bayes’ Theorem is utilized to
turn them into estimates of P (Y = k|X = x).

Logistic Regression is a well established and widely used binary classification
method, which is also extendable to the multiple response class case (Mutlino-
mial Logistic Regression). The urgency behind this new kind of approach is:

• The method considered in this section do not suffer from instability in pa-

3
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2.1. Generative Models for Classification 4

rameter estimation as in Logistic Regression when there exists substantial
separation between the two classes.

• Possibly better performance than Logistic Regression when the distribu-
tion of predictors in each response class is approximately normal and the
sample size is small.

• The method presented in this section can be easily and naturally extended
to the case of multiple response classes (more than two).

Consider the goal of classifying an observation into one of K classes. The
qualitative response variable Y may be assigned to K possible distinct and
unordered values. The probability, denoted as πk, that a randomly chosen ob-
servation comes from the kth class is entitled as overall or prior probability. Let
fk (x) ≡ P (X = x|Y = k) represent the density function of X for an observa-
tion coming from the kth class, where fk (x) is relatively large if there is a high
probability that an observation in the kth class has X ≈ x, while small value
otherwise. The Bayes’ Theorem states the following:

P (Y = k|X = x) =
πkfk (x)∑K
l=1 πlfl (x)

(2.1)

where pk (x) = P (Y = k|X = x) is the posterior probability that an obser-
vation X = x comes from the kth class, or in other words it is the probability
that the observation belongs to the kth class, given the predictor value of the
observation.

Equation (2.1) suggests to substitute estimations of πk and fk (x) instead
of directly computing pk (x). In more detail if a random population sample is
given, the prior probabilities πk for each of the K classes can be easily computed
as the fraction of training observations that belong to the kth class. However
the estimation of fk (x) is more challenging and requires some simplifying as-
sumptions.

The Bayes Classifier classifies an observation x to the class which occupies
the largest pk (x). This classifier has the lowest error rate out of all classifiers.
Consequently, if fk (x) is estimated then a substitution to Equation (2.1) will
lead to a Bayes Classifier approximation. One of the most established and widely
employed method for estimating fk (x) and approximating Bayes Classifier is
the Linear Discriminant Analysis (LDA) methodology [JWHT21]. Finally, this
algorithm can be employed as a powerful method for supervised dimensionality
reduction [TGIH17].

2.1.1 Linear Discriminant Analysis (LDA)

One Predictor

In this subsection the case of one (1) predictor is examined. In more detail, the
goal is to obtain an estimate of pk (x) by providing an estimate of fk (x) into
Equation (2.1). An observation is then classified to the class for which pk (x) is
largest.

At this point for the purpose of estimating fk (x) some assumptions about
its form are made. Specifically, it is assumed that fk (x) is normal or Gaussian.
The normal density in the one dimensional case is defined as follows:
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5 Chapter 2. Background

fk (x) =
1√
2πσk

exp

(
− 1

2σ2
k

(x− µk)
2

)
(2.2)

where µk and σ2
k are the mean and variance parameters for the kth class.

Additionally, a shared variance term across all K classes is assumed, namely
σ2
1 = σ2

2 = · · · = σ2
k, which for simplicity is denoted as σ2. Substituting Equa-

tion (2.2) to (2.1) results in the following:

pk (x) =
πk

1√
2πσ

exp
(
− 1

2σ2 (x− µk)
2
)

∑K
l=1 πl

1√
2πσ

exp
(
− 1

2σ2 (x− µl)
2
) (2.3)

The Bayes classifier will assign an observation X = x to the class for which
Equation (2.3) occupies the largest value. Applying the log function on Equa-
tion (2.3) and rearranging the terms it follows that:

δk (x) = x · µk

σ2
− µ2

k

2σ2
+ log (πk) (2.4)

Consequently, an observation is assigned to the class for which (2.4) is largest.
The Bayes decision boundary for K = 2 and π1 = π2, is the point for which
δ1 (x) = δ2 (x) which amounts to:

x =
µ2
1 − µ2

2

2 (µ1 − µ2)
=

(µ1 − µ2) (µ1 + µ2)

2 (µ1 − µ2)
=

µ1 + µ2

2
(2.5)

An illustration is presented in Figure 2.1. Two normal density functions
f1 (x) and f2 (x), with parameters µ1 = −3, µ2 = 3 and σ2

1 = σ2
2 = 2 are

depicted which represent two response classes. If π1 = π2 is assumed, namely
an observation is equally probable to originate from either class, then from (2.5),

Figure 2.1: Two normal density functions f1 (x) and f2 (x) representing two
response classes, with the dashed line reflecting the Bayes decision boundary.
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2.1. Generative Models for Classification 6

the Bayes classifier classifies values of x smaller than 0 to class 1, otherwise to
class 2. Consider that the Bayes classifier can be computed only because the
parameters are known.

Even if the assumption that X is drawn from a Gaussian distribution within
each class holds, a parameter estimation for µ1, µ2, . . . , µk, π1, π2, . . . , πk and σ2

is required in order to apply the Bayes classifier. The Linear Discriminant Anal-
ysis (LDA) method substitutes estimates of πk, µk and σ2 into Equation (2.4)
for the purpose of approximating the Bayes Classifier. The employed estimates
are the following:

µ̂k =
1

nk

∑
i:yi=k

xi

σ̂2 =
1

n−K

K∑
k=1

∑
i:yi=k

(xi − µ̂k)
2

(2.6)

with n being the total number of training observations and nk being the number
of training observations contained in the kth class. In other words, the estima-
tion for µk is the mean of the training observations contained in the kth class,
while the σ2 estimation can be thought of as a weighted average of the sample
variances for each of the K response classes. Moreover, if the class membership
probabilities π1, π2, . . . , πk are known they can be employed directly, while oth-
erwise in the absence of such knowledge Linear Discriminant Analaysis estimates
the class membership probabilities πk in the following manner:

π̂k =
nk

n
(2.7)

In other words that is the fraction of training observations belonging to the kth
class. The Linear Discriminant Analysis classifier substitutes the estimations in
Equations (2.6) and (2.7) to the Equation (2.4), which amounts to:

δ̂k (x) = x · µ̂k

σ̂2
− µ̂2

k

2σ̂2
+ log (π̂k) (2.8)

and then classifies an observation X = x to the class which occupies the largest
value of Equation (2.8). Observe that the δ̂k (x), which are entitled as discrim-
inant functions, are linear functions of x, with this property being the stem of
the word linear in the classifier’s name [JWHT21].

Multiple Predictors

At this point, the LDA classifier is extended to the multiple predictor case. In
more detail, it is assumed that X = (X1, X2, . . . , Xp) is drawn from a multi-
variate Gaussian or equivalently multivariate normal distribution which has a
class-specific mean vector and a common covariance matrix. The multivariate
normal distribution assumes that each individual predictor is distributed as an
one dimensional Gaussian distribution, with an amount of correlation between
each pair of predictors. The notation, X ∼ N (µ,Σ), indicates that a p dimen-
sional random variable X is distributed as a multivariate normal distribution,
where µ = E (X) is the mean of X, which is a vector containing p elements, and
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7 Chapter 2. Background

Figure 2.2: Graphical representations of two Bivariate Gaussian Distributions.
Left: Equal Variances and Uncorrelated Predictors. Right: Unequal Variances
and Correlated Predictors.

Σ = Cov (X) is the p × p covariance matrix of X. The multivariate Gaussian
density if defined as follows:

f (x) =
1

(2π)
p/2 |Σ|1/2

exp

(
−1

2
(x− µ)

T
Σ−1 (x− µ)

)
(2.9)

A graphical representation of two bivariate normal distributions, namely
p = 2, is presented in Figure 2.2. The height of the surface at any particular
point reflects the probability that X1 and X2 fall in a small region around
that point, while if the surface is cut along the X1 or the X2 axis, then the
derived cross-section will have an one-dimensional normal distribution shape.
Additionally, in the bivariate Gaussian distribution at the left-hand sub-figure
presented in the aforementioned Figure, the predictors have equal variances,
namely Var (X1) = Var (X2), and are uncorrelated, namely Cor (X1, X2) = 0,
which results in a surface having the characteristic bell shape. However if the
predictors have unequal variances or correlation the bell shape is distorted as
depicted in the right sub-figure of Figure 2.2, resulting in an elliptical base
rather that circular.

Considering the multiple predictor case, the LDA classifier assumes that the
observation belonging to the kth class are drawn from a multivariate normal
distribution N (µk,Σ), where µk is the class specific mean vector and Σ is the
covariance matrix which is common to theK classes. Substituting the multivari-
ate Gaussian density of the kth class denoted as fk (X = x) to Equation (2.1)
it follows that:

δk (x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + log (πk) (2.10)

In other words the Bayes classifier classifies an observation X = x to the
class which occupies the largest value of Equation (2.10). The Bayes Decision
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2.1. Generative Models for Classification 8

Boundaries are the set of points for which δk (x) = δl (x) for k ̸= l. An es-
timation of the unknown parameters µ1, . . . , µk, Σ and π1, . . . , πk is required
and the formulas for achieving the desired estimation are similar to those pre-
sented in (2.6). In what follows, concerning a new observation X = x, the LDA
classifier substitutes these estimates to Equation (2.10) in order to obtain the

quantities of decision functions δ̂k (x) and assigns the new observation to the
class which occupies the greatest value. Finally, observe that δk (x) which is
defined in Equation (2.10), is a linear function of x or in other words the rule
based on which LDA makes a decision, depends on x through a linear combina-
tion of its elements, fact being the origin of the word “linear” in the classifier’s
name [JWHT21].

2.1.2 LDA for Supervised Dimensionality Reduction

Additionally, Linear Discriminant Analysis (LDA) can be employed as a method
for Supervised Dimensionality Reduction. Specifically, its goal is to project the
data matrix into a lower dimensional space, which maximizes data separability.
Concisely three steps are required in order to achieve this goal:

• initially the between-class scatter matrix is computed, which represents
the distance between class means

• in what follows, the within-class scatter matrix is calculated. which rep-
resents the distance between samples and mean of each class

• finally, the low dimensional space is constructed which maximizes the
between-class scatter matrix and minimizes the within-class scatter ma-
trix, or equivalently maximizes data separability.

Let X denote the original data matrix which consists of n labeled points
{xi, yi}, where xi ∈ Rd and yi ∈ {c1, · · · , ck}, namely there exist k classes in
the dataset X. Additionally, let Xi denote the subset of points in X that are
contained in the class i, in other words Xi = {xj |yj = i}, and ni denote the
number of points contained in the class i. Additionally, W ∈ Rd×r denotes
the projection matrix of LDA, while the transformation of classical LDA for a
sample xi is performed as follows:

ai = WTxi

The first step to achieve the desired goal is the computation of a matrix
entitled as between-class scatter matrix. Linear Discriminant Analysis searches
for a low dimensional space such that the distance between the projected class
means (mi) from the projected total mean (m) is maximized. This difference
can be written as follows:

(mi −m)
2
=

(
WTµi −WTµ

)2
= WT (µi − µ) (µi − µ)

T
W (2.11)

Setting SBi
= (µi − µ) (µi − µ)

T
, (2.11) can be written as follows

(mi −m)
2
= WTSBiW (2.12)
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9 Chapter 2. Background

The term SBi
= (µi − µ) (µi − µ)

T
, which is the between-class scatter matrix

for the ith class, reflects the distance between the mean of the ith class and the
total mean, denoted as µi and µ respectively, which can be computed as follows:

µi =
1

ni

∑
j:yj=i

xj

µ =
1

n

n∑
l=i

xl

The total between-class scatter matrix, denoted as SB is computed as follows:

SB =

k∑
i=1

niSBi

where k is the number of classes, ni is the number of points contained in the class
i and SBi

is the between-class scatter matrix for the ith class. Recall that SBi

represents the distance between the mean of the ith class and the total mean,
while the total between-class scatter matrix SB reflects the distance between
class means.

The second step includes the within-class scatter matrix computation. Lin-
ear Discriminant Analysis searches for a low dimensional space, which minimizes
the distance between projected samples of the ith class from the corresponding
projected class mean. This difference can be written in the following manner:

k∑
i=1

∑
j:yj=i

(
WTxij −mi

)2
=

k∑
i=1

∑
j:yj=i

(
WTxij −WTµi

)2
=

k∑
i=1

∑
j:yj=i

WT (xij − µi) (xij − µi)
T
W (2.13)

Setting SWi
=

∑
j:yj=i (xij − µi) (xij − µi)

T
, (2.13) can be written as follows:

k∑
i=1

∑
j:yj=i

(
WTxij −mi

)2
=

k∑
i=1

WTSWiW

The term SWi
=

∑
j:yj=i (xij − µi) (xij − µi)

T
is the within-class scatter matrix

for the ith class, which reflects the distance between samples of the ith class
from the corresponding class mean. The total within-class scatter matrix SW ,
which represents the distance of samples from their class mean, can be computed
as follows:

SW =

k∑
i=1

SWi

Finally, the optimal transformation or projection matrixW can be computed
by utilizing the Fisher’s Criterion as follows:

argmax
W

WTSBW

WTSWW
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2.2. Deep Learning 10

Figure 2.3: The two dimensional space obtained by applying Linear Discrimi-
nant Analysis for Supervised Dimensionality Reduction on the Iris data.

which can be written as:

SWW = λSBW (2.14)

where λ represents the eigenvalues of projection matrixW . It follows from (2.14)
that a solution is acquired by solving the generalized eigenvalue problem thus
calculating the eigenvalues and eigenvectors associated with S−1

W SB if SW is a
non singular matrix. The magnitude of an eigenvalue reflects the discrimina-
tive power of the corresponding eigenvector. Consequently the r eigenvectors
corresponding to the r largest eigenvalues can be retained for constructing the
desired low dimensional space, while the remaining can be discarded or ne-
glected [TGIH17]. Finally, a graphical representation of the two dimensional
space derived by applying Linear Discriminant Analysis for Supervised Dimen-
sionality Reduction on the Iris data [And36, Fis36] is presented in Figure 2.3.

2.2 Deep Learning

Deep Learning possesses a long and active history, while is characterized by a
plenty of aspirations. Neural networks (NNs) are the core component of deep
learning. Historically, neural networks became widely known in the 1980 decade,
which was followed by a synthesis period that involved property analysis and
algorithm improvements. However, a period of reduced interest was introduced,
where novel methods were proposed such as Support Vector Machines, which
compared to tinkering requiring and poorly trained NNs of that time were more
automatic and high performant. Neural Networks reemerged in 2010, with the
title “Deep Learning”, which was accompanied by a series of success stories in
solving challenging problems such as image and video classification.

A highly potent framework for supervised learning is provided by contem-
porary neural networks. Moreover, a deep network can describe functions of
increasing complexity by introducing additional model complexity. Expertise
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11 Chapter 2. Background

is required in order to scale these models to large inputs, such as high resolu-
tion images, with Convolutional Neural Networks providing a solution to this
problem. Finally, Autoencoder neural networks are introduced, which in their
traditional form propose a solution to the nonlinear dimensionality reduction
and feature learning problems [JWHT21, GBC16].

2.2.1 Deep Feedforward Neural Networks

The fundamental deep learning models are the Deep Feedforward Neural Net-
works commonly known as feedforward neural networks or multilayer percep-
trons (MLPs). The main goal of these models is function approximation. As an
example, let the function to be approximated is denoted as f∗, then a classifier
maps an input x to a class y through f∗, namely y = f∗ (x). The MLP in
order to learn the best approximation of f∗ will define a mapping f , namely
y = f (x;θ) and learn the value of parameters θ that leads to the best approx-
imation.

In this type of models, information flows from the function being evaluated
from x via the intermediate calculations necessary to define f and finally to
the output y, with this property being the reason of their entitlement as feed-
forward. No feedback connections exist in feedforward neural networks, where
model outputs are provided as inputs to itself, while otherwise are entitled as
recurrent neural networks. The utilization of feedforward networks is crucial for
machine learning professionals. A plethora of commercial applications are built
on top of them, with convolutional networks for object recognition from images
and recurrent networks for natural language processing applications being some
notable examples.

They are entitled as networks, because they are depicted by composing to-
gether many functions, while they are associated with a directed acyclic graph
illustrating the relationship between functions. A graphical representation of a

Output 
Layer

Input 
Layer

1st 
Hidden Layer

th 
Hidden Layer

 units  units 

 units 

Figure 2.4: A graphical representation of a Deep Feedforward Neural Network.
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2.2. Deep Learning 12

Deep Feedforward Neural Network is presented in Figure 2.4. The most preva-
lent neural network architectures are functions composed as a chain, namely
assume three functions f1, f2 and f3 forming the following chain f (x) =
f3 (f2 (f1 (x))). The first evaluated function is called first layer, the second is
known as second layer and continuing similarly, while the last layer is labelled
as output layer. Concurrently, the chain length is entitled as the depth of the
model, with this term giving birth to the name “deep learning”. Each training
example x is accompanied by its corresponding response class (label) y, which
concurrently constitutes the desired result of the output layer. Layers found
between the input and final layer are entitled as hidden, because the training
data does not specify which are the desired outputs of these layers.

Additionally, the network’s hidden layers are typically vector-valued, with
their dimensionality determining the model’s width. Each vector element can be
thought of as a neuron or unit. A graphical representation of a unit or neuron
is presented in Figure 2.5. Specifically it receives an input from other units
xi, computes their weighted sum, namely

∑n
i=1 wixi + b0, and then the output

value or widely known as activation value is computed by passing the weighted
summation into an activation function. Notable examples of such functions are
the sigmoid activation function which is defined as follows:

g (z) =
1

1 + e−z

and the widely established rectified linear unit activation function (ReLU) which
is formally defined in the following manner:

g (z) =

{
0 if z < 0,

z otherwise.

Noteworthy is the fact that compared to a sigmoid activation, ReLU can be
computed and stored more efficiently. Finally, concerning the supervised learn-
ing problem, if the model’s output is desired to provide class probabilities, then
the softmax activation function is utilized at the output layer, which for the
mth output neuron is defined as follows:

gm (zm) =
ezm∑p
l=1 e

zl
(2.15)

Activation 
Function

Output

Figure 2.5: A graphical representation of a unit or neuron.
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13 Chapter 2. Background

where p is the number of units in the output layer and zm being the weighted
sum of the mth output unit.

An estimation of the unknown parameters (weights) is essential for fitting
a neural network. This procedure is also called training process and during
this operation the classifier’s function f∗ is approximated by finding the set
of parameters achieving the best approximation, or formally minimizing the
error. Contemplate that each training observation is accompanied by its corre-
sponding label, meaning that an error can be computed between predicted and
ground truth values via a function entitled as loss function. Concerning the
classification problem, neural networks can be fitted by minimizing the negative
multinomial log-likelihood or commonly known as cross-entropy loss function,
which is defined in the following manner:

Q
(
Y, Ŷ

)
= −

n∑
i=1

p∑
l=1

yim log (ŷim) (2.16)

where Y and Ŷ denote the ground truth and the corresponding predicted values
of the observations respectively, n is the number of observations, p denotes the
number of output units, yim is the mth element of the ith sample’s ground truth
and ŷim being the mth element of the ith sample’s predicted value.

Finally, these models are called neural because they are inspired by neuro-
science. However they are not designed to model the brain function perfectly.
On the contrary feedforward neural networks can be considered as a power-
ful tool for function approximation which is designed to accomplish statisti-
cal generalization while drawing inspiration from brain functionality [JWHT21,
GBC16].

2.2.2 Convolutional Neural Networks

Convolutional Networks, widely known as Convolutional Neural Networks (CNNs),
are a particular class of neural networks utilized to process input with a prede-
termined, grid-like architecture. A notable example of such an input is imaging
data which can be thought of as a two-dimensional grid of pixels. Convolutional
networks have achieved spectacular success in a wide range of problems includ-
ing image classification. A convolutional network architecture for binary image
classification is presented in Figure 2.61 .This type of networks approximate
how humans classify photos to some extent, by identifying unique features or
patterns anywhere in the image that separate each distinct item class.

A convolutional network operates in a straightforward manner. Initially, low-
level features are identified in the input image, such as edges or color patches.
The identified features are combined to generate higher-level features, such as
ears and eyes. Finally, the existence or not of these features contributes to the
probability of any specific output class. Observe that this procedure constructs
a hierarchy. CNNs achieve that by utilizing two kinds of layers, a convolution
layer, which searches for small patterns in an image and a pooling layer that
downsamples the discovered patterns to an important subset. These operations
are repeated up until pooling has reduced the feature map of each channel to
only a few pixels in each dimension [JWHT21, GBC16].

1This Figure was constructed using:https://github.com/gwding/draw convnet.
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2.2. Deep Learning 14

Figure 2.6: A graphical representation of a convolutional network architecture
for binary image classification.

Convolution Layer

A convolution layer is consisted of a number of convolution filters. In more
detail, these filters can be thought of as templates determining whether partic-
ular local features are present in the examined image. The name convolution
originates from the fact the convolution filters and generally convolution net-
works are heavily based on a mathematical operation entitled as convolution.
Specifically for imaging data, this operation is defined in the following manner:

S (i, j) = (I ∗K) (i, j) =
∑
m

∑
n

I (m,n)K (i−m, j − n) (2.17)

where ∗ denotes the convolution operation, I is the two dimensional input image
and K is a 2D matrix entitled as kernel, which usually facilitates predefined or
learnable parameters. The convolved image is also known as a feature map.
Sometimes a related function to (2.17) entitled as cross-correlation is favored,
which is defined as follows:

S (i, j) = (I ∗K) (i, j) =
∑
m

∑
n

I (i+m, j + n)K (m,n) (2.18)

Eventually, the convolution operation results in a convolved image which con-
tains highlighted regions resembling the filter.

A convolution layer as previously presented utilize a whole bank of filters
to extract local features from an input image. Utilization of predefined fil-
ters in such a manner is a standard practice in image processing. However in
Convolutional Neural Networks the filters are learned for the particular task.
Noteworthy is the fact that filter parameters are working on localized patches in
the image, while the same weights in a filter are utilized for all possible patches
in the image (this is known as weight sharing), rendering highly structured and
constrained weights.

In what follows more detailed information are provided, considering a colored
image as an input:

• A colored image is composed out of three channels (three dimensional fea-
ture map). Each channel is a two-dimensional array one for each color (red,
green and blue). A convolution filter will also have three channels one for
each color with possibly different weights. The derived convolved images
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15 Chapter 2. Background

are combined by summing them together to generate a two-dimensional
feature map.

• If K convolutional filters are utilized then K two dimensional output fea-
ture maps are obtained, which can be thought of as a three dimensional
array or feature map. The derived feature maps can be considered as
separate information channels.

• Consequently a nonlinear activation function is applied onto the convolved
images, such as the rectified linear unit activation function. This step is
widely known as the detector stage.

Pooling Layer

Subsequently, the detector stage’s output is passed through a pooling function
or pooling layer. Specifically, it replaces values of the input with a summary
statistic of their nearby values. In other words, a pooling layer provides a
way to summarize and condense an input image. Notable examples are the max
pooling operation which summarizes a rectangular neighborhood by selecting its
maximum value, while another favored choice is the average of the elements con-
tained in a rectangular neighborhood. Neighborhoods that are non-overlapping
and dispose a stride of two (2) result in a reduce of feature map size by a factor
of two in each direction. Finally, pooling is utilized to derive representations
that are translation invariant, namely their values should not change when a
translation of the input by a small amount is performed [JWHT21, GBC16].

2.2.3 Autoencoders

A neural network that has been trained to copy its input to its output is entitled
as an Autoencoder. In more detail, they contain a hidden layer h that describes
a code which is utilized to represent the input. The network can be thought of
as comprised of two components: an encoder function h = f (x) and a decoder
function r = g (h), that produces a reconstruction. A graphical representation
of such a network is presented in Figure 2.7. Instead of learning the input
copying task for every input, namely x = g (f (x)) ∀x, which is not especially
useful, autoencoders are restricted to copy approximately, while concurrently
duplicate input that resembles the training data. Consequently, this results
in a model that often learns beneficial characteristics of the data, since the
model is compelled to prioritize which aspects of the input should be duplicated.
Autoencoders may be thought of as a special case of feedforward networks, while
concurrently can be trained using all of the same methods, typically minibatch
gradient descent following gradient computation by back-propagation.

Figure 2.7: A graphical representation of an autoencoder. An input x is mapped
to a code h by an encoder f , which is then mapped to a reconstruction r by a
decoder g.
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2.2. Deep Learning 16

The concept of Autoencoders has been present in the development of neural
networks for decades. Traditionally, they were employed as methodologies for
dimensionality reduction and feature learning, while in modern autoencoders the
concept of an encoder and a decoder has been expanded to stochastic mappings,
namely pencoder (h|x) and pdecoder (x|h), in addition to deterministic functions.
Recently theoretical links between autoencoders and latent variable models have
been discovered [GBC16].

Undercomplete Autoencoders

Although it may seem pointless to copy the input to the output, most of the
time we are not concerned with the decoder’s output. Instead, it is anticipated
that h will acquire valuable features as a result of training the autoencoder to
carry out the input copying operation. An approach to acquire useful features
from the autoencoder is by constraining the code to have smaller dimension
than the input. This type of autoencoder is entitled as Undercomplete Au-
toencoder. A graphical representation of a such an architecture is presented in
Figure 2.8.Learning an undercomplete representation compels the autoencoder
to learn the most important aspects of the training data.

The learning procedure can be described by a loss function minimization

L (x, g (f (x))) (2.19)

where L is a loss function that penalizes g (f (x)) being dissimilar from x, with
an example of such a function being the Mean Squared Error:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

(2.20)

where n is the number of data points, yi is the ith observed value and ŷi is the
ith predicted value.

A noteworthy fact is that an autoencoder equipped with a linear decoder
and mean squared error as a loss function, which is trained to perform the in-
put copying task, results in a model that has learned the principal subspace of
the training data or in other words it has learned to span the same subspace
as PCA. Consequently, a more powerful nonlinear generalization of PCA can
be learned by employing autoencoders equipped with nonlinear encoder func-
tions f and nonlinear decoder functions g. Unfortunately, if the encoder and
decoder are given excessive capacity, the autoencoder may learn to perform the
input copying operation, without extracting useful information about the data
distribution [GBC16].

Encoder Decoder

Code

Input Reconstruction

Figure 2.8: A graphical representation of an Undercomplete Autoencoder.
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17 Chapter 2. Background

Regularized Autoencoders

The most salient features of the data distribution can be learned by utilizing an
undercomplete autoencoder with code dimension less than the input dimension.
However, as previously described, if the encoder and decoder are of excessive
capacity, these autoencoders fail to learn anything useful. This phenomenon
also occurs when the code dimension is equal or greater (overcomplete case)
than the input dimension.

A successful training procedure for an autoencoder includes the selection of
a code dimension and a capacity for the encoder and decoder based on the com-
plexity of data distribution to be modeled. Regularized Autoencoders provide a
solution to this issue. In more detail, Regularized Autoencoders employ a loss
function that encourages the model to have other properties besides the input
copying ability, rather than limiting the capacity by keeping the encoder and de-
coder shallow and the code size small. Notable examples of the aforementioned
properties are the representation sparsity and robustness to noise. This allow
regularized autoencoders to learn useful information for the data distribution
while being non linear and over complete, even if the model capacity is excessive
enough to learn the identity function [GBC16].
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Chapter 3

Related Work

Images are characterized by high dimensionality, even when their size is rela-
tively small, presenting a common case of the widely known curse of dimen-
sionality. As described in [AHK01], the ratio of distances of a data point to
its nearest and furthest neighbors tends to 1 as dimensionality grows. This
behaviour negatively affects the performance of Machine Learning methods.
A solution to this problem, came from the dimensionality reduction methods,
which have been proven to be effective on retaining the data structure, being a
fruitful tool for the classification of high dimensional data [WCP14].

The goal of dimensionality reduction is to retain as much of the significant
structure of the high-dimensional data as possible in the low-dimensional repre-
sentation. Principal Component Analysis (PCA) [Pea01], projects the original
data onto the directions of maximal variance in an unsupervised way. Linear
Discriminant Analysis (LDA), as described in [TGIH17, WHWW14], is a super-
vised dimensionality reduction method, which aims to find a projection, which
maximizes the between class to within class variance ratio and thus guaranteeing
maximum class separability.

However, the manifold structure of real world data types, such as images,
is complicated. As argued in [WHWW14], the use of dimensionality reduc-
tion methods that utilize a simple parametric model, such as the Principal
Component Analysis, or exploit fixed and defined data relations on the orig-
inal high dimensional space that may not be valid on the manifold, such as
ISOMAP [TDSL00], are not sufficient to capture such complicated structures.
On the other hand, Neural Networks and especially Autoencoders, have shown
widespread success in producing powerful feature representations, mitigating the
previously presented limitation [DAMS19]. Finally, there is a set of methodolo-
gies which attempt to combine LDA and Artificial Neural Networks [LDL19,
DKW15, WQNY17], but they are either characterized by high complexity or
they are only able to perform binary classification.

The Autoencoder Neural Networks [RHW86] are a non-linear generaliza-
tion of the Principal Component Analysis [HS06]. This class of Neural Net-
works has shown wide success as tools for non linear dimensionality reduc-
tion and feature extraction for clustering [DAMS19, GGLY17, XGF16, NTP21,
MSJ+15, MKKL20], semi supervised learning [GM16, RVH+15] and classifica-
tion [LPW18, NT20, RL13, GZJ+15]. Specifically, the Supervised Autoencoder
(SAE) is a Neural Network that jointly predicts the input and the classification

18
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19 Chapter 3. Related Work

result [LPW18]. Moreover, in the aforementioned study, a proof of the uniform
stability of the SAE with one hidden layer (linear SAE) is performed and thus
a bound on the generalization error is provided. Finally, it has been empirically
shown that the addition of the reconstruction loss never harms performance
when compared with the corresponding Neural Network.

Another recent methodology that utilizes Autoecoders for classification is
presented in [NT20]. Therein, the latent space of the Autoencoder is exploited
to perform classification, while a fine-tuning of the learned representation is
performed in a self-supervised fashion, forcing the Autoencoder to better learn
separated low dimensional representations. In an earlier study [RL13], the dis-
criminative recurrent sparse Autoencoder model is proposed, which is composed
of a recurrent encoder that has Rectified Linear Units and is connected with
two linear decoders that reconstruct the input and predict the classification
result. Simultaneously, the label information was embedded into the training
of the Autoencoder by altering the error function to include the classification
error. Moreover, Supervised Deep Autoencoders were used for face recogni-
tion [GZJ+15]. Finally, extracted image features from pretrained CNNs were
exploited and provided as input to LDA to perform supervised dimensionality
reduction and classification [HdP20].

In this thesis, motivated by the aforementioned approaches, supervised di-
mensionality reduction and image classification is extensively studied, while em-
phasis is given on Deep Learning architectures. In contrast to [LPW18], a novel
optimization strategy is proposed, while extensive visualizations of the gener-
ated latent space and its exploration are provided to deeply understand the be-
haviour of the proposed methodology in terms of performance and explainability
concerning its decision making, structure preservation and information capture.
Additionally, the proposed methodology is characterized by lower complexity
than the Supervised Autoencoder presented in [NT20], while concurrently, as
opposed to [RL13], pretraining is not required. In addition, we study the ex-
ploitation of the optimized for classification, latent space of the Convolutional
Supervised Autoencoder to improve already existing classification algorithms.
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Proposed Methodologies

In what follows, we present the novel strategy for classification and optimization
of the reconstruction error. To achieve the desired task, we exploit a Convolu-
tional Autoencoder for dimensionality reduction that preserves the local struc-
ture of data generating distribution, as presented in [GGLY17], and a classifier,
in the form of a fully connected Neural Network. This methodology, provides a
framework for supervised non-linear dimensionality reduction and classification
in an end-to-end manner. The aforementioned methodology is entitled Convo-
lutional Supervised Autoencoder (CSAE). Subsequently, we utilize the powerful
latent representations of images that lie in the generated latent space and use
them as inputs to traditional classification algorithms, such as the k-Nearest
Neighbors, to improve their performance.

4.1 Convolutional Supervised Autoencoder

The primary tasks of this methodology are supervised dimensionality reduction
and image classification. The Convolutional Autoencoder (CAE), and thus the
reconstruction error, is employed as an auxiliary task not only to preserve the
local structure of the data generating distribution, as presented in [GGLY17],
but also to act as a regularizer for the solution. This results in promoting
stability and achieving better generalization [LPW18]. To examine the non
linear dimensionality reduction and classification capabilities of the proposed
methodology, the following hypothesis is formulated and studied: The network
can learn a non linear data transformation that generates a space on top of
which the data are linearly separable.

A flow chart of the proposed methodology is presented in Figure 4.1, while
the proposed methodology for supervised dimensionality reduction and classifi-
cation is presented in pseudocode in Algorithm 1. In what follows, we describe
one iteration, for a given batch of images and their labels:

• Initially, a forward pass of the batch of training images through the Con-
volutional Autoencoder is performed.

• The loss function of the Convolutional Autoencoder is evaluated and its
weights are updated using the standard backpropagation algorithm.

20
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21 Chapter 4. Proposed Methodologies

Figure 4.1: Schematic representation of proposed approach (CSAE).

• A forwards pass of the batch of training images through the Classifier
Network is performed.

• Finally, the loss function of the Classifier is evaluated, using the image la-
bels contained in the batch and its weights are updated using the standard
backpropagation algorithm.

This procedure is repeated until convergence or until a specified number of
epochs is reached. As loss functions of the CAE and the Classifier Networks,

Algorithm 1: Image Classification with CSAE.

Data: xtrain: The images in the train set,
ytrain: The ground truth of images in the train set,
xtest: The images in the test set,
epochs: The number of epochs,
Wae: The weights of the Convolutional Autoencoder,
Wcl: The weights of the Classifier Network.
Result: cout: the classification result of xtest.

1 for epoch← 1...epochs do
2 Create batches from (xtrain, ytrain).
3 Shuffle the batches.

4 for xbatch
train, y

batch
train ∈ batches do

5 Forward pass of xbatch
train through the Convolutional Autoencoder.

6 Evaluate the loss function of the Convolutional Autoencoder.
7 Update Wae by standard back propagation.

8 Forward pass of xbatch
train through the Classifier Network.

9 Evaluate the loss function of the Classifier Network, using ybatchtrain

as the ground truth of xbatch
train.

10 Update Wae by standard back propagation.

11 end

12 end
13 Detach the Classifier Network from CSAE.
14 Pass the xtest through the Classifier Network.
15 Acquire cout.
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Figure 4.2: Schematic representation of the methodology for improving tradi-
tional classification algorithms using CSAE.

the Mean Squared Error (MSE) and the categorical crossentropy are utilized.
Subsequently, the Classifier Network, see Figure 4.1, is detached to be used as a
standalone classifier, significantly reducing the number of required parameters
for the classification task.

4.2 Improving Classification Methods with CSAE

One of the basic components of CSAE is the Convolutional Autoencoder. We
consider that the generated latent space is optimized for the classification task,
since the minimization of the classification error is the main training objective.
Additionally, this latent space is constrained by the reconstruction error of the
Convolutional Autoencoder and thus, the local structure of the data generating
distribution is preserved. Therefore, the feature space corruption phenomenon,
as described in [GGLY17], is mitigated. Finally, it can be concluded that if
the formulated hypothesis holds, then the exploit of a linear classifier onto the
latent space of CSAE should perform adequately.

A schematic representation of the described methodology is presented in Fig-
ure 4.2, while the complete algorithmic procedure is presented in Algorithm 2.
In detail, CSAE is initially trained following the procedure described in Al-
gorithm 1. Then, the Encoder Network of the Convolutional Autoencoder is
detached and a pass of the images contained in the train and test set through
the Encoder Network is performed to acquire their low dimensional representa-
tion, ztrain and ztest, respectively. Afterwards, a traditional classifier is trained
using ztrain and ytrain. The classification result of the images contained in the
test set cout is acquired by providing ztest as input to the trained traditional

Algorithm 2: Improving classification methods with CSAE.

Data: xtrain: The images in the train set,
ytrain: The ground truth of images in the train set,
xtest: The images in the test set.
Result: cout: the classification result of xtest.

1 Train CSAE as described in Algorithm 1.
2 Acquire the Encoder Network from the trained CSAE.
3 Pass xtrain and xtest through the Encoder Network and acquire their

low dimensional representations ztrain and ztest, respectively.
4 Train a Traditional Classification Algorithm with ztrain and ytrain.
5 Acquire cout from the trained traditional classifier by providing ztest as

input.
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classifier.
The advantages of this method are two fold. Firstly, the only required com-

ponent of CSAE for prediction is the Encoder Network, meaning that the num-
ber of essential parameters are further reduced. Additionally, the original images
can be discarded after their latent representation computation, decreasing the
memory requirements of the dataset and execution time of traditional classifica-
tion methodologies. The images can be reconstructed by providing their latent
representations as input to the Decoder Network. In summary, it is obvious
that this methodology also offers an efficient solution to the general classifica-
tion problem.
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Chapter 5

Experimental Results

This section is devoted to the experimental evaluation of the proposed method-
ologies. For this purpose we employ two widely used benchmark datasets and
two recent real world biomedical image datasets. In what follows, we provide a
brief overview of the datasets, the preprocessing procedure and the evaluation
metrics. In addition, we present the algorithms used for comparison and the
experimental procedure. Finally, the experimental results are presented and
interpreted through a thorough discussion.

5.1 Datasets

Selecting widely used datasets for our experiments allow us to provide direct
comparisons with recent methodologies found in the literature. For this purpose,
we utilized the MNIST and Fashion-MNIST dataset, respectively. Nevertheless,
we also utilize two recent biomedical image datasets to expose the true potential
of the proposed methods, both in terms of classification performance and their
generalization capability. In detail, the four employed datasets are the following:

• MNIST [LCB10]: is a dataset of 70,000 grayscale images of handwritten
digits 0 to 9. Each image, contained in this set of data has 28× 28 pixels
size.

• Fashion-MNIST [XRV17]: consists of 70,000 grayscale images, were each
one is associated with one of the 10 available classes. Each image has
28× 28 pixels size.

• Brain Tumor Image Dataset [CHC+15]: This dataset contains 3064 T1-
weighted contrast-enhanced images from 233 patients with three kinds of
brain tumor: meningioma (708 slices), glioma (1426 slices), and pituitary
tumor (930 slices). This dataset is publicly available in Kaggle1.

• SARS-COV-2 CT-Scan dataset [SAB+20]: This dataset contains 2482
CT scans, where 1252 CT scans are positive for SARS-CoV-2 infection
(COVID-19) and 1230 CT scans are from patients that are non-infected
by SARS-CoV-2. This dataset was collected from real patients that were

1see: https://www.kaggle.com/denizkavi1/brain-tumor
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hospitalized in Sao Paulo, Brazil and it is also publicly available in Kag-
gle2.

5.2 Data Preprocessing and Evaluation Metrics

The images contained in the Brain Tumor and SARS-COV-2 CT Scan datasets
were resized to 128× 128 using the Nearest Neighbor Interpolation method. In
addition, they were flattened and standardized for the application of traditional
classification algorithms, as well as normalized to the [0, 1] range for the rest of
the methodologies. For the MNIST and Fashion MNIST datasets the provided
train-test splits were used, while for the Brain Tumor Dataset and the SARS-
COV-2 CT-Scans Datasets, the train and test splits were retrieved by random
sampling an 80% to 20% ratio respectively. The validation set for each dataset
was created by randomly sampling 10% of the samples from the training set.
Finally, for the evaluation of the performance of the classification algorithms,
two standard metrics were used: the accuracy [GBV20] and the weighted by
support F1-Score3.

5.3 Algorithms used for Comparison

Aiming at the evaluation of the classification performance of CSAE, a wide vari-
ety of algorithms were used through an extensive comparison. We initially used
the Linear Discriminant Analysis (denoted as LDA in the Tables exhibiting the
results) to compare CSAE with the most well established methodology for su-
pervised dimensionality reduction and classification. Subsequently, our aim was
to illustrate the impact of each individual component of the proposed method-
ology to the overall classification result. To this end, CSAE is compared against
a CNN classifier (denoted as CNN classifier) of the same architecture, while
also compared against the independent use of a Convolutional Autoencoder
for dimensionality reduction and a Classifier (denoted as AE + Class. Net.),
where both methods have similar architecture to the corresponding component
of CSAE. Finally, CSAE is compared against several state of the art method-
ologies proposed in [KAJ+20, NE19, AMP18, APM19, WLD20, JGS+21].

Finally, to investigate the exploitation the latent space of CSAE to improve
the performance of traditional classification methodologies, three classification
algorithms were tested: k-Nearest Neighbors (denoted as k-NN), Support Vector
Machines with Radial Basis Function Kernel (denoted as SVM) and the Naive
Bayes Classifier (denoted as GNB). The comparison includes the execution of
these methodologies to both the original flattened images and the latent repre-
sentations of the images created by CSAE, denoted as k-NN/SVM/GNB and
CSAE L.S.+ k-NN/SVM/GNB, respectively.

2see: https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset?select=
non-COVID

3see: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1 score.html
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5.4 Implementation

The implementation of the whole experimental process was accomplished with
the Python programming language and it is available under an open source li-
cence through a GitHub page4. The Deep Learning models were implemented
using the Keras [C+15] Application Programming Interface (API), while for the
traditional Machine Learning algorithms for classification and evaluation met-
rics, the implementations contained in Scikit-learn [PVG+11] were utilized. The
Convolutional Networks are constructed similarly to [GLZY17]. More precisely,
for the MNIST and Fashion MNIST datasets, the Convolutional Network of
the Encoder consists of 2 convolutional layers, with 3 × 3 kernel maps, while
the number of filters were 32 and 64, respectively. For the Brain Tumor and
SARS-COV-2 CT-Scan datasets, 4 convolutional layers were utilized, with 5×5
kernel maps for the first two convolutional layers and 3 × 3 for the last two,
while the number of filters were 32, 64, 128 and 256, respectively. The con-
volutional layers of the Decoder are identical to the Encoder, but in reverse
order. Additionally, the stride parameter for all the convolutional layers is set
to two, because, as described in [GLZY17], this setting allows the convolutional
network of the Encoder and its transpose counterpart contained in the Decoder
to learn spatial subsampling and upsampling, respectively, and thus leading to
higher capability of transformation.

The fully connected component of the Encoder Network is composed of three
fully connected layers. The first two were assigned to 128 units and the final
one equal to the specified number of dimensions of the latent space (denoted as
λ). The Decoder is identical to the Encoder, but in reverse order. Additionally,
for the last network of the Classifier Network, three fully connected layers were
utilized, where the first two consist of 128 units and the final one equal to the
number of classes of the corresponding dataset (Classification Layer). Finally,
for all the layers except for the output layers of the Encoder, the Classifier
and the Decoder Networks, the Rectified Linear Unit activation function was
utilized, while for the aforementioned exceptions, the Linear, the Softmax and
the Sigmoid activation functions were employed.

Each Deep Learning model was trained for 200 epochs and the model having
the highest validation accuracy during training was preserved. The mini-batch
size is set to 128 and the Adam [KB14] optimizer was used, with learning rate
equal to 10−4, which is further decreased by a factor of 1/3 every 50 epochs.
The number of neighbors of the k-Nearest Neighbors classifier was set to 3. The
remaining parameters for the classification algorithms were kept to their default
values.

The proposed methodologies, were applied across all the datasets for differ-
ent values of λ with minor performance variations confirming previous obser-
vations [MNH20]. We choose to report results for a relative small λ value for
which high classification accuracy can be obtained. The Keras implementation
on the MNIST Dataset and detailed experimental results for different values
of λ of the proposed methodologies, along with additional visualizations can be
found at the GitHub repository. All the experiments were conducted on a server
PC with Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz, NVIDIA TITAN Xp
12 GB GPU and 130GiB of RAM.

4see: https://github.com/JohnNellas/CSAE
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5.5 Experimental Results

Detailed experimental results regarding the first set of comparisons are re-
ported in Table 5.1. We observe that CSAE performance surpasses the meth-
ods used for comparisons, while also achieving competitive results against other
well established methods. In more detail, for the MNIST and Fashion MNIST
datasets, even though CSAE achieved inferior performance than the methods
presented in [KAJ+20, NE19], it constitutes a significantly smaller model with
4.03 and 8.12 times less parameters, respectively. Regarding the Brain Tumor
Dataset, CSAE outperformed all the other methods, including those presented
in [AMP18, APM19]. In addition, for the SARS-COV-2 CT-Scans dataset,
CSAE achieved only slightly worse performance than the methodology presented
in [JGS+21], but still the proposed methodology reached this performance with
3.85 times less parameters, allowing us to dismiss any need for transfer learning.
Most importantly, it can be observed that the proposed optimization strategy
of the reconstruction and classification error leads to improvements over the
scheme where two procedures are independently performed or by only using a
single CNN classifier.

The second set of experimental results is reported in Table 5.2. It can be
observed that the performance of the traditional classification methodologies
was significantly improved, when they were applied onto the optimized latent
representations produced by CSAE. The best performance was achieved by the
k-Nearest Neighbors classifier. The aforementioned results can be visually jus-
tified by investigating two dimensional representations of the latent spaces con-
structed by CSAE, retrieved by the t-SNE algorithm [VdMH08]. As shown in
Figure 5.1, it is worth noticing that points belonging to the same class form
dense neighborhoods.

5.5.1 Visualization

The proposed Convolutional Supervised Autoencoder allows both the visualiza-
tion of the generated latent space and the decision boundary of the Classifier
Network. Specifically, we set λ = 2 to retrieve the two dimensional latent space

Table 5.1: Performance evaluation of the CSAE and the methodologies used for
comparison.

MNIST Fashion MNIST Brain Tumor Dataset SARS-COV-2 CT-Scans

Accuracy Weighted F1-Score Accuracy Weighted F1-Score Accuracy Weighted F1-Score Accuracy Weighted F1-Score

LDA 0.8730 0.8726 0.8151 0.8159 0.9119 0.9126 0.8008 0.8007

CNN Classifier 0.9869 0.9869 0.9135 0.9132 0.9543 0.9540 0.9396 0.9396

AE + Class. Net. (λ = #classes) 0.6968 0.6759 0.5805 0.5362 0.4649 0.2951 0.4969 0.3520

CSAE (λ = 2) 0.9751 0.9750 0.8959 0.8961 0.9575 0.9574 0.9436 0.9436

CSAE (λ = #classes) 0.9871 0.9871 0.9117 0.9114 0.9510 0.9510 0.9436 0.9436

VGG-5 (Spinal FC) [KAJ+20] 0.9972 - 0.9468 - - - - -

VGG8B [NE19] 0.9974 - 0.9547 - - - - -

CapsNet [AMP18] - - - - 0.8656 - - -

CapsNet [APM19] - - - - 0.9089 - - -

Contrastive Learning [WLD20] - - - - - - 0.9083 -

DenseNet201 [JGS+21] - - - - - - 0.9574 -

Best performance per dataset is highlighted using boldface text. Most efficient solution per dataset is denoted using
boldface and italic text.
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Table 5.2: Performance comparison of the execution of traditional classifica-
tion methodologies onto the flattened images and the latent representations
constructed by CSAE.

MNIST Fashion MNIST Brain Tumor Dataset SARS-COV-2 CT-Scans

Accuracy Weighted F1-Score Accuracy Weighted F1-Score Accuracy Weighted F1-Score Accuracy Weighted F1-Score

k-NN 0.9580 0.9579 0.8915 0.8911 0.8874 0.8836 0.8651 0.8647

CSAE L.S. + kNN (λ = 2) 0.9785 0.9784 0.9245 0.9241 0.9624 0.9625 0.9657 0.9657

CSAE L.S. + kNN (λ = #classes) 0.9926 0.9925 0.9309 0.9303 0.9657 0.9656 0.9657 0.9657

SVM. 0.9660 0.9660 0.8836 0.8828 0.9135 0.9120 0.9336 0.9335

CSAE L.S. + SVM (λ = 2) 0.9758 0.9758 0.8959 0.8964 0.9608 0.9607 0.9436 0.9436

CSAE L.S. + SVM (λ = #classes) 0.9872 0.9871 0.9157 0.9152 0.9510 0.9510 0.9436 0.9436

GNB 0.5240 0.4772 0.5706 0.5398 0.7406 0.7329 0.7364 0.7285

CSAE L.S. + GNB (λ = 2) 0.9161 0.9167 0.8244 0.8264 0.9200 0.9196 0.9456 0.9456

CSAE L.S. + GNB (λ = #classes) 0.9742 0.9742 0.8743 0.8724 0.9396 0.9396 0.9456 0.9456

Best performance per dataset and classification method is highlighted using boldface text. Best performance per dataset
across classification methods is denoted using boldface and italic text.

that is subsequently provided as input to the fully connected network of the clas-
sifier. We visualize decision regions and boundaries by generating a coloured
scatter grid of points where each colour corresponds to a prediction class. A
scatter plot of the latent representations of the images contained in the test
set of the MNIST, Fashion MNIST, Brain Tumor and SARS-COV-2 CT-Scan
datasets, and the decision boundary of the Classifier drawn on the correspond-
ing Latent Space, is presented in Figures 5.2, 5.3, 5.4 and 5.5, respectively. A
bold coloured point corresponds to the ground truth class of the latent repre-
sentation, while a point with lower opacity corresponds to the class predicted
by the network. We observe that decision regions in the latent space created
by CSAE are almost linearly separable and that the classifier converged to a
linear decision boundary. This observation confirms the objective of most data
transformation methodologies, where a non linear data transformation creates
a space where the data are linearly separable. Most importantly, in this case
the visualization offers the much requested explainability, since it allows the
realization of the decision that the network makes to classify the input points.

An example of the explainability provided by the aforementioned scatter
plots can be illustrated by randomly replacing data points with the correspond-
ing original images. Then we can simultaneously visually examine their pairwise
distances and their distance from the decision boundary with respect to their vi-
sual characteristics. Apparently, similar images tend to be closer to each other,
confirming the data structure preservation capability of the proposed method-
ology. Furthermore, visual investigation of the images found across the decision
boundary can be extremely beneficial for real world biomedicine applications,
where class membership is often not easily distinguishable [CYH+16, HTS+20,
JLX21].

Finally, we further examine the information that the network has captured
regarding the data in the latent space of CSAE by providing a grid of points from
the latent space as input to the Decoder Network. A decoded grid of points from
the two dimensional (λ = 2) latent space of CSAE for the MNIST and Fashion
MNIST datasets is presented in Figure 5.6. We observe that, except from the
label information, the network has also successfully captured the rotation and
intensity information of the MNIST and Fashion MNIST datasets.
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(a) MNIST

(b) Fashion MNIST

(c) Brain Tumor

Figure 5.1: A visualization of the latent space created by CSAE of the images
contained in the test set of MNIST (a), Fashion MNIST (b) and Brain Tumor
(c) Datasets, for λ = #classes. The visualization of the latent space for the
first two datasets was created using the t-SNE algorithm, while for the latter the
original latent space is plotted. Finally, different colours correspond to different
ground truth classes.
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Figure 5.2: The latent space of CSAE for the images in the test set of the MNIST
Dataset and the decision boundary of the Classifier drawn on the corresponding
latent space. A bold coloured point corresponds to the ground truth class of the
latent representation, while a point with lower opacity corresponds to the class
predicted by the network. For visualization purposes, four random embeddings
per class were replaced by the original image.
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Figure 5.3: The latent space of CSAE for the images in the test set of the
Fashion MNIST Dataset and the decision boundary of the Classifier drawn
on the corresponding latent space. A bold coloured point corresponds to the
ground truth class of the latent representation, while a point with lower opacity
corresponds to the class predicted by the network. For visualization purposes,
four random embeddings per class were replaced by the original image.

Institutional Repository - Library & Information Centre - University of Thessaly
10/03/2023 00:54:05 EET - 137.108.70.14



5.5. Experimental Results 32

Figure 5.4: The latent space of CSAE for the images in the test set of the Brain
Tumor Dataset and the decision boundary of the Classifier drawn on the corre-
sponding latent space. A bold coloured point corresponds to the ground truth
class of the latent representation, while a point with lower opacity corresponds
to the class predicted by the network. For visualization purposes, four random
embeddings per class were replaced by the original image.
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Figure 5.5: The latent space of CSAE for the images in the test set of the SARS-
COV-2 CT-Scans Dataset and the decision boundary of the Classifier drawn
on the corresponding latent space. A bold coloured point corresponds to the
ground truth class of the latent representation, while a point with lower opacity
corresponds to the class predicted by the network. For visualization purposes,
four random embeddings per class were replaced by the original image

Institutional Repository - Library & Information Centre - University of Thessaly
10/03/2023 00:54:05 EET - 137.108.70.14



5.5. Experimental Results 34

(a) MNIST

(b) Fashion MNIST

Figure 5.6: A grid of images from the MNIST (left) and Fashion MNIST (right)
datasets, decoded from a grid of points in the latent space of CSAE.
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Chapter 6

Conclusions

In this study, a novel supervised dimensionality reduction and classification
methodology is proposed, which is constituted by a Convolutional Autoencoder
for dimensionality reduction and a classifier for the classification of the latent
representations. Its main characteristic is that it simultaneously optimizes the
reconstruction as well as the classification error. This method is entitled Con-
volutional Supervised Autoencoder (CSAE). In addition, we consider the latent
space calculated by the proposed methodology as optimized for classification,
and thus we argue that the latent representations can be provided as inputs
to any trainable classifier to significantly improve performance. To support the
aforementioned claims, a thorough study regarding the latent space and the
classification behaviour of CSAE is performed.

The experimental results on two well known benchmarks and two biomedical
image datasets showed that CSAE achieved competitive classification perfor-
mance against state-of-the-art methods, while surpassing alternative method-
ological scenarios. Simultaneously, it offers a much more efficient solution in
terms of parameters count. It is also observed that the performance of tradi-
tional classification algorithms was indeed improved, when they were applied
onto the CSAE latent representations. Most importantly, motivated by the
CSAE visualization capabilities, we investigated the explainability perspective,
which adds greater value to the proposed methodology. We specifically observed
that the resulting decision boundaries of the classifier converged to linear hy-
perplanes. To that end, we highlight our interest in further investigating similar
architectures that enable us to visualize and provide wider explainability in time
series classification tasks.
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