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Charge, spin, and heat shot noises in the absence of average currents:
Conditions on bounds at zero and finite frequencies
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Nonequilibrium situations where selected currents are suppressed are of interest in fields like thermoelectrics
and spintronics, raising the question of how the related noises behave. We study such zero-current charge, spin,
and heat noises in a two-terminal mesoscopic conductor. In the presence of voltage, spin, and temperature biases,
the nonequilibrium (shot) noises of charge, spin, and heat can be arbitrarily large, even if their average currents
vanish. However, as soon as a temperature bias is present, additional equilibrium (thermal-like) noise necessarily
occurs. We show that this equilibrium noise sets an upper bound on the zero-current charge and spin shot noises,
even if additional voltage or spin biases are present. We demonstrate that these bounds can be overcome for heat
transport by breaking the spin and electron-hole symmetries, respectively. By contrast, we show that the bound
on the charge noise for strictly two-terminal conductors even extends into the finite-frequency regime.

DOI: 10.1103/PhysRevB.107.075409

I. INTRODUCTION

Fluctuations, or noise, in physical observables disclose
important properties of small electronic conductors. While
equilibrium charge noise relates a conductor’s temperature to
its dc conductance according to the Nyquist-Johnson relation
[1,2], nonequilibrium noise offers additional opportunities.
Most prominently, shot noise—or partition noise—which
arises from the granularity of the electric charge, has in
the last decades emerged as a ubiquitous tool for charac-
terizing nanoscale systems [3–5]. It has, e.g., been used
to reveal the charge of fractionalized quasiparticles [6,7],
Cooper pairs [8,9] as well as Bogoliubov quasiparticles [10]
in superconductors. Besides, analyzing and understanding
nonequilibrium noise in nanoscale thermoelectric devices is
crucial as it limits their performances [11–19].

More recently, charge noise as a response to a temperature
gradient and in the absence of a voltage bias—dubbed delta-T
noise—has been investigated in several theoretical [20–30]
and experimental [31–37] studies. These studies demonstrate
that delta-T noise offers additional insights beyond the tra-
ditional shot noise, e.g., for quantifying local temperature
gradients [25,32] or as a potential tool for extracting scaling
dimensions and exchange statistics of anyons [23,28,29]. Still,
the full scope of delta-T noise remains to be understood.

A key feature of delta-T noise is that, for energy inde-
pendent transport through the system, the absence of voltage
bias causes the average charge current to vanish. Yet, the
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conductor partitions the opposing, equal current contributions
emanating from the reservoirs, which results in detectable
shot noise. It was, however, pointed out in Ref. [27] that
noise in the absence of a current is a broader concept than
delta-T noise. More specifically, one can imagine experimen-
tal setups with generic transmissions, where temperature and
voltage biases are carefully combined such that the average
current vanishes. This is particularly relevant for character-
izing thermoelectric properties of nanodevices: A zero charge
current situation indeed occurs at the stopping voltage, also re-
ferred to as the thermovoltage. Under open circuit conditions,
the zero-current condition is exactly that at which a de-
vice’s thermopower—the ratio between the thermovoltage and
the temperature bias—is extracted. Moreover, zero-current
nonequilibrium noise is not limited to charge transport, but
can also be considered for currents of, e.g., heat [38] or spins
[39], see Fig. 1.

In this paper, we focus on zero-current fluctuations and
compare how nonequilibrium fluctuations behave compared
with their equilibrium-like counterpart. We extend the anal-
ysis of Ref. [27], for a coherent, mesoscopic conductor,
characterized by a transmission function D(E ), which is con-
nected to two macroscopic reservoirs (equivalently terminals,
or contacts). Within a scattering approach [4], we compute
the noise of charge, heat, and spin currents by combining ex-
ternal biases and transmission functions such that one or more
average currents vanish. More precisely, we always consider
a vanishing average current in a given contact for the same
transported quantity as for the studied noise, e.g., heat shot
noise with zero average heat current in one contact.

First, we broaden the scope of delta-T noise by showing
that, even in the simple case of constant transmission D(E ) =
D, charge, spin, and heat shot noises can arise under zero-
current conditions and have similar functional forms. These
zero-current shot noises can become arbitrarily large with
increasing magnitude of the bias causing the nonequilibrium
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FIG. 1. Zero-current conditions obtained for charge (I ), spin
(�), and heat (JL) currents for the case of uniform transmission
D(E ) = 1/2 (depicted in purple). (a) Using only a temperature bias,
both average charge and spin currents vanish. (b) The zero-charge-
current condition is achieved by using only a spin imbalance σL

on the left contact. (c) The zero-spin-current condition is achieved
by using only a voltage bias �μ between the contacts. (d) The
zero-heat-current condition, JL = 0, is achieved using both a voltage
and a temperature bias. The voltage bias can be replaced by a spin
imbalance.

situation. Furthermore, we discuss how the nonequilibrium
noise is related to the flow of excitations between the reser-
voirs, under the condition that the applied biases are large with
respect to the energy scale of the base temperature.

Next, when a temperature is comparable to the energy
scales set by the biases, it makes sense to ask how large
the nonequilibrium fluctuations can be with respect to the
thermal component of the noise. We tackle this problem for an
arbitrary transmission function D(E ). For a spin-degenerate
system, it was shown in Ref. [27] that the zero-current charge
shot noise is always bounded by its thermal counterpart, inde-
pendently of the conductor’s transmission function. Here, we
extend this result in several ways:

(i) We obtain an even stricter upper bound, given in
Eq. (22), than the one previously derived in Ref. [27], see
Eq. (18), which is valid at arbitrary reservoir temperatures
TL, TR, and transmission function D(E ).

(ii) We show that the new bound (22) also applies to the
zero-current spin noise in the presence of spin and temperature
biases.

(iii) We demonstrate that the zero-current charge noise
remains bounded at finite frequency [see Eq. (28)], provided
the noise is measured in the colder reservoir. By contrast, if
the noise is measured in the hotter reservoir, the bound (28)
does not hold.

Our findings in this paper highlight several important fea-
tures of zero-current nonequilibrium noise underlining that it
could be used as a future noise spectroscopic tool, in partic-
ular, to probe nanoscale gradients of temperature [25,32] or
spin polarization.

The remainder of this paper is structured as follows. In
Sec. II, we introduce the here employed scattering-based for-
malism. In Sec. III we extend the concept of delta-T noise
to different kinds of bias and apply it to charge, spin, and
heat currents. In Sec. IV, we demonstrate how to achieve un-
bounded zero-current nonequilibrium heat noise, and present
an improved bound for the charge noise, which also holds
for the spin noise. The bound on charge shot noise is further
extended to the finite-frequency noise in Sec. V. In Sec. VI,
we address the experimental prospects to verify our bounds
for the zero-current charge noise.

II. SCATTERING APPROACH TO NOISE

We study steady-state transport in a coherent quantum
conductor connected to two macroscopic reservoirs, labeled
by α = L, R . The conductor is characterized by a spin-
independent transmission function D(E ) = |sLR(E )|2 = 1 −
|sLL(E )|2, obtained from a spin-preserving scattering matrix

s(E ) =
(

sLL(E ) sLR(E )
sRL(E ) sRR(E )

)
. (1)

The electronic occupations in the reservoirs are governed by
Fermi distribution functions

fατ (E ) = 1

1 + eβα (E−ματ )
, (2)

where βα = (kBTα )−1 are the inverse temperature scales, and
kB is the Boltzmann constant. When the spin degeneracy
for τ =↑,↓ in the reservoirs is broken, we write the spin-
dependent electrochemical potentials as

ματ = μα − (−1)δτ↓ σα

2
, (3)

where δττ ′ is the Kronecker delta and the spin splitting in
reservoir α is given by σα . We are interested in nonequilib-
rium situations, where the distributions of the two reservoirs
differ due to any of the three biases �μ = μL − μR, �T =
TL − TR, or �σ = σL − σR.

The average charge (I ), heat (J ), and spin (�) currents,
which can possibly flow out of the left contact in response to
these three biases and their combinations, are given by [4]

XL = 1

h

∑
τ

∫ ∞

−∞
dE xD(E )[ fLτ (E ) − fRτ (E )], (4)

with x → {−e, E − μLτ , (−1)δτ↓ h̄/2} for X → {I, J, �} and
analogously for XR. Here, e > 0 is the elementary charge
(the electron charge is thus −e), and h ≡ 2π h̄ is the Planck
constant. All energies are measured with respect to a reference
electrochemical potential [e.g., μ0 = (μR + μL)/2] and, un-
less otherwise specified, all energy integrals in the remainder
of the paper are to be understood as

∫
dE = ∫ ∞

−∞ dE .
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We define the noise at frequency ω associated with the
current X as [4]

SX
αβ (ω) =

∫ ∞

−∞
〈{δX̂α (t ), δX̂β (0)}〉eiωt dt, (5)

where δX̂α = X̂α − Xα is the fluctuation of the operator X̂α

around its thermal average value Xα ≡ 〈X̂α〉, and {X̂α, Ŷβ} =
X̂αŶβ + Ŷβ X̂α is the anticommutator. In the following, we
study the left autocorrelator SX (ω) ≡ SX

LL(ω), which cor-
responds to measuring the current fluctuations in the left
contact. In the first part of the paper, we will focus on the
zero-frequency regime, ω = 0, and analyze the noise for var-
ious types of biases and associated currents. Here, the noise
of a conserved current, in our case both charge and spin
current X → {I, �}, satisfies SX

LL(0) = SX
RR(0) = −SX

LR(0) =
−SX

RL(0). By contrast, these conservation laws do not hold
for heat noise, nor for noise at finite frequency [4]; in these
specific cases, the noise depends on the contact in which it is
measured. The analysis of finite-frequency noise is reported
in Sec. V and focuses on the charge noise.

At ω = 0, the noise can be written in a compact form and
is straightforwardly separated into two contributions, SX (0) =
SX

th(0) + SX
sh(0), with [4,40]

SX
th(0) =

∑
ατ

∫
dE

2x2

h
D(E ) fατ (E )[1 − fατ (E )], (6a)

SX
sh(0) =

∑
τ

∫
dE

2x2

h
D(E )[1 − D(E )][ fLτ (E ) − fRτ (E )]2.

(6b)

Here, SX
th(0) is thermal-like noise to which each reservoir

contributes individually, even at equilibrium, fLτ = fRτ . By
contrast, SX

sh(0) is the so-called shot noise which is nonzero
only under nonequilibrium conditions, i.e., when fLτ 
= fRτ . It
contains the characteristic partitioning factor D(E )[1 − D(E )]
and thus vanishes in the limits of perfect, D(E ) = 1, or
completely suppressed transmission, D(E ) = 0. Note that the
factors of 2 in Eq. (6) come from the anticommutator in
Eq. (5).

Of main interest for our paper is the shot noise, Eq. (6b),
under the zero-current condition

XL = 0. (7)

Depending on the transmission function D(E ) and on the
type of current that should vanish, a combination of biases
�μ,�T , and �σ is required. Note that for a conserved cur-
rent (charge and spin) XL = 0 ⇒ XR = 0. This conservation
does not hold for the heat current, which can be made to
vanish only in one contact at a time. Here, we impose XL = 0,
consistent with our choice to study the noise correlator in the
left contact SX (ω) ≡ SX

LL(ω).

III. CHARGE, SPIN, AND HEAT NOISES AT ZERO
AVERAGE CURRENT

We begin by presenting charge, spin, and heat fluctua-
tions in the absence of the related average currents under
nonequilibrium conditions determined by different kinds of
biases, see Fig. 1. We focus here on the situation where the

TABLE I. Realizations of generalized zero-current shot noise,
for energy-independent transmissions D(E ) = D (purple).

I = 0

Sec. III A

I = 0

Sec. III B
Σ= 0

Sec. III C

Σ= 0

Sec. III A
JL=0

Sec. III D

JL=0

Sec. III D

Δμ ΔT Δσ

SI

SΣ

SJ

possible applied biases—the potential bias �μ, temperature
bias �T , or spin bias �σ—are large, resulting in large shot
noise. Concretely, this means for any of the applied biases,
�μ, kB�T,�σ � kBTR, such that we can effectively set
TR → 0 and �T = TL in the present section. In Appendix A,
we present results for the zero-current heat noise in the oppo-
site regime of weak biases, thus complementing the literature
for the zero-current charge shot noise in this regime [32].

To start with, we consider a uniform transmission function,
D(E ) = D. This simple choice results in electron-hole as well
as spin symmetry in the scattering process. Consequently, shot
noise at vanishing average charge or spin currents can be ob-
tained in the presence of a single type of bias. Concretely, zero
current is here obtained when the applied bias does not break
the symmetry related to the transported observable: temper-
ature and spin biases do not break electron-hole symmetry,
resulting in zero charge current; temperature and voltage bi-
ases do not break the spin symmetry, resulting in zero spin
current. We show that in these cases, current cancellation re-
sults from incoming fluxes of opposite sign, which, however,
sum up to a nonvanishing contribution to the nonequilibrium
(shot) noise. In contrast, to reach the zero-heat-current condi-
tion at constant transmission, it is necessary to have at least
two biases, one of which being the temperature bias. The rea-
son for this is that any of the three biases breaks the symmetry
with respect to the excess energy transported into the left
contact and needs hence to be (nontrivially) compensated by
a second bias. Only when the transmission has an appropriate
energy-dependence can a zero heat current be reached by the
application of a single bias. All different possible settings,
which we present in this section, are listed in Table I.

A. Delta-T charge and spin current noises

First, we consider a spin-degenerate setup in which only a
temperature bias between the contacts generates the nonequi-
librium noise, as illustrated in Fig. 1(a). This is the situation
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in which the delta-T noise was studied in Refs. [32,33,35]. In
this case, transport can be understood in terms of negatively
(electrons) or positively (holes) charged excitations flowing
from the hot contact to the cold one. Therefore, both the
average charge and spin currents vanish

I = −e
∑

τ=↑,↓
( jeτ − jhτ ) = 0, (8a)

� = h̄

2

∑
i=e,h

( ji↑ − ji↓) = 0. (8b)

Here, we have defined the influxes of spin-resolved excitations
from the left contact as

jeτ = D

h

∫ ∞

μR

dE fLτ (E ), (9a)

jhτ = D

h

∫ μR

−∞
dE [1 − fLτ̄ (E )], (9b)

where the notation τ̄ refers to the opposite spin of τ . In
Eq. (8a), we classify the excitations according to their charge,
while we classify them according to their spin in Eq. (8b).

Unlike the currents, the noise is finite, and importantly it
contains a nonvanishing shot noise component

SI (0) = SI
sh(0) + SI

th(0)

= kBTL
4e2

h
D(1 − D)(2 ln 2 − 1) + kBTL

4e2

h
D. (10)

When the conductor is opaque, namely D  1, the charge-
current fluctuations are given by

SI (0) ≈ 8e2

h
DkBTL ln 2 = 2e2 j. (11)

Here, we recognize that the charge current noise is pro-
portional to the influx of excitations j flowing to the
low-temperature contact [41], namely

j =
∑

τ=↑,↓
( jeτ + jhτ ) =

∑
i=e,h

( ji↑ + ji↓). (12)

Importantly, this total flow of excitations includes all particles
(electrons and holes), irrespective of their charge and spin.
The opacity of the conductor makes transport happen via un-
correlated single-particle tunneling events, which means that,
in this limit, the current fluctuations simply count how many
excitations per unit time, electrons or holes, travel from the hot
to the cold contact [42–45]. The factor kBTL ln 2, which was
associated to the degeneracy of the transported excitations in
Ref. [35], stems from the influxes jiτ , all of which take the
same value for a temperature bias because the electron-hole
or spin symmetry is not broken. This factor takes the role of
an effective noise temperature when recognizing Eq. (11) as a
generalized fluctuation-dissipation theorem [20,35].

The spin-current fluctuations are essentially identical to the
charge current fluctuations in Eq. (11), the difference being
the quantity transported. This leads to a different prefactor,
namely

S� (0) ≈ 8

h

(
h̄

2

)2

DkBTL ln 2 = 2

(
h̄

2

)2

j. (13)

We highlight that the flow of excitations j accounts for both
spin-↑ and spin-↓ excitations flowing from left to right, irre-
spective of their spin.

B. Charge current noise due to spin bias

Instead of generating the nonequilibrium noise with a tem-
perature bias, here we set TL = TR → 0 and choose a spin
bias. To this end, we consider a spin-nondegenerate setup in
which the two spin populations in each reservoir α have a
finite energy separation σα between spin-↑ and spin-↓ elec-
trons. Such setups can be realized by injecting spin currents
in a normal metal using ferromagnetic contacting [46]. The
occupation probability of electrons injected into the conductor
is then spin dependent and is given by Eqs. (2) and (3).
The energy separation σα acts as a spin-dependent chemical
potential and allows the driving of spin currents through the
conductor. The zero-charge-current condition can for instance
be achieved as illustrated in Fig. 1(b), with �σ finite and
σR = 0. Then, the flow of spin-↑ excitations above μL (elec-
trons) is perfectly balanced by the flow of spin-↓ excitations
below μL (holes). Hence, the average charge current is zero
I = −e

∑
τ=↑,↓( jeτ − jhτ ) = 0, whereas the spin current is

finite. By using Eq. (6b), we then find that the charge noise
in the absence of charge current becomes

SI (0) ≡ SI
sh(0) = 2

e2

h
D(1 − D)|�σ | = 2e2(1 − D) j, (14)

very similar to the expressions of Eqs. (11) and (13). Here,
j = D|�σ |/h, as defined in Eq. (12), is the total flow of
excitations from left to right. A similar situation for zero-
current charge noise driven by spin precession has recently
been analyzed, the common feature being the breaking of spin
degeneracy [47]. At this point, we note that, once one has
access to the transmission D, the zero-current noise can be
used as an additional tool to probe the spin imbalance between
the reservoirs [48,49].

C. Spin current noise due to voltage bias

We now consider the zero-current fluctuations of the spin
current. The conditions for zero spin current can be achieved
as illustrated in Fig. 1(c), where TL = TR → 0 and there are
no spin imbalances σα = 0. With a potential bias �μ between
the contacts, the average spin current vanishes due to spin
degeneracy: The spin-↑ electrons flowing from left to right
are perfectly balanced by the spin-↓ electrons flowing in the
same direction, namely � = h̄

2

∑
i=e,h( ji↑ − ji↓) = 0, while

there is a finite charge current from left to right. Note that
the same situation would hold with a nonvanishing but equal
spin imbalance present in both contacts, σL = σR 
= 0.

Still, as the two spin channels are completely independent,
the compensating spin-↑ and spin-↓ flows are partitioned by
the conductor’s finite transmission, leading to the spin current
shot noise

S� (0) ≡ S�
sh(0) = h̄

2π
D(1 − D)|�μ| = 2

(
h̄

2

)2

(1 − D) j,

(15)
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which, as in Eqs. (11), (13), and (14), is again proportional
to the bias applied to the system, in this case �μ. Once
more, the spin fluctuations are proportional to the total flow
of excitations j = D|�μ|/h being transferred from left to
right [50].

D. Heat noise

Unlike the charge and spin currents, it is not possible
to reach the zero-heat-current condition by applying only
one bias while using a uniform transmission. In particular,
there must be a temperature bias between the contacts. The
additional bias is required to achieve the zero-heat-current
condition. When a voltage bias is used to make the heat
current in the left contact JL vanish, the required chemical
potential difference reads

�μJ ≡ �μ|JL=0 = ± π√
3

kBTL. (16)

This choice is depicted in Fig. 1(d). It entails a cancellation
of heat conduction Dπ2k2

B(T 2
L − T 2

R )/6h and Joule heating
D�μ2/2h, or—microscopically—a cancellation of influxes
of positive excess energy, jE

heat, with influxes of negative ex-
cess energy, jE

cool. For the constant transmission considered
here, and μL > μR, they are given by jE

cool = D/h
∫ μR

−∞(E −
μL)[1 − fL(E )]dE + D/h

∫ ∞
μL

(E − μL) fL(E )dE and jE
heat =

D/h
∫ μL

μR
(E − μL) fL(E )dE . We discuss this separation of

negative and positive excess energy fluxes in more detail in
Appendix B.

The resulting heat noise, consisting of a thermal and a shot
noise contribution, equals [27]

SJ (0) = 4π2

3h
D(kBTL)3

[
1 + 3

π2
(1 − D)A

(
π√

3

)]
, (17)

where A(x) = 2x2 ln(1 + ex ) − (π2 + x3)/3 + 4xLi2(−ex ) −
4Li3(−ex ), and Lin is the polylogarithmic function, with
3A(π/

√
3)/π2 ≈ 0.45. Note that the heat noise cannot be ex-

pressed in terms of the same jE as the heat current, and hence
the analogy to charge and spin noises cannot be established
in this respect. Due to the fact that the transported excess
energy enters quadratically into the noise expressions, simple
relations between heat currents and noise can only be found
in the classical limit, see e.g., Ref. [51]. Note, however, that
also the heat noise (17) can be written in terms of independent
electron- and hole contributions due to the elastic nature of the
scattering process. For the shot noise contribution, this sepa-
ration into electron- and hole contributions even continues to
hold in the case of ac driving [45].

The case in which a spin imbalance is used instead of
the voltage bias is very similar. Indeed, the zero-heat-current
condition is achieved when the left spin imbalance satisfies
σL = 2�μJ , while the right contact is spin degenerate, namely
σR = 0. In this case, each spin population of the system satis-
fies the zero-heat-current condition, JLτ = 0. Therefore, the
total heat noise coincides with Eq. (17) even when a spin
imbalance, rather than a voltage bias, is used to satisfy the
zero-current condition.

IV. BOUNDS ON SHOT NOISE

The results of Sec. III show how the shot noise of various
transport observables in the absence of average currents can
arise and that it can be made arbitrarily large by increasing the
bias at the origin of the nonequilibrium situation. However, as
soon as one of the biases is a temperature difference, addi-
tional thermal noise necessarily arises. An important question
is hence how large the nonequilibrium noise SX

sh(0) can be, in
comparison to the thermal noise SX

th(0). Here, we address this
issue for a general situation going beyond the limitations of
Sec. III: the constraint TR → 0 is lifted, and we consider con-
ductors where D(E ) has an arbitrary energy dependence and
where zero current at nonequilibrium is obtained in response
to different biases, one of which is a temperature bias.

For spin-degenerate systems, a first answer was provided in
Ref. [27]. There, some of us showed that, under the condition
(7), the zero-frequency heat shot noise SJ

sh(0) is generally
unbounded compared to the heat thermal noise SJ

th(0). This
happens when the transmission has specific features, most
importantly an energy gap. In Ref. [27] an ad hoc transmission
with this feature was presented, albeit with no direct physical
counterpart. In Sec. IV A, we present experimentally relevant
examples in which the heat shot noise is shown to become
arbitrarily large compared to the heat thermal noise.

In stark contrast to the heat noise, it was found in Ref. [27]
that the zero-frequency charge shot noise is bounded by the
thermal noise

SI
sh(0) � SI

th(0), (18)

for any transmission D(E ) and reservoirs’ temperatures Tα .
In Sec. IV B, we present a tighter bound than (18), which we
also extend to the spin shot noise S�

sh(0), when the zero-current
condition is fulfilled by a combination of �T and �σ .

A general constraint like Eq. (18) does not exist for the sit-
uations presented in Sec. III B and III C, where the breaking of
spin degeneracy in charge transport (respectively the breaking
of e-h symmetry for spin transport) yields an effectively multi-
terminal conductor, where a bound is generally not expected
to hold.

A. Achieving unbounded heat shot noise

Here, we demonstrate that the energy-dependent trans-
mission of experimentally relevant conductors can lead to
zero-frequency heat shot noise that is arbitrarily large com-
pared to the heat thermal noise, in the absence of an average
heat current. Such a behavior was observed in Ref. [27] as a
consequence of a transmission function featuring an energy
gap (see in particular the Supplemental Material of Ref. [27]
for further details).

Transmissions with this type of properties are found,
e.g., in conductors with helical edge states [52–54], where
backscattering is induced due to etched constrictions [55,56]
or magnetic impurities [57]. Previously, it was highlighted
in Refs. [57,58] that such conductors are indeed highly rel-
evant for efficient thermoelectric applications. Moreover, we
note that transmission functions complementary to the gapped
ones, namely boxcar transmissions, were recently shown to
produce finite current but zero shot noise scenarios [59].
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FIG. 2. (a) Zero-heat-current condition for the transmission
D(E ) from Eq. (19) (depicted in purple). (b) Stopping voltage and
(c) ratio of the zero-frequency noise components for the transmission
in (a). (d) Zero-heat-current condition for the transmission D(E )
from Eq. (20) (depicted in purple). (e) Stopping voltage and (f) ratio
of the zero-frequency noise components for the transmission in (d).
The heat shot noise can be much larger than the thermal noise.

Let us first consider a “well-shaped” transmission proba-
bility, which can be realized in smooth or disordered helical
junctions [55]. For the sake of concreteness, we consider the
simple transmission function

D(E − μL) = 1

1 + eγ (E−μL )
+ 1

1 + e−γ (E−μL−2ε)
, (19)

which is illustrated in Fig. 2(a). This transmission exhibits an
energy gap of width 2ε and the sharpness of the gap edges is
determined by γ . Importantly, ε and γ are two independent
parameters [60]. We next show that γ and ε can be used to
generate zero-current heat shot noise that can be much larger
than its thermal counterpart.

First, we note that the energy gap separates the transport
window into two distinct regions. Second, the sharpness of
the gap edge allows a large stopping voltage |�μJ | (i.e., the
voltage required to cause the heat current to vanish), which
increases for an increasing gap. In turn, such a |�μJ | permits
both energy regions to contribute to the heat transport, as
depicted in Figs. 2(a) and 2(b). Furthermore, the gap edges
generate finite shot noise contributions because the transmis-
sion is different from both zero and one in these regions.
When a sharp edge and large |�μJ | are combined, the shot
noise increases for large ε, and approaches the linear relation
SJ

sh ∝ ε, as illustrated in Fig. 2(c). In fact, this result does

not depend on the specific shape of the transmission as long
as it is gapped and the gap edges are sufficiently sharp (see
Appendix B for details). Therefore, the heat shot noise can
be arbitrarily large compared to its thermal counterpart even
under the zero-current condition. If the gap edges are instead
smooth, (γ kBTL � 1), the zero-heat-current condition can be
met by using only the low energy transmission region, in a
similar fashion to Sec. III D. In this case, the shot noise does
not overcome the thermal noise, as illustrated by the blue
curve in Fig. 2(c).

Similar to a disordered conductor, we show that the heat
shot noise can be unbounded also for a single magnetic im-
purity in the helical conductor. In this case, the two-terminal
transmission probability displays Fabry-Pérot-like resonances
in addition to the well structure and is given by [57]

D(E − μL) =
[

1 + sin2 (r(E − μL))
r2(E − μL)

]−1

,

r(E ) =
√(

E − ε

ε

)2

− 1, (20)

where  is a dimensionless parameter describing the effective
length of the sharp impurity region and ε is a characteristic
energy scale. Just as the transmission in Eq. (19), this trans-
mission has an energy gap of 2ε, as illustrated in Fig. 2(d).
Here, however, the sharpness of the gap edges is determined
by both ε and . These parameters permit a large stopping
voltage |�μJ | and, consequently, a large heat shot noise, as
shown in Figs. 2(e) and 2(f), respectively. In contrast to the
well-like transmission setup, both stopping voltage and heat
shot noise here eventually decrease at large ε when  is small.
This occurs because for small , the sharpness of the gap edges
decreases and only the lower transmission region becomes
involved in the transport. In addition, the Fabry-Pérot-like
resonances of the transmission produce oscillations in the
noise ratio at lower ε and larger . In these parameter regimes,
the first few peaks of the higher energy region are involved
in the transport due to the stopping voltage, as illustrated in
Fig. 2(d). Instead, at larger ε or lower  these oscillations dis-
appear because only the gap edge participates in the transport.

We conclude this section by noticing that the separation
of transport into two separate energy windows can also be
achieved using superconducting contacts. Indeed, the quasi-
particles responsible for heat transport cannot be transmitted
in the gapped energy region of the superconductor. Therefore,
we expect that large heat shot noise exceeding the heat ther-
mal noise in the absence of heat current can be observed in
superconducting devices [61].

B. Bounds on zero-frequency charge and spin noise

In contrast to the fluctuations discussed in Secs. III B, III C,
and IV A, the charge fluctuations without spin bias and the
spin fluctuations without voltage bias satisfy a bound, which
was already mentioned in Eq. (18) for the charge noise com-
ponents. Here, we improve this inequality by finding a stricter
upper bound and we extend it to the spin fluctuations. To do
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FIG. 3. (a) Zero-charge-current condition for the Lorentzian
transmission D(E ) from Eq. (23) (depicted in purple), with fixed
βL� = 10−2 and D0 = 0.5. (b) Charge noise ratio SI

sh(0)/SI
th(0) for

the Lorentzian transmission as a function of the resonance peak
position ε and for two different temperatures of the cold reservoir.
Dotted lines correspond to the bound in Eq. (22). The solid, grey line
corresponds to the bound in Eq. (18).

this, we denote

�X
α =

∑
τ

∫
dE

2x2

h
D(E ) fατ (E )[1 − fατ (E )] (21)

the contribution of reservoir α to the zero-frequency thermal
noise, i.e., SX

th(0) = �X
L + �X

R. In spin-degenerate systems,
in which the nonequilibrium condition is determined only
by a temperature and a voltage bias (and no spin splitting
is present), we consider the charge noise in the absence of
an average charge current. We find (see Appendix C for the
derivation) that the shot noise is bounded as

SI
sh(0) � �I

h − �I
c, (22)

where �I
h and �I

c are the thermal noise contributions of the
hot and cold reservoirs respectively, e.g., h = L and c = R if
TR < TL.

The bound (22) is tighter than that in Eq. (18) from
Ref. [27]. This is so since SX

th(0) = �X
L + �X

R and �X
α � 0.

Equality in Eq. (22) is approached when the maximum value
of the transmission satisfies Dmax  1 and, at the same time,
D(E ) is finite in an energy interval δ much smaller than the
hot temperature, e.g., δ  kBTL for TL > TR. In the case of
equal thermal noise contributions, �I

L = �I
R, the shot noise

vanishes under the zero-current condition (7). Indeed, even
though the same thermal fluctuations can be achieved at dif-
ferent temperatures, satisfying both �I

L = �I
R and zero charge

current is only possible in equilibrium. Then, the total noise
simply reduces to equilibrium thermal noise.

We illustrate the improved bound (22) in Fig. 3, where we
plot the noise ratio SI

sh(0)/SI
th(0) obtained with the Lorentzian

transmission function

D(E − μL) = D0
�2

�2 + (E − μL − ε)2
. (23)

As shown in Ref. [27], this transmission is particularly useful
as it interpolates between two different regimes, from a sharp
resonance to an almost constant transmission. Figure 3(b) is
obtained by selecting a sharp resonance with βL� = 10−2, so

that it is possible to get closer to the bound (compared to a
case with a larger width). As expected, when the temperature
of the cold reservoir TR is negligible, the bound (22) reduces to
(18), as �I

R ≈ 0 in this regime. In contrast, when TR is sizable,
we observe that the improved bound (22) captures much better
the behavior of the shot noise, whereas Eq. (18) clearly fails
to do so. The large differences between solid and dotted lines
observed at large ε are explained by realizing that, in this
regime, the resonance peak lies outside the bias window and
the tails of the Lorentzian behave as a constant transmission,
for which the bound cannot be approached.

Similarly to the charge noise, we next consider the spin-
current fluctuations in spin-nondegenerate systems in the
absence of voltage bias. In this case, the nonequilibrium con-
dition is determined by a combination of the temperature bias
and the spin imbalances of the reservoirs. Again, when the
average spin current vanishes, we find that the corresponding
shot noise is bounded as

S�
sh(0) � ��

h − ��
c � S�

th (0) = ��
h + ��

c . (24)

We stress here that the bounds in Eqs. (22) and (24)
hold for any transmission function D(E ) and any tempera-
tures TL, TR, as long as the zero-current condition is fulfilled.
These inequalities are due to both charge and spin being
energy-independent electronic properties as well as the in-
duced symmetries in the different setups. More specifically,
in contrast to heat, the transported charge and spin do not
depend on the energy at which the particle tunnels through
the conductor. Furthermore, for the charge fluctuations, the
system is spin invariant, namely fα↑(E ) = fα↓(E ), while for
the spin fluctuations, the system is electron-hole symmetric,
i.e., fα↑(E ) = 1 − fα↓(−E ). It is therefore interesting to note
that violations of the bound (22) could be a signature of
the conductor breaking the spin degeneracy. Note that break-
ing the above symmetries makes the system equivalent to a
multiterminal device in which there is one terminal for each
index pair ατ . In this case, the additional control parameters
provided by the lack of the symmetry constraints can be com-
bined to break the bounds (22) and (24).

The fact that both charge and spin are energy-independent
quantities makes the charge and spin fluctuations proportional
to each other, see Eq. (6). This implies that, when the charge
shot noise is bounded according to (22), the spin shot noise is
also bounded according to (24), under the same nonequilib-
rium conditions (which also lead to zero spin current, � = 0).
Vice versa, when (24) is satisfied, the charge shot noise is
bounded, according to (22), even though the nonequilibrium
conditions leading to � = 0 do not imply I = 0.

V. FINITE-FREQUENCY NOISE
IN THE ABSENCE OF CURRENTS

We have demonstrated in Sec. IV that, at zero frequency,
the thermal noise, necessarily arising when the conductor
is biased by a temperature difference, sets a bound on the
shot noise in the absence of an average charge or spin
current. This holds as long as the transported quantity is
energy-independent and the conductor is truly two-terminal.
In contrast, this is not the case for heat transport or when the
two-terminal conductor (effectively) acts as a multiterminal
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conductor. A natural next question is therefore whether the
ω = 0 bound for the charge shot noise (22) exists even for
finite-frequency noise ω 
= 0.

Finite-frequency noise in mesoscopic systems has long
been studied, in particular in connection with the so-called
quantum-noise regime [62]. It can be linked to the transition
rates of a two-level system or, more generally, to the emission
and absorption spectra of a conductor coupled to an electro-
magnetic environment. In the latter case, the finite-frequency
noise is expressed as a weighted sum over single-particle
transitions associated with the emission or absorption of a
photon of energy h̄ω [63]. Simultaneously to our work, a
finite-frequency generalization of delta-T noise [64] was in-
vestigated, which shows the interest in finite-frequency noise
under zero-current conditions.

To investigate the finite frequency and zero current noise,
we separate in this section the finite-frequency nonequilibrium
partitioning noise and the remaining terms according to their
physical characteristics, in the same spirit as in Eq. (6). Then,
we demonstrate that the zero-current shot noise is indeed
limited by the remaining terms also at finite frequency, see
Eq. (28). Notably, the zero-frequency limit of this bound is
tighter than Eq. (18), but looser than Eq. (22). We thereby
corroborate the generality of the bound on charge shot noise
in the absence of current and identify detailed requirements
for the bound to hold.

A. Scattering approach to finite-frequency noise

Here, we present analytical results for the autocorrelation
charge shot noise in contact α = L at finite frequency ω. In
the limit of ω → 0, this yields the expressions in Eq. (6),
which were the basis of the analyses of Secs. III and IV. At
finite frequency, the total noise can be decomposed into an
absorption [SX,−(ω)] and an emission [SX,+(ω)] contribution,
which are associated with the absorption and emission of an
energy quantum h̄ω, respectively. The symmetrized noise in
Eq. (5) is simply the sum of absorption and emission contribu-
tions, namely SX (ω) = SX,−(ω) + SX,+(ω) [4,40]. However,
it is generally possible to consider and measure nonsymmetric
combinations of absorption and emission noise [65,66].

To be able to compare our results to the previous sections,
we divide both contributions into two expressions: the shot-
noise expression of interest, yielding Eq. (6b) in the limit
ω → 0 and the remaining terms that are not directly related
to a nonequilibrium partitioning noise. This division is not
unique, cf. for instance Ref. [64]. In our case, we define the
shot noise contribution of the absorption noise as

SI,−
sh (ω) =2e2

h

∫
dED(E )[1 − D(E + h̄ω)][ fL(E ) − fR(E )]

× [ fL(E + h̄ω) − fR(E + h̄ω)]. (25)

and the emission shot noise is given by SI,+
sh (ω) = SI,−

sh (−ω).
The symmetric form of Eq. (25) with respect to the exchange
R ↔ L implies that the shot noise component does not depend
on the reservoir in which the finite-frequency noise is mea-
sured, consistent with the role of the conductor as the source
of partitioning currents coming from the two reservoirs.

The remaining terms, which become SI
th(0) in the limit

ω → 0, are given by SI
rest(ω) = SI,−

rest (ω) + SI,+
rest (ω) with

SI,−
rest (ω) = �−

L (ω) + �−
R (ω) + A−(ω) + R−(ω), (26a)

�−
α (ω) = 2e2

h

∫
dE

[
D(E ) + D(E + h̄ω)

2

]
×{ fα (E )[1 − fα (E + h̄ω)]}, (26b)

R−(ω) = 2e2

h

∫
dE |sLL(E ) − sLL(E + h̄ω)|2

×{ fL(E )[1 − fL(E + h̄ω)]}, (26c)

A−(ω) = 2e2

h

∫
dE

[
D(E ) − D(E + h̄ω)

2

]
×{ fR(E )[1 − fL(E + h̄ω)]

− fL(E )[1 − fR(E + h̄ω)]}, (26d)

together with the emission contribution, SI,+
rest (ω) = SI,−

rest (−ω).
Here, �−

α (ω) is the contribution that yields the thermal noise,
stemming from the thermal excitations in contact α. In con-
trast, the terms R−(ω) and A−(ω) vanish at ω = 0 or when
the transmission function is energy independent, D(E ) ≡ D.
The contribution R−(ω) contains the factor fL(1 − fL), typ-
ical of thermal fluctuations, and does thus not vanish in
equilibrium. Moreover, sLL(E ) is the scattering matrix ele-
ment describing the reflection amplitude of reservoir L, see
Eq. (1). By contrast, the term A−(ω) vanishes in equilibrium,
but does not contain the partitioning factor D(1 − D). It does
therefore not have the characteristic partition property of the
shot noise. The system considered here is spin degenerate,
which produces the factors of 2 in the above noise expressions.

Note that at zero frequency, the noise obeys conservation
laws which relate the autocorrelation noise with the cross-
correlation noise. These laws imply that in the two-terminal
configuration, the autocorrelations in Eq. (6) are not indepen-
dent of the cross correlations. In contrast, at finite frequency,
such conservation laws are absent and finite frequency auto-
and cross-correlation noises can have different features [67].
Here, we restrict our study to the properties of the charge
current autocorrelator under the zero-current condition, cor-
responding to the finite-frequency delta-T noise observed by
measuring the charge noise in a single reservoir.

B. Bound for finite-frequency charge noise

In this section, we present a bound for the finite-frequency
shot noise which extends the zero-frequency shot noise bound
in Sec. V A (see Appendix D for its detailed derivation). In-
terestingly, the absorption part of the zero-current charge shot
noise measured from the autocorrelation in the left contact
obeys a bound, which we find to be

SI,−
sh (ω) � A−(ω) + �−

R (ω). (27)

This bound holds as long as the noise is measured in the colder
reservoir, e.g., the left reservoir for TL < TR. In contrast, an
equivalent expression for a bound does not hold for the emis-
sion noise SI,+

sh (ω), because the thermal contributions �+
α (ω)

are much smaller than their absorption counterparts. Indeed,
�+

α (ω) contains the product fα (E + h̄ω)[1 − fα (E )], which
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FIG. 4. (a) Zero-charge-current condition for the transmission
D(E ) in Eq. (29) (depicted in purple). (b) Ratio of the finite
frequency noise components. Noise is measured in the left, cold
reservoir, TL < TR. Dotted lines correspond to the bound (28).

decreases exponentially in ω. This leads to a smaller SI,+
rest (ω),

and allows the shot noise to be larger than the remaining noise.
However, for the total finite-frequency shot noise at zero

current, including both the absorption and emission part, we
find an equivalent bound

SI
sh(ω) � A(ω) + �R(ω), (28)

where the sum of contributions A(ω) = A−(ω) + A+(ω) and
�R(ω) = �−

R (ω) + �+
R (ω) appear. This bound holds again

provided that the noise is measured in the colder reservoir,
here taken as L, i.e., for TL < TR.

The bound (28) implies that, in the absence of charge cur-
rent, the finite-frequency charge shot noise is always smaller
than the remaining noise contributions, SI

sh(ω) � SI
rest(ω),

when the noise measurement is performed in the colder reser-
voir. This can be understood from the fact that R(ω) as well as
�L(ω) are always positive quantities. Taking the limit ω → 0
in Eq. (28), we obtain the bound SI

sh(0) � �h. This is a weaker
zero-frequency bound compared to the one that we previously
found in Eq. (22). This happens because the frequency ω

acts as an additional control parameter by broadening the
distributions fα (E )[1 − fα (E + h̄ω)] entering the noise. In
particular, increasing ω makes fα (E )[1 − fα (E + h̄ω)] larger.
This feature can be used to increase the finite-frequency shot
noise, as illustrated in Fig. 4(b). As a consequence, the finite-
frequency extension of the zero-frequency bound (22) does
not hold, whereas the weaker bound in Eq. (28) does.

1. Approaching the finite-frequency bound

With an appropriate choice of transmission function D(E ),
it is possible to approach the bound (28) at finite frequency, as
shown in Fig. 4. As a concrete realization of this, we consider
a transmission composed of two separated energy windows:
The window at lower energy has perfect transmission, D = 1,
whereas the higher energy window has a weak transmission,
D  1, namely

D(E ) =

⎧⎪⎨
⎪⎩

1 if E − E0 ∈ [0, 2δ],

0.05 if E − E1 ∈ [0, δ],

0 elsewhere,

(29)
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FIG. 5. (a) Zero-charge-current condition for the transmission
D(E ) from Eq. (30) (depicted in purple). (b) Ratio of the finite
frequency noise components. Noise is measured in the left, hot
reservoir, TR < TL. Dotted lines correspond to the bound (28), which
is clearly broken, as expected for measurements in the hot reservoir.

with E0 = μL − 0.9kBTR, E1 = μL + 0.45kBTR, and δ =
0.3kBTR. The smaller the weak transmission, the more the
noise ratio SI

sh(ω)/SI
rest(ω) approaches the bound. For fre-

quencies such that h̄ω < −(E0 + 2δ), i.e., smaller than the
separation between μL and the edge of the low energy
window, the shot noise increases while the thermal noise es-
sentially remains constant at low temperatures. This happens
because the finite-frequency fluctuations increase the energy
range of particles contributing to the noise. However, since
the left reservoir is cold and the hot reservoir is subject to a
high thermovoltage μR [see Fig. 4(a)], the occupation number
of the reservoirs in the transport region is close to either 0
or 1, leading to small thermal fluctuations. By contrast, for
h̄ω > −(E0 + 2δ), the thermal noise increases rapidly to its
maximum value, leading to a reduction of the noise ratio. In-
deed, in this case the thermal fluctuations of the cold reservoir
are large, because they can involve the occupations below and
above μL, namely fL(E )[1 − fL(E + h̄ω)].

2. Breaking the finite-frequency bound in the hot contact

An important requirement to reach the finite frequency
bound in Eq. (28) is that the noise is measured in the colder
reservoir, i.e., TL < TR. If instead the noise is measured in
the hotter reservoir TL > TR, the bound (28) does not hold.
To show this, we consider the transmission D(E ) depicted in
Fig. 5(a), made out of two energy windows. Specifically, we
take

D(E ) =

⎧⎪⎨
⎪⎩

1/2 if E − E0 ∈ [0, 0.1kBTL],

1 if E − E1 ∈ [0, δ],

0 elsewhere,

(30)

with E0 = μL − 6.96kBTL, E1 = μL − 6.56kBTL, and δ = 5 ·
10−5kBTL. In this setup, SI

sh(ω)/SI
rest(ω) increases rapidly as

the frequency becomes comparable to the width δ of the nar-
row window transmission, and decreases for larger ω. This is
illustrated in Fig. 5(b). Note that at zero frequency the bound
(22) is still satisfied, and, in this particular case, limits the shot
noise to being much smaller than the thermal noise. Indeed,
the shot noise is produced only in the lower transmission
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window, where fL and fR are close due to the large thermo-
voltage. There, the shot noise scales as ( fL − fR)2, whereas
the thermal noise scales as fL(1 − fL) ≈ | fL − fR|. We can
understand the behavior of SI

sh(ω)/SI
rest(ω) with the same ar-

guments as in the case for the noise in the colder reservoir. In
particular, for this setup, the increase in finite frequency shot
noise due to the narrow upper window allows it to overcome
the bound in Eq. (28). Nonetheless, our numerical analysis
does not show any instance of the charge shot noise ever
being greater than the thermal noise. Therefore, we conjecture
that the previously derived bound (18) should hold at finite
frequency for any temperature bias as well.

VI. SHOT NOISE MEASUREMENT SCHEME

In this section, we address the possibility of experimentally
verifying the bounds on charge shot noise in the absence of av-
erage charge current both in the zero and the finite-frequency
regime.

To this end, we start by proposing a simple measurement
scheme that allows to determine the finite-frequency charge
shot noise, and to estimate the upper bounds in Eqs. (27) and
(28). The procedure involves measuring the charge current
fluctuations with different choices for the electrochemical
potentials and temperatures in both contacts. We therefore
explicitly write the noise dependence on these quantities as
SI (ω; {μL, TL}; {μR, TR}). Here, the first (second) curly brack-
ets indicate the electrochemical potential and temperature of
the left (right) contact. In the following, we set λ ≡ {μL, TL}
and ρ ≡ {μR, TR} for compactness.

To obtain the shot noise, four measurements are required.
The first finite-frequency noise measurement is performed
under the desired out-of-equilibrium condition, yielding
SI (ω; λ; ρ). Using the decompositions of Eqs. (25) and (26),
the measured noise reads

SI (ω; λ; ρ) = SI
sh(ω; λ; ρ) + �L(ω) + �R(ω)

+ R(ω; λ) + A(ω; λ; ρ). (31)

Notably, the shot noise is symmetric under the exchange
of the contact electrochemical potentials and temperatures,
namely SI

sh(ω; λ; ρ) = SI
sh(ω; ρ; λ). In contrast, the quantity A

is antisymmetric: A(ω; λ; ρ) = −A(ω; ρ; λ). These proper-
ties suggest a second noise measurement, which is performed
with exchanged electrochemical potentials and temperatures,
namely by inverting both voltage and temperature biases
across the device. One then finds the noise

SI (ω; ρ; λ) = SI
sh(ω; λ; ρ) + �L(ω) + �R(ω)

+ R(ω; ρ) − A(ω; λ; ρ). (32)

Furthermore, both SI
sh and A vanish under equilibrium con-

ditions [see Eqs. (25) and (26d) respectively]. Two final
measurements are to be performed when the contacts have
the same electrochemical potentials and temperatures, which
gives

SI (ω; λ; λ) = 2�L(ω) + R(ω; λ), (33)

SI (ω; ρ; ρ) = 2�R(ω) + R(ω; ρ). (34)

The difference between the out-of-equilibrium fluctuations
in Eqs. (31) and (32), combined with the equilibrium noise
in Eqs. (33) and (34) is proportional to the shot noise. More
specifically, we have

SI
sh(ω; λ; ρ) = 1

2
[SI (ω; λ; ρ) + SI (ω; ρ; λ)

− SI (ω; λ; λ) − SI (ω; ρ; ρ)]. (35)

This result means that the finite-frequency shot noise can be
experimentally accessed. The same noise measurements give
also an estimate of the upper bound in Eq. (28) through

A(ω) + �R(ω) + R(ω)

2
= 1

2
[SI (ω; λ; ρ) − SI (ω; ρ; λ)

+ SI (ω; ρ; ρ)]. (36)

Here, A(ω) ≡ A(ω; λ; ρ) and R(ω) ≡ R(ω; λ) are the noise
components in the desired out-of-equilibrium condition. Since
R(ω) is non-negative, Eq. (36) is always greater than the zero-
current charge shot noise SI

sh(ω) [see Eq. (28)], and, at the
same time, smaller than the remaining noise SI

rest(ω).
Even though we discussed the measurement scheme for

the symmetrized noise, applying the same procedure to the
absorption noise gives the same results. Therefore, the four
noise measurements discussed above can be used to verify the
bounds of Eqs. (27) and (28). Furthermore, at zero frequency,
where R(0; λ) = A(0; λ; ρ) = 0, the noise measurements in
Eqs. (31), (33), and (34) allow one to determine the shot noise
and each contact’s contribution to the thermal noise [24]. In
turn, these quantities can be used to verify the bound (22) of
the zero-current shot noise at zero frequency.

VII. CONCLUSIONS

We have studied noise in steady-state charge, spin, and heat
transport in a two-terminal quantum conductor under a wide
range of nonequilibrium conditions such that the correspond-
ing average currents vanish. We thus extended the concept
of so-called delta-T noise [20,32] (zero-current charge noise
due to a pure temperature bias) to more generic setups of
quantum transport, which are of wide interest in the fields of
thermoelectrics and spintronics.

While, generally, the shot noise can be arbitrarily large,
even in the absence of the corresponding average current, we
have demonstrated that this is not the case for charge and spin
fluctuations in spin- and electron-hole-symmetric systems,
respectively. Indeed, the shot noises are limited by the differ-
ence of their thermal counterparts for any conductor and any
temperature bias. Furthermore, we have extended this bound
on the zero-current charge fluctuations to the finite-frequency
regime, where it holds as long as the noise is measured in the
cold contact.

We envision that the general concept of zero-current
nonequilibrium noise could be developed into a versatile
diagnostic tool for probing, e.g., superconducting devices,
strongly correlated electron circuits [29,68] or small-scale
quantum thermodynamical machines working in the absence
of average heat transfer [69–74]. Of particular use is the strong
dependence of the noise on temperature gradients or spin
imbalances. Another extension of our paper could target zero-
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current noise in situations where temperature fluctuations
are important: Since in thermoelectric materials charge and
heat transport are correlated, temperature fluctuations have
been demonstrated to enhance voltage fluctuations, even in
equilibrium [75].
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APPENDIX A: SMALL TEMPERATURE BIAS

In Sec. III and in the Supplemental Material of Ref. [27],
we considered the experimentally relevant [35] situation of
a large temperature bias TL � TR. On the other hand, ex-
periments (e.g., in Ref. [32]) have also been performed in
the opposite regime, namely when the thermal bias �T =
TL − TR > 0 is smaller than the average temperature T̄ =
(TL + TR)/2. Some results for the delta-T noise in this regime
have appeared in previous works [23,28,29,32], while they
have not been reported for the heat noise.

In this Appendix, for completeness, we provide an analyt-
ical expression to leading order in �T/T̄ for the zero-current
heat noise at zero frequency, SJ (0) [see Eq. (6)]. For conve-
nience, we set μL = 0 as the reference energy and we also
limit ourselves to a spin-degenerate system. The heat shot
noise contribution (6b) can be expanded as

SJ
sh(0) ≈ 4

h
(kBT̄ )3

[
SJ

0 + SJ
1

(
�T

T̄

)]
, (A1)

where

SJ
0 = F (0)

[
y

3
(y2 + π2) coth

y

2
− y2 − 2π2

3

]

+ kBT̄

�
F ′(0)

[
y(y2 + π2) − y2

4
(y2 + 2π2) coth

y

2

]

(A2)

and

SJ
1 = F (0)

[
y2

2
− π2

3
y coth

y

2
+ y2

6

(
y2

4
+ π2

)
csch2 y

2

]

+ kBT̄

�
F ′(0)

[
π2

(
y2

2
+ 7π2

15

)
coth

y

2
− y

2
(3π2 + y2)

−
(

3y5

80
+ 5π2y3

24
+ 7π4y

30

)
csch2 y

2

]
. (A3)

Here, y ≡ (μL − μR)/kBT̄ is a dimensionless bias, F (E ) ≡
D(E )[1 − D(E )] with F (0) = F (μL), and � is the typical

energy scale over which the transmission function varies, for
instance the width of a Lorentzian. The above expressions
are valid under the assumption kBT̄  �, i.e., they provide
a first-order correction to the constant transmission scenario,
which is recovered for F ′(E ) ≡ �dF/dE = 0.

Next, we find the stopping voltage �μJ , i.e., the voltage
needed for the heat current JL to vanish. For a constant trans-
mission D(E ) = D, this voltage is obtained exactly as

|�μJ | = kBπ√
3

√
T 2

L − T 2
R = kBT̄ π√

3

√
2�T

T̄
, (A4)

and by substituting y with �μJ/(kBT̄ ) in Eq. (A1), we find
the leading-order approximation for the zero-current heat shot
noise as

SJ
sh(0) ≈ 4

h
(kBT̄ )3D(1 − D)

π2(π2 − 6)

27

�T

T̄
. (A5)

Moving on to a generic transmission function D(E ), we find
instead the stopping voltage

�μJ = ±kBT̄ π√
3

√
2�T

T̄

[
1 ± π√

3

√
2�T

T̄

D′(0)

D(0)

kBT̄

�

]
,

(A6)

which inserted into Eq. (A1) leads to an additional correction
of order (�T/T̄ )3/2,

SJ
sh(0) ≈ 4

h
(kBT̄ )3

[
F (0)

π2(π2 − 6)

27

�T

T̄
± K

(
�T

T̄

)3/2
]
,

(A7)

with

K = kBT̄

�

√
6π3

[
F (0)

2(π2 − 6)

81

D′(0)

D(0)
+ F ′(0)

π2 − 10

30

]
.

(A8)

Note that the different signs in the above equations stem from
the sign of the chosen stopping voltage.

Performing similar calculations for the thermal heat noise
(6a), yields

SJ
th(0) ≈ 4

h
(kBT̄ )3D

2π2

3

(
1 + �T

T̄

)
(A9)

for a constant transmission D(E ) = D, and

SJ
th(0) ≈ 4

h
(kBT̄ )3D(0)

2π2

3

[
1 ±

√
3

2

D′(0)

D(0)

kBT̄

�

√
�T

T̄

+
(

1 + π2 D′(0)

D(0)

kBT̄

�

)
�T

T̄

]
(A10)

for a weakly energy-dependent transmission.

APPENDIX B: UNBOUNDED ZERO-FREQUENCY
HEAT SHOT NOISE

In Ref. [27], it was argued that a gapped transmission can
be used to achieve heat shot noise that exceeds heat thermal
noise in the absence of average heat currents. Here, we show
this statement in more detail.
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A generic, gapped transmission function D(E ), e.g., those
in Figs. 2(a) and 2(d), can be separated into two distinct
energy windows as

D(E ) = D<(E ) + D>(E )

≈ D<(E )θ (E − E<) + D>(E )θ (E> − E ), (B1)

where θ (x) is the step function and the difference E> − E<

is the energy gap. Here, we focus on the case μL < E< <

E> < μR, that, as discussed in the main text, allows to achieve
arbitrarily large heat shot noise. This distinction allows us to
separate the heat current according to both the transmission
window and the sign of the excess energy E − μL. In par-
ticular, particles contributing to the negative excess energy
influx into the left contact yield the following heat flows in
both energy windows:

Jcool,< = 2

h

∫ μL

−∞
dE [E − μL]D<[ fL − fR], (B2)

Jcool,> = 2

h

∫ ∞

ε

dE [E − μL]D>[ fL − fR], (B3)

where we omitted the energy dependencies in the integrand
for notational ease. The energy ε is defined as the energy at
which the Fermi distributions cross, namely fL(ε) = fR(ε).
Similarly, particles contributing to the positive excess energy
influx into the left contact yield

Jheat,< = 2

h

∫ E<

μL

dE [E − μL]D<[ fL − fR], (B4)

Jheat,> = 2

h

∫ ε

E>

dE [E − μL]D>[ fL − fR]. (B5)

The zero-heat-current condition then reads

(Jheat,< + Jheat,>) + (Jcool,< + Jcool,>) ≡ Jheat + Jcool = 0.

(B6)

We are interested in situations in which Jheat,> is finite. Other-
wise the large energy window D>(E ) becomes irrelevant to
the heat transport. We next consider kBTR to be the small-
est energy scale, such that we can approximate TR ≈ 0 and,
consequently, ε ≈ μR, and we consider a large gap, such that
E> − μL � kBTL. In the upper window, the Fermi functions
are to good approximation given as fL ≈ 0 and fR ≈ θ (μR −
E ), respectively. We then have

Jcool,> ≈ 0 (B7)

Jheat,> ≈ −2

h

∫ μR

E>

dE [E − μL]D>

≈ −2

h
[E> − μL]

∫ μR

E>

dED>. (B8)

In the last equality, we used that at large E>, μR must lie very
close to E> in order to satisfy the zero-heat-current condition,
Jheat,> = −Jcool − Jheat,<.

Similarly to the heat currents, the heat shot noise is also
separated according to the transmission windows, namely
Ssh(0)J ≈ SJ

sh,<(0) + SJ
sh,>(0). We now focus on the contribu-

tion generated by the upper window, which reads

SJ
sh,>(0) = 4

h

∫ ∞

E>

dE [E − μL]2D>[1 − D>][ fL − fR]2,

≈ 4

h
[E> − μL]2

∫ μR

E>

dED>[1 − D>],

≈ 4

h
[E> − μL]2

∫ μR

E>

dED>,

≈ 4[E> − μL][Jcool + Jheat,<]. (B9)

Here, in the third line we recognize that, at sufficiently large
gap, the energy interval [E>,μR] becomes much smaller than
the scale on which D> varies. In particular, this interval
corresponds to the gap edge, where D>(E ) transitions from
being close to zero to being finite. Therefore, in the energy
interval [E>,μR] the transmission D>(E ) is much smaller
than one, D>(E )  1. Since both Jcool ≈ Jcool,< and Jheat,<

do not depend on E>, Eq. (B9) shows that the heat shot
noise contribution of the upper transmission window grows
linearly in E> − μL for large E> − μL, which is the case for
a large transmission gap. Note that the specific shape of the
transmission function D(E ) does not matter as long as it is
gapped and separable as in Eq. (B1).

APPENDIX C: BOUND ON ZERO-FREQUENCY CHARGE
AND SPIN SHOT NOISE

At zero frequency, the conservation of charge and spin in
the conductor demands that the shot noises measured in the
left and right reservoirs are equal. Thus, we can assume with-
out loss of generality that the left reservoir is colder than the
right one and we therefore set TL < TR. Importantly, in both
cases we consider, the average spin current vanishes. Indeed,
we investigate the charge noise in spin-degenerate systems,
and the spin fluctuations in the absence of spin current. Using
the zero-spin-current condition

� =
∑

τ

∫
dE D(E )

(−1)δτ↓

4π
[ fLτ (E ) − fRτ (E )] = 0, (C1)

the difference between the thermal noise and twice the thermal
noise in the left reservoir can be written as

SX
th − 2�X

L =
∑

τ

2x2

h

∫
dED(E )[ fLτ (E ) − fRτ (E )]2

+ 4x2

h

∫
dED(E ){ fR↓(E )[ fL↓(E ) − fR↓(E )]

+ [1 − fR↑(E )][ fR↑(E ) − fL↑(E )]}, (C2)

with x → {−e, h̄/2} for X → {I, �}. Here, the first integral
is greater than or equal to the shot noise SX

sh because the
integrand in Eq. (6b) is always positive. Moreover, it contains
the additional factor [1 − D(E )], which is smaller than or
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equal to unity. The second integral is positive due to the
zero-current condition. Indeed, calling ετ the energy at which
fLτ (ετ ) = fRτ (ετ ), we can split the second integral according
to the sign of [ fLτ − fRτ ], and use the monotonicity of fRτ to
find the inequalities

∫ ∞

ε↓
dED fR↓[ fL↓ − fR↓] � fR↓(ε↓)

∫ ∞

ε↓
dED[ fL↓ − fR↓],

∫ ε↓

−∞
dED fR↓[ fL↓ − fR↓] � fR↓(ε↓)

∫ ε↓

−∞
dED[ fL↓ − fR↓].

(C3)

Here, we omitted the energy dependence in the integrands for
notational ease. Similar inequalities are found for the last term
in Eq. (C2), and, combining them, we obtain

h

4x2

(
SX

th − 2�X
L − SX

sh

)
� fR↓(ε↓)

∫
dED[ fL↓ − fR↓]

+ [1 − fR↑(ε↑)]
∫

dED[ fR↑ − fL↑]. (C4)

Now, if the system is spin degenerate, namely fα↑ = fα↓, the
integrals in the right-hand side of (C4) are proportional to
the charge current I . Therefore, in the absence of an average
charge current, namely I = 0, the charge noise without spin
imbalances satisfies the inequality (22).

Instead, if the system is spin nondegenerate, but there is
no voltage bias between the reservoirs, the occupation prob-
abilities satisfy fα↑(E ) = 1 − fα↓(−E ). This electron-hole
symmetry implies that ε↑ = −ε↓, which we can use to make
the right-hand side proportional to the spin current �. There-
fore, in the absence of an average spin current, i.e., � = 0, the
spin noise without voltage bias satisfies the inequality (24).

APPENDIX D: BOUND ON FINITE-FREQUENCY
CHARGE SHOT NOISE

At finite frequency, the left and right autocorrelators
are generally different, and we consider here the left (L)
charge current autocorrelation noise, i.e., we focus on the
charge noise measured on the left reservoir. Here, we prove
the inequality on the symmetrized shot noise, namely Eq. (28),
because it is more complex than the inequality on the absorp-
tion shot noise, namely Eq. (27). Nonetheless, by applying
the same strategies presented below, one can demonstrate the
latter inequality.

The finite frequency charge shot noise and the charge ther-
mal noise are related through

SI
sh(ω) = SI

rest(ω) − R(ω) − 2�L(ω) − K(ω), (D1)

where R(ω) = R−(ω) + R+(ω) and �L(ω) = �−
L (ω) +

�+
L (ω) are the symmetrized noise components obtained from

Eqs. (26c) and (26b), respectively. Both such contributions are

positive. Moreover, the auxiliary function K(ω) is defined as

h

4e2
K(ω) =

∫
dED(E )[ fL(E ) − fR(E )] fR(E + h̄ω)

+
∫

dED(E + h̄ω)[ fL(E + h̄ω)

− fR(E + h̄ω)] fR(E ) +
∫

dED(E )D(E + h̄ω)

× [ fL(E ) − fR(E )] × [ fL(E + h̄ω)

− fR(E + h̄ω)]. (D2)

When the left reservoir is colder than the right one, namely for
TL < TR, the first two integrals in Eq. (D2) are positive due to
the zero-current condition, similarly to the case in Eq. (C4).
However, since left and right noises are not equal, when the
left reservoir is hotter (TL > TR) these terms are negative,
thereby allowing the finite frequency charge shot noise to be
larger than the finite frequency charge thermal noise. Hence,
we now focus on the case TL < TR. Even though the first two
integrals in Eq. (D2) are positive, K(ω) can still be nega-
tive, for example by taking the transmission function to be
D(E ) = 1 in the interval [−E0, E0] and D(E ) = 0 elsewhere,
while considering the limits TL → 0, TR → ∞, and choosing
the frequency h̄ω = E0. Therefore, the trivial finite frequency
extension of the bound in Eq. (22) does not hold. However, a
weaker version of such a bound holds also at finite frequency.
Indeed, the sum �L(ω) + K(ω) is always greater than

�L(ω) + K(ω) � 2e2

h

∫
dED(E )D(E + h̄ω)Gω(E ), (D3)

where the auxiliary function Gω(E ) corresponds to a combi-
nation of Fermi functions, namely

Gω(E ) ≡ { fL(E ) + fL(E + h̄ω) − 2 fL(E ) fR(E + h̄ω)

+ 2 fR(E )[ fR(E + h̄ω) − fL(E + h̄ω)]}. (D4)

Calling ε the energy at which fL(ε) = fR(ε), we consider
Gω(E ) in three distinct cases according to the signs of
[ fR(E ) − fL(E )] and [ fR(E + h̄ω) − fL(E + h̄ω)]. In partic-
ular, when E > ε, Gω(E ) is bounded from below by a positive
quantity

Gω(E ) � fL(E )[1 − fR(E + h̄ω)]+ fL(E + h̄ω)[1 − fR(E )].

(D5)

By contrast, when ε − h̄ω < E < ε, the lower bound is dif-
ferent but still positive,

Gω(E ) � fR(E )[1 − fL(E )]. (D6)

Finally, considering E < ε − h̄ω, we find that also in this
case, Gω(E ) is greater than a positive quantity, namely

Gω(E ) � fR(E )[1 − fL(E + h̄ω)]+ fR(E + h̄ω)[1 − fL(E )].

(D7)

We have therefore proved that Gω(E ) is always positive, and
so is therefore �L(ω) + K(ω) � 0. Combining this result
with Eq. (D1), we obtain the finite frequency charge shot noise
bound in Eq. (28).
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