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Abstract: This study analyses the possibility of reprocessing used poly(vinylidene 

fluoride), PVDF, maintaining the main properties critical for its use in piezoelectric 

sensor/actuator applications. The influence of multiple reprocessing cycles of PVDF on 

crystallinity and ß-phase content fundamental for its electroactive behaviour, was 

studied. Nine reprocessing cycles were completed and it was found that the material 

preserved the characteristics required for its use as piezoelectric polymer without 

significant degradation. 
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Introduction 

Poly(vinylidene fluoride), PVDF, is known for its outstanding electroactive properties, 

non-linear optical susceptibility and an unusually high dielectric constant among 

polymers [1]. These properties are the basis for its use in various applications, notably 

in the field of sensor and actuator devices [1-3]. Recently, its use in the preparation of 

conducting polymeric materials has also been studied [4]. 

PVDF is a semi-crystalline polymer with at least four crystalline phases, known as α, β, 

 and [1-3]. 

The non-polar α-phase is obtained by crystallization from the melt at high or moderate 

cooling speeds [1-3]. The β-phase is usually obtained by stretching α-PVDF at 80ºC 

using a stretch ratio (R) between 3 and 5 [5, 6]. The electroactive properties of the 

material depend on the amount of β-phase content and its microstructural properties. 

The maximisation of the β-phase content has thus been a research subject of large 

interest [2, 7-9]. The phase content, microstructure and degree of crystallinity are 

crucial to the electroactive properties of the material. Therefore, processing conditions 

heavily influence PVDF final properties [2, 3]. 

PVDF has unique characteristics that make it a polymer of very high interest, but it also 

has a relatively high cost. In research work, as well as in industrial production, during 

ramp-up of the production process, there is a potential for waste of this expensive 

material. It is uncertain if the electroactive properties and β-phase content of the 

material are maintained after the polymer waste has been reprocessed; little or no 

information on this particular aspect can be found in literature, and the product 

datasheets only refer to the influence of reprocessing on mechanical properties [10].  

Considering this, the feasibility of reusing PVDF whilst maintaining all the 

characteristics, especially the electroactive properties, is investigated in this work. With 

this purpose, PVDF has been reprocessed a certain number of times through extrusion 

and temperature-controlled stretching, and the influence of this recycling process on 

thermal properties, crystallinity and phase content of the material was analysed.  

 

  



Experimental 

Poly(vinylidene fluoride) (PVDF) supplied by Solvay (Solef 1010) was directly 

extruded in a monofilament production line under the conditions specified in Table 1 

and Table 2. Processing parameters were chosen according to previous work that 

studied the optimized conditions for the production of piezoelectric PVDF filament 

using the same grade [11]. Figure 1 shows the schematic representation of the 

experimental setup used to produce the PVDF filament [11]. 

 

Table 1 – Processing conditions 

 

Table 2 – Different section temperatures in the extrusion process 

 

 

 

Figure 1 ‐ Monofilament prototype extrusion line used to produce the filaments [11]. 

 

As illustrated, the material leaves the extruder and is cooled in a water bath. 

Subsequently, the polymer enters a system of rolls (1) that imposes a certain linear 

velocity, following another system of rolls (2) that work at a different linear speed. The 

combination of these two roll systems working at different speeds (Vroll1 and Vroll2) 

imposes a stretch ratio (R) to the filament quantified by 

 

 R           (1) 

 

Extrusion temperature   225 ºC 

Cooling water temperature  30 ºC 

Draw ratio  6 

Stretching temperature  80 ºC 

Zone 1 
Feed Zone 

Zone 2 
Compression Zone 

Zone 3 
Metering Zone 

Zone 4 
Die 

195  205  215  225 



This process of stretching and heating the material at a controlled temperature and ratio 

is critical for achieving the required α-phase to β-phase transformation of the material 

[5, 6].   

Nine cycles were performed, using the same extrusion conditions and re-using the same 

material. Filaments were re-granulated between cycles using an adequate thermoplastics 

granulator (C F SCHEER & CIE, Model D-7000 Stuttgart 30).  

After extrusion, samples were collected and studied by Differential Scanning 

Calorimetry (DSC) in order to determine the melting temperature and enthalpy. Three 

samples with weight between 10 and 20 mg were collected for the virgin material and 

after the 1st, 5th and 9th cycles, and tested using a DSC-7 from Perkin-Elmer. Scans were 

performed from 30 to 200 ºC, under a dry nitrogen environment at a rate of 10°C/min.A 

second scan was performed for each sample to eliminate the effect of the thermal 

history acquired during the reprocessing procedure the material was subjected to. It 

should be noted that in the second scan the sample crystallizes in the -phase of the 

material. 

Fourier transformed infrared spectroscopy (FTIR) tests were performed in order to 

calculate the β-phase content of samples after cycles 1,3,5,7 and 9. Measurements were 

made with a Perkin-Elmer Spectrum 100 in ATR mode at room temperature. Samples 

were prepared by pressing together several filaments at a temperature of 80 ºC. 

Treatment of the samples at this temperature does not affect the β-phase content of the 

material [12]. 

Infrared absorption bands at 763 and 840 cm−1, specific to the α- and β-phases [13], 

respectively, and a procedure similar to that presented in [14] was used. The amount of 

β-phase is calculated by  

 

⁄ .
										   (2) 

 

where Aα and Aβ are the absorbances at 763 and 840 cm−1, corresponding to the α-and 

β-phase material; Kα and Kβ are the absorption coefficients at the respective wave 

numbers, and Xα and Xβ represent the degree of crystallinity of each phase. The value of 

K is 7.7×104 and 6.1× 104 cm2/mol for α- and β-phase, respectively [14]. The 

relationship between the -phase content and the piezoelectric coefficient d33 of the 

material has been previously demonstrated [6]. 



 

 

Results and Discussion 

 

Figure 2 shows one set of DSC scans, and the resulting average melting temperature 

values for the three samples are shown in Figure 3.  

 

 
Figure 2 ‐ DSC scans obtained for virgin PVDF and PVDF reprocessed 1, 5 and 9 times, first scan, one sample for 
each condition 
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Figure 3 – Average melting temperature values of the samples, with standard‐deviation. 

 

The data obtained in the first scan indicates that the melting peak of the sample of virgin 

polymer is about 175ºC, which is the value supplied by the manufacturer in the 

datasheet, 4 to 5 ºC higher than the values found for the remaining samples.  This slight 

difference is related to the crystallization after processing. It has to be noted that the 

virgin sample is analyzed by DSC without undergoing the extrusion/reprocessing 

process.  The process comprises a quick cooling in the water bath, followed by heating 

to stretch the filament and cooling again, which does not allow the material to 

crystallize slowly to form larger crystallites, thus reducing its melting peak.  After the 

first scan, all samples are cooled in a more controlled way in the DSC. This eliminates 

the thermal history of the samples and the melting temperatures become similar, as 

shown in Figure 3 for the second DSC scan.  Although the peak of the sample 

reprocessed 9 times is lower than the others, no pattern of increase or decrease in 

melting temperature can be identified, and the difference between values is not 

significant. 

 

The graph presented in Figure 4 shows the values of enthalpy of fusion normalized to 

the mass of the samples.  
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Figure 4 – Average enthalpy values, normalized to sample mass, with standard deviation. 

 

 

The degree of crystallinity, , was calculated by 

 

∆

∆
         (3) 

where ∆H  is the melting enthalpy of the sample and ∆H  is the melting enthalpy for 

a 100% crystalline sample of pure PVDF. For the β-PVDF, the letter value is 103.4 J/g 

[13]. The results are presented in Table 3. No significant differences are observed in the 

degree of crystallinity of the samples. 

 

Table 3 – Crystalline phase content obtained from the DSC heating scans. 

 

 

FTIR analysis (figure 5 and table 4) shows that there is no difference in the β-phase 

content of samples after several reprocessing cycles. It is found that all samples exhibit 

an extremely high percentage, above 95%, with no significant differences. It is thus 

confirmed that the amount of β-phase is not affected by reprocessing cycles. 
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Figure 5 – Room temperature FTIR spectra obtained for β‐PVDF after different number of cycles. 

 

Table 4 – β‐phase content (%) for the samples after the different processing cycles.  

 

Conclusions 

PVDF samples were subjected to several consecutive processing cycles in a production 

line used to produce piezoelectric filament, with the purpose of determining if the 

properties reling to the electroactive behavior of the material are affected by this 

reprocessing. It has been found that all of the parameters studied are unaffected or only 

very slightly affected by up to 9 processing cycles. It can, therefore, be concluded that 
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cristallinity and β-phase content can be reproduced in subsequent reprocessing cycles, 

making PVDF recycling feasible regarding its electroactive properties. 

 

Acknowledgements 

The authors thank the Portuguese Foundation for Science and Technology (FCT) for 

financial support under Project Piezotex - PTDC (PTDC/CTM/108801/2008). MPS 

thanks the FCT for financial support under grant SFRH/BD/70303/2010. 

 

References 

1. J. Lovinger, Developments in crystalline polymers, Elsevier applied science, 

London (1982). 

2. S. Bauer, Journal of Applied Physics 80 (1996), p. 5531. 

3. H. S. Nalwa, Ferroelectric Polymers: Chemistry, Physics and Applications 

Marcel Dekker, Inc, New York (1995). 

4. J. N. Martins, M. Kersch, V. Altstädt, R.V.B. Oliveira, Electrical conductivity of 

poly(vinylidene fluoride)/polyaniline blends under oscillatory and steady shear 

conditions, Polymer Testing, Volume 32, Issue 5 (2013), pp. 862-869,  

5. V. Sencadas, R. G. Jr. and S. Lanceros-Mendez, Journal of Macromolecular 

Science, Part B: Physics 48 (2009), p. 514  

6. J. Gomes, J. Serrado Nunes, V. Sencadas and S. Lanceros-Mendez, Smart 

Materials and Structures, 19 (6) (2010): 065010. 

7. S. Lanceros-Mendez, J. F. Mano, A. M. Costa and V. H. Schmidt, Journal of 

Macromolecular Science, Part B: Physics 40 (2001), p. 517  

8. K. Nakamura, D. Sawai, Y. Watanabe, D. Taguchi, Y. Takahashi, T. Furukawa 

and T. Kanamoto, Journal of Polymer Science Part B: Polymer Physics 41 (2003), p. 

1701. 

9. S. Lanceros-Mendez, M. V. Moreira, J. F. Mano, V. H. Schmidt and G. 

Bohannan, Ferroelectrics 273 (2002), p. 15 

10. Solef PVDF Design & Processing Guide, Solvay Specialty Polymers,(2012) 

p.38, available at 



http://www.solvayplastics.com/sites/solvayplastics/EN/Solvay%20Plastics%20Literatur

e/DPG_Solef_Hylar_EN.pdf, accessed 25/3/2013 

11. Ferreira, P. Costa, H. Carvalho, J.M. Nóbrega, V.Sencadas, S. Lanceros-

Mendez,, Extrusion of poly(vinylidene fluoride) filaments: effect of the processing 

conditions and conductive inner core on the electroactive phase content and mechanical 

properties, Journal of Polymer Research, Volume 18, Issue 6 (2011), Springer, 

Netherlands 

12. M.P. Silva, C.M. Costa, V. Sencadas, A.J. Paleo, S. Lanceros-Méndez, 

Degradation of the dielectric and piezoelectric response of β-poly(vinylidene fluoride) 

after temperature annealing. Journal of Polymer Research vol. 18, issue 6 (2011), pp. 

1451 – 1457 

13. J. F. Mano, A. M. Costa, and V. H. Schmidt, FTIR and DSC studies of 

mechanically deformed β-PVDF films, vol. 40 (2001), pp. 517–527, 2001. 

14. Salimi and A. A. Yousefi, Analysis Method, Polymer Testing, vol. 22, no. 6 

(2003), pp. 699–704, Sep. 2003. 

 


