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a b s t r a c t

This paper presents an iterative algorithm to compute a Robust Control Invariant (RCI) set, along
with an invariance-inducing control law, for Linear Parameter-Varying (LPV) systems. As real-time
measurements of the scheduling parameters are typically available, we allow the RCI set description
and the invariance-inducing controller to be scheduling parameter dependent. Thus, the considered
formulation leads to parameter-dependent conditions for the set invariance, which are replaced
by sufficient Linear Matrix Inequalities (LMIs) via Polya’s relaxation. These LMI conditions are then
combined with a novel volume maximization approach in a Semidefinite Programming (SDP) problem,
which aims at computing the desirably large RCI set. Besides ensuring invariance, it is also possible
to guarantee performance within the RCI set by imposing a chosen quadratic performance level as
an additional constraint in the SDP problem. Using numerical examples, we show that the presented
iterative algorithm can generate RCI sets for large parameter variations where commonly used robust
approaches fail.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

RCI set is a set of system states where a feasible control input
lways exists, which restricts the future states within the set in
he presence of disturbances. These sets have become an essential
ool for controller synthesis and stability analysis of linear and
onlinear systems (Blanchini & Miani, 2015; Bravo et al., 2005;
iacchini et al., 2010; Raković & Baric, 2010).
When computing RCI sets for LPV systems, a common prac-

ice is to treat the scheduling parameters as bounded uncertain-
ies (Gupta et al., 2019; Hanema et al., 2020; Miani & Savorgnan,
005; Nguyen et al., 2015). Moreover, the invariance inducing
ontrol laws are typically assumed to be only state-dependent,
ithout exploiting the observed scheduling parameter informa-
ion. In this way, the obtained RCI sets can be potentially con-
ervative and, in the worst case, even empty. Thus, to exploit
he information on the scheduling parameters, we propose a new
lgorithm to compute scheduling parameter-dependent RCI sets
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Program, under the grant No. 2015-02309. The material in this paper was not
presented at any conference. This paper was recommended for publication in
revised form by Associate Editor Sorin Olaru under the direction of Editor Sophie
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005-1098/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
and invariance inducing control laws for LPV systems. In this
paper, such sets are termed as parameter-dependent RCI (PD-RCI)
sets and parameter-dependent control laws (PDCLs), respectively.
The advantages of using a PDCL and PD-RCI set are:

• PDCL: these control laws can stabilize LPV systems that may
not be stabilizable by treating the parameters as unknown
bounded uncertainties (Blanchini et al., 2007). Moreover,
when computing the RCI sets, keeping PDCL as an opti-
mization variable provides extra degrees of freedom. We
remark that a similar construction was proposed in a robust
framework in Blanco et al. (2010), Gupta et al. (2019), Liu
et al. (2019).
• PD-RCI sets: Scheduling parameters affect the system’s

time evolution, and thus the set of states for which invari-
ance can be achieved. Therefore, only considering fixed (or
parameter-independent) RCI set description for all schedul-
ing parameters could be restrictive and may lead to conser-
vative (volume-wise) sets. This restrictiveness motivates us
to allow the RCI set description to be parameter-dependent.

This paper presents an iterative algorithm to compute a PD-
RCI set of desirably large volume and PDCL for the LPV systems.
We also present a method to compute PD-RCI sets within which
a desired quadratic performance can be guaranteed. The repre-
sentational complexity of the PD-RCI sets can be predefined. The
related LMI conditions for invariance are derived by employing
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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insler’s lemma and Polya’s relaxation. These conditions are con-
tructed to ensure invariance for all future (unknown) values of
he scheduling parameters. In order to obtain an RCI set with
desirably large volume, we present a volume maximization
euristic based on the theory of Monte-Carlo integration and its
onvex relaxations.
The paper is organized as follows: In Section 3, we formal-

ze the problem of computing PD-RCI set and PDCL. Sufficient
arameter-dependent conditions for invariance and performance
re derived in Section 4, and corresponding LMI conditions in Sec-
ion 5. Using these conditions, an iterative algorithm to compute
esirably large RCI sets is proposed in Section 6. Two case studies
re reported in Section 7.
Notation: We use Dn

+
∈ Rn×n to denote the set of all diagonal

matrices with positive diagonal entries. I and ei represent the
identity matrix and its ith column, and vector of ones is denoted
by 1, with dimension defined by the context. X ≻ 0 (⪰ 0) denotes
a positive (semi) definite matrix X . For compactness, in the text
∗’s will represent matrix’s entries that are uniquely identifiable
from symmetry, and for some square matrix X , He(X) = X +
XT . We use Xk and xk to represent a matrix and a vector of
appropriate dimension indexed with ‘k’. Let L(Xk, Y l, Θ̄, Θ) be a
matrix-valued function, where Xk and Y l represent all matrices
indexed with ‘k’ and ‘l’, and Θ̄, Θ are some arbitrary matrices. We
use Lk,l(Θ̄, Θ) = L(Xk, Y l, Θ̄, Θ), L l,k(Θ̄, Θ) = L(X l, Y k, Θ̄, Θ)
and Lk,k(Θ̄, Θ) = L(Xk, Y k, Θ̄, Θ).

2. Preliminaries

We recall two existing results which will be used in the paper.

Lemma 1 (Finsler’s Lemma). Let ξ ∈ Ξ ⊆ RNξ , Φ : Ξ →

Rn×n and ∆ : Ξ → Rm×n. Then the following statements are
equivalent (Ishihara et al., 2017):

i. For each ξ ∈ Ξ , yTΦ(ξ )y ≻ 0, ∀∆(ξ )y = 0, y ̸= 0.
ii. For each ξ ∈ Ξ , ∃Ψ ∈ Rn×m such that

Φ(ξ )+ Ψ (ξ )∆(ξ )+∆(ξ )TΨ (ξ )T ≻ 0.

Lemma 2 (Linearization Lemma). Let L ∈ Rm×n be any arbitrary
matrix and M ∈ Rm×m be a positive definite matrix. The following
relation always holds for any arbitrary matrix Y ∈ Rm×n (Gupta
et al., 2019)

LTM−1L ⪰ LTY + YTL− YTMY (1)

The result can be easily verified by adding a residual term
(L−MY)TM−1(L−MY) on the r.h.s of (1). This lemma is utilized
to resolve the non-linear matrix inequalities, i.e., the non-linear
term on the l.h.s. of (1) can be replaced with linear (in variables
L,M) matrix term on r.h.s., by appropriate choice of Y .

Remark 1. [Successive linearization] Though Y can be any arbi-
trary matrix of compatible dimension, in order to reduce conser-
vatism due to linearization, we suggest successive linearization
approach. An appropriate choice would be to select Y =M−1

0 L0,
where M0, L0 are the values of M, L obtained from previous
iteration. Thus the nonlinearity can be resolved iteratively in
which the residual term shrinks with each iteration. Notice that
(1) holds with equality if L = L0 and M = M0, this will be a
key property towards proving recursive feasibility of our iterative
schemes proposed in this paper.

3. Problem statement

Let us consider a discrete-time polytopic LPV system:

x(t+1)=A(ξ (t))x(t)+ B(ξ (t))u(t)+ E(ξ (t))w(t), (2)
 S

2

z(t)=C(ξ (t))x(t)+ D(ξ (t))u(t), (3)

where time index t ∈ Z+, x(t) ∈ Rnx and z(t) ∈ Rnz are the
current state and the output vectors, x(t + 1) is the successor
state, and u(t) ∈ Rnu and w(t) ∈ Rnw are the control and
the disturbance input vectors, respectively. The system matrices
A(ξ (t)), B(ξ (t)), C(ξ (t)), D(ξ (t)) and E(ξ (t)) depend on the time-
varying scheduling parameter ξ (t), which takes value in unit
simplex,

Ξ =

⎧⎨⎩ξ ∈ RNξ :

Nξ∑
k=1

ξk = 1, ξk ≥ 0

⎫⎬⎭ . (4)

It is assumed that the current value of ξ (t) is always available.
The polytopic system matrices are given by[
A(ξ (t)) B(ξ (t)) E(ξ (t))
C(ξ (t)) D(ξ (t)) 0

]
=

Nξ∑
k=1

ξk(t)
[
Ak Bk Ek

Ck Dk 0

]
, (5)

with Ak, Bk, Ck,Dk, Ek real matrices of compatible dimensions.
The system is subjected to the following polytopic state/input
constraints and bounded disturbance:
X u = {(x, u) : Hxx(t)+ Huu(t) ≤ 1} ,
W = {w : −1 ≤ Gw(t) ≤ 1} . (6)

where Hx ∈ Rnh×nx , Hu ∈ Rnh×nu and G ∈ Rng×nw are given matri-
ces. In this paper, we want to compute a 0-symmetric PD-RCI set
with a predefined complexity np described as

S(ξ (t))=
{
x ∈ Rnx : −1≤P(ξ (t))W−1x(t)≤1

}
, (7)

where P(ξ (t)) ≜
∑Nξ

k=1 ξk(t)Pk, Pk
∈ Rnp×nx and W ∈ Rnx×nx .

The presented parameterization of PD-RCI set will be justified
when we formalize the problem. Note that, if Pk

= P for all
k = 1, . . . ,Nξ , then P(ξ (t)) = P , which is similar to the
(parameter-independent) RCI set description considered in Gupta
and Falcone (2019), Liu et al. (2019). In order to have a non-empty
and bounded set S(ξ (t)), the matrix W should be invertible and
Rank(P(ξ (t))) = nx, ∀ξ ∈ Ξ . This will be later guaranteed
by proper LMI conditions. Furthermore, invariance in the set
S(ξ (t)) is achieved with a PDCL, which is not known a priori and
expressed as

u(t) = K(ξ (t))x(t), (8)

where K(ξ (t)) ≜
∑Nξ

k=1 ξk(t)K k and K k
∈ Rnu×nx . The closed-loop

representation of the system (2) and (3) with the controller (8)
can be written as

x(t+1) =

AK(ξ (t))  
(A(ξ (t))+B(ξ (t))K(ξ (t))) x(t)+E(ξ (t))w(t), (9)

z(t) =

CK(ξ (t))  
(C(ξ (t))+D(ξ (t))K(ξ (t))) x(t). (10)

o the best of authors’ knowledge, there is no related work which
omputes the described PD-RCI set. Thus we first formalize the
efinition of the set by adapting the standard definition of the
CI set to the LPV setting in the sequel.

efinition 1. We say a set S(ξ (t)) is a PD-RCI set if for any given
(t) ∈ Ξ and each x(t) ∈ S(ξ (t))

K(ξ (t))S(ξ (t))⊕ E(ξ (t))W ⊆ S(ξ (t + 1)),∀ξ (t+1) ∈ Ξ (11)

Condition (11) should be satisfied for ∀ξ (t + 1) ∈ Ξ since
(t + 1) is unknown at time t , which also implies x(t + 1) ∈
∀ξ (t+1)∈Ξ S(ξ (t + 1)). The computed set S(ξ (t)) and the PDCL
(ξ (t)) should obey the system constraints (6), which implies

(ξ (t)) ⊆ X (ξ (t)), (12)
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here X (ξ (t)) = {x : (Hx+HuK(ξ (t)))x(t) ≤ 1}. In classical for-
mulation, RCI set description is independent of the scheduling
parameters and is fixed for all ξ ∈ Ξ . On the other hand, for PD-
RCI set (7), different values of initial parameter ξ (t) ∈ Ξ provide
different slices1 of the set S(ξ (t)) for which the invariance can
be achieved. Thus, PD-RCI set provides more flexibility in finding
the set of initial states for which invariance can be achieved.

In some applications (e.g., MPC), it may be desirable to have
a guaranteed performance within the PD-RCI sets for the closed
loop system (9) and (10). For this purpose, we consider quadratic
performance constraint
∞∑
t=0

∥z(t)∥22 ≤ γ , 0 ≤ γ <∞. (13)

Here w.l.o.g., we assume that performance is measured from time
t = 0. Note that (13) can be only satisfied if w(t) = 0, ∀t ≥ 0
(or w(t) eventually becomes zero after certain time). Hence, we
will assume w(t) = 0 only when performance constraints are
considered.

Our aim is to compute P(ξ (t)), W and K(ξ (t)), which define
the PD-RCI set (7) and the invariance inducing controller (8). We
remark that, with W = I , computation of P(ξ (t)) and K(ξ (t))
results in a highly non-linear problem. Indeed, introduction of
the matrix W helps overcome the nonlinearity by decomposing
the problem into two subproblems described as follows. The first
subproblem aims to compute W and K(ξ (t)) for given parameter-
independent matrix P . The second subproblem, aims to compute
the parameter-dependent matrix P(ξ (t)) and updated controller
K(ξ (t)), for a given matrix W obtained from solving the first
subproblem. The two subproblems are formalized as follows.

Problem 1. For a given matrix Pinit ∈ Rnp×nx such that P(ξ (t)) =
Pinit and the discrete-time system (2) subject to constraints (6),
find a matrix W and the control law K(ξ (t)) that satisfies con-
ditions (11), (12) and (13) for any arbitrary variation of ξ (t) ∈
Ξ ,∀t ≥ 0.

Problem 2. For a given matrix W and the discrete-time system
(2) subject to constraints (6), find the matrix P(ξ (t)) and the
control law K(ξ (t)) that satisfies conditions (11), (12) and (13)
for any arbitrary variation of ξ (t) ∈ Ξ ,∀t ≥ 0.

Observe that by solving Problem 1, we obtain an RCI set which
is independent of the parameter ξ (t) since P(ξ (t)) = Pinit . In
order to obtain a PD-RCI set S(ξ (t)), we need to solve Problems 1
and 2 sequentially. In both problems, (13) is imposed only if
performance is desired. Even though we present our formulation
in the form of feasibility problems, our final goal is to design
algorithms to compute a desirably large PD-RCI set. In the next
section, we derive matrix inequality conditions for (11), (12) and
(13). These conditions will be later used to obtain LMI conditions
which solve Problems 1 and 2.

4. Sufficient parameter dependent conditions for invariance
and performance

For brevity, we will suppress the time dependent representa-
tion of the considered signals and use superscript ‘+’ to indicate
successor of x(t) and ξ (t). The arguments of the matrices AK(ξ ),
E(ξ ), CK(ξ ), P(ξ ) and the set S(ξ ) will be suppressed and recalled
whenever necessary.

1 For a fixed ξ̄ ∈ Ξ , a slice S(ξ̄ ) is defined as S(ξ̄ ) =

x ∈ Rnx : −1≤P(ξ̄ )W−1x≤1
}

3

.1. Parameter dependent conditions for invariance and system con-
trains

From (7) and (11), a set S(ξ ) is invariant, if for a given ξ ∈ Ξ
nd for each x ∈ S(ξ ), for i = 1, . . . , np

1−(eTi P(ξ+)W−1x+)2)≥0,∀(w, ξ+)∈ (W,Ξ ), (14)

sing S-procedure (Pólik & Terlaky, 2007), (6) and (7), we can
ewrite condition (14) as,

i(1− (eTi P(ξ+)W−1x+)2) ≥
1−PW−1x)TΛi(1+PW−1x)+(1−Gw)TΓi(1+Gw),
(w, ξ+) ∈ (W,Ξ ), i = 1, . . . , np, (15)

here φi ∈ R+, Λi ∈ Dnp
+ and Γi ∈ Dng

+ . The vector x+ in (15)
should satisfy (9), hence (15) can be written as

χ T
1

⎡⎢⎣ri 0 0 0
0 W−TPTΛiPW−1 0 0
0 0 GTΓiG 0
0 0 0 −pi

⎤⎥⎦χ1 ⪰ 0,

∀
[
0 −AK −E I

]
χ1 = 0, (16)

where χ1 =
[
1 xT wT (x+)T

]T , ri = φi − 1TΛi1 − 1TΓi1
and pi = W−TPT (ξ+)eiφieTi P(ξ+)W−1. We will utilize Lemma 1
to derive sufficient condition for (16). In particular, by choosing
Ψi(ξ ) =

[
0 0 0 Vi(ξ )−1

]T in Lemma 1, where Vi(ξ ) =∑Nξ

k=1 ξkV k
i , with V k

i ∈ Rnx×nx , and by using congruence transform,
we get a sufficient condition for (16) as follows⎡⎢⎣
ri 0 0 0
0 PTΛiP 0 AT

K̄
0 0 GTΓiG ET

0 ∗ ∗ He(Vi)− VT
i piVi

⎤⎥⎦ ≻ 0,∀ξ+ ∈ Ξ ,

i = 1, . . . , np, (17)

where AK̄ = AKW and K̄(ξ ) = K(ξ )W ≜
∑Nξ

k=1 ξkK̄ k. With
the intention to resolve the nonlinearity in the (4, 4)-block of
(17), we now introduce a positive-definite matrix variable Xi that
satisfies

X−1i − pi ≻ 0. (18)

Thus, from (17) and (18), we obtain a sufficient parameter depen-
dent matrix inequality condition for (11) as[
W TX−1i W ∗

φieTi P(ξ+) φi

]
≻ 0, (19a)⎡⎢⎢⎣

ri 0 0 0
0 PTΛiP 0 AT

K̄
0 0 GTΓiG ET

0 ∗ ∗ He(Vi)− VT
i X
−1
i Vi

⎤⎥⎥⎦ ≻ 0,

∀ξ+ ∈ Ξ , i = 1, . . . , np. (19b)

In the next lemma, we present sufficient parameter dependent
conditions for the invariance (11) and system constraints (12).

Lemma 3 (Gupta et al., 2022). For some arbitrary matrices Yi ∈

Rnx×nx , Λ̄i ∈ Dnp
+ , i = 1, . . . , np, Π̄j ∈ Dnp

+ , j = 1, . . . , nh
and Pk

0 ∈ Rnp×nx , k = 1, . . . ,Nξ , if there exist matrices W, Pk,
K̄ k, V k

i , Xi, diagonal semi-definite matrices Λi, Γi, Πj and scalar
φi > 0 satisfying conditions (20a), (20b), (20c) and (21) reported
below, then a PD-RCI set can be obtained as in (7) and the PDCL as
K(ξ ) = K̄(ξ )W−1:[
W TYi + Y T

i W − Y T
i XiYi ∗

T +

]
≻ 0, (20a)
φiei P(ξ ) φi
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i − 1TΛi1− 1TΓi1 ≻ 0, (20b)

Nξ∑
k=1

ξ 2
k M

k,k
i (Λ̄i, Λi)+

Nξ−1∑
k=1

Nξ∑
l=k+1

ξkξl(Mk,l
i (Λ̄i, Λi)+M l,k

i (Λ̄i, Λi))≻0, (20c)

Nξ∑
k=1

ξ 2
k R

k,k
j (Π̄j, Πj)+

Nξ−1∑
k=1

Nξ∑
l=k+1

ξkξl(Rk,l
j (Π̄j, Πj)+R l,k

j (Π̄j, Πj))⪰0, (21)

here,
k,l(Λ̄i, Λi)=He((Pk)T Λ̄iP l

0)−(Pk
0 )

T Λ̄iΛ
−1
i Λ̄iP l

0, (22)

Mk,l
i (Λ̄i, Λi)=

⎡⎢⎢⎣
Pk,l(Λ̄i, Λi) ∗ ∗ ∗

0 GTΓiG ∗ ∗

AkW+BkK̄ l Ek He(V k
i ) ∗

0 0 V k
i Xi

⎤⎥⎥⎦ , (23)

k,l
j (Π̄j, Πj)=

[
2− 1TΠj1 eTj (HxW + HuK̄ l)
∗ Pk,l(Π̄j, Πj)

]
. (24)

emark 2. A feasible solution to inequalities (20) and (21) for
ny arbitrary choice of matrices Yi, Λ̄i, Π̄j and Pk

0 gives a PD-
CI set S and an invariance inducing PDCL K. From Lemma 2,
e know that the ideal choices of these matrices is Yi = X−1i W ,

Λ̄i = Λi, Π̄j = Πj and Pk
0 = Pk. However, the mentioned choices

o not resolve the nonlinearities in (20) and (21). In Section 5, we
ill present a systematic way to select these matrices resolving
he nonlinearity, which also helps us to reduce the conservatism
ntroduced due to linearization.

.2. Parameter dependent performance constraints

We next derive parameter dependent matrix inequality con-
itions for performance constraint (13). Since we consider per-
ormance for w(t) = 0, ∀t ≥ 0, we can ignore the matrix E in
9). Now, let Q(ξ ) =

∑Nξ

k=1 ξkQ k
⪰ 0 with Q k

∈ Rnx×nx , then the
erformance constraint (13) is satisfied by the closed-loop system
9) and (10) within the set S if (Kothare et al., 1996; Liu et al.,
019):Q−1/2x(t)2

2 ≤ γ , ∀x(t) ∈ S(ξ ), (25a)Q−1/2(ξ+)x+2
2 −

Q−1/2x(t)2
2 ≤ −∥z(t)∥

2
2 . (25b)

It is easy to verify that (25) implies (13) by summing both sides
of (25b) from t = 0 to t = ∞. In the next lemma, we present
parameter dependent sufficient conditions for (25a) and (25b).

Lemma 4 (Gupta et al., 2022). For a given γ > 0, and some
arbitrary matrices Ῡ ∈ Dnp and Pk

0 ∈ Rnp×nx , k = 1, . . . ,Nξ , the
performance constraints (13) is fulfilled by the closed-loop system (9)
and (10) within the set S(ξ ), if there exist matrices W, Pk, K̄ k, Q k,
Zk, F k and diagonal semi-definite matrix Υ satisfying the following
conditions:
Nξ∑
k=1

ξ 2
k N

k,k
+

Nξ−1∑
k=1

Nξ∑
l=k+1

ξkξl(N k,l
+ N l,k)⪰0. (26a)

Nξ∑
ξ 2
k L

k,k(Ῡ , Υ )

k=1

4

+

Nξ−1∑
k=1

Nξ∑
l=k+1

ξkξl(Lk,l(Ῡ , Υ )+ L l,k(Ῡ , Υ )) ⪰ 0. (26b)

where,

N k,l
=

⎡⎢⎢⎢⎣
He(W )− Q k

∗ ∗ ∗ ∗

AkW+BkK̄ l He(Zk) ∗ ∗ ∗

0 Zk Q k
∗ ∗

CkW+DkK̄ l 0 0 He(F k) ∗
0 0 0 F k I

⎤⎥⎥⎥⎦ ,

Lk,l(Ῡ , Υ )=

⎡⎣γ − 1TΥ 1 ∗ ∗

0 Pk,l(Ῡ , Υ ) ∗

0 W Q k

⎤⎦ .

Notice that the performance constraints (26b) depend on matri-
ces Ῡ and Pk

0 , and their ideal choices are Υ and Pk, respectively.
We will present systematic choices of these matrices in the
next section. To summarize, in this section, we have obtained
parameter dependent matrix inequality conditions for invariance
(11), system constraints (12), and performance constraints (13)
which are given by (20), (21) (Lemma 3), and (26) (Lemma 4),
respectively. The parameter dependent conditions are linear if
Pk,l is linear. Assuming Pk

0 is known, the linearity of the matrix Pk,l

in turn depends on the matrices Λ̄i (and Π̄j, Ῡ ) and Pk. Resolving
the nonlinearity in Pk,l was one of the main motivating factors
behind the presented formulation of Problems 1 and 2.

5. Tractable LMI feasibility conditions

The matrix inequality conditions for invariance, system con-
straints and performance derived in Lemmas 3 and 4 are nonlin-
ear and dependent on ξ . Hence, solving them in the current form
can be intractable. We resolve the nonlinearity in Pk,l (see (22))
by fixing the matrices Pk

= Pk
0 = Pinit , k = 1, . . . ,Nξ , where Pinit

is some known matrix. As explained in Remark 2, we can thus
allow matrices Λ̄i = Λi, Π̄j = Πj, Ῡ = Υ (their ideal choices).
In the following theorem, we present one of the main result of
this paper which gives tractable LMI feasibility conditions for
Problem 1.

Theorem 1. Let P(ξ ) = P0(ξ ) = Pinit be a given matrix, then
Problem 1 has a feasible solution if,

i. there exist matrices W, K̄ k, V k
i , Xi, diagonal semi-definite ma-

trices Λi, Γi, Πj and scalar φi > 0, where k = 1, . . . ,Nξ ,
i = 1, . . . , np and j = 1, . . . , nh satisfying:[
He(W TYi)− Y T

i XiYi ∗

φieTi Pinit φi

]
≻ 0, (27a)

φi − 1TΛi1− 1TΓi1 ≻ 0, (27b)

Mk,k
i (Λi, Λi) ≻ 0, k = 1, . . . ,Nξ

Mk,l
i (Λi, Λi)+M l,k

i (Λi, Λi) ≻ 0, k = 1, . . . ,Nξ−1,
l = k+ 1, . . . ,Nξ

⎫⎬⎭ ,

(27c)

Rk,k
i (Πj, Πj) ⪰ 0, k = 1, . . . ,Nξ

Rk,l
i (Πj, Πj)+R l,k

i (Πj, Πj) ⪰ 0, k = 1, . . . ,Nξ−1,
l = k+ 1, . . . ,Nξ

⎫⎬⎭ ,

(28)

to fulfill conditions (11) and (12).
ii. there exist W, K̄ k, Q k, Zk, F k and Υ , where k = 1, . . . ,Nξ for

a given performance bound γ satisfying

N k,k
i ⪰ 0, k = 1, . . . ,Nξ

N k,l
i + N l,k

i ⪰ 0, k = 1, . . . ,Nξ − 1,

⎫⎬⎭ , (29a)

l = k+ 1, . . . ,Nξ
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Lk,k
i (Υ , Υ ) ⪰ 0, k = 1, . . . ,Nξ

Lk,l
i (Υ , Υ )+L l,k

i (Υ , Υ ) ⪰ 0, k = 1, . . . ,Nξ−1,
l = k+ 1, . . . ,Nξ

⎫⎬⎭ ,

(29b)

to fulfill condition (13).

n RCI set can then be obtained as in (7) and the PDCL K(ξ ) =
¯ (ξ )W−1.

roof.

i. Considering P(ξ ) = P0(ξ ) = Pinit , (27a) and (27b) are
directly obtained from (20a) and (20b), respectively. Next,
we consider (20c), which is a homogeneous matrix valued
polynomial of degree 2 and choose Λ̄i = Λi. The l.h.s of
(20c) is a matrix valued polynomial in ξk, k = 1, . . . ,Nξ .
Since ξk ≥ 0, a sufficient condition for (20c) can be obtained
by imposing each coefficient matrix of the polynomial to be
positive-definite, which is given by (27c). Similarly, letting
Π̄j = Πj, a sufficient condition for (21) is (28).

ii. We can prove (29a) and (29b) are sufficient for (26a) and
(26b) by using similar arguments as mentioned in part-i.
Notice that in (29b) we substitute Ῡ = Υ .

Note that, even if Pk’s are assumed to be constant in
heorem 1, the variable matrix W allows to reshape the RCI set.
similar construction to find initial RCI set was also proposed

n Gupta and Falcone (2019), Liu et al. (2019). We formulate
easibility conditions for Problem 2 in the next theorem. In the
heorem, matrices Pk’s are treated as variables and thus, inline
ith Remark 1, we fix Λ̄i = Λ0

i , Π̄j = Π0
j , Ῡ = Υ 0.

heorem 2. Let P0(ξ ) and W be given matrices, then Problem 2
as a feasible solution if,

i. there exist matrices Pk, K̄ k, V k
i , Xi, diagonal semi-definite ma-

trices Λi, Γi, Πj and scalar φi > 0, where k = 1, . . . ,Nξ ,
i = 1, . . . , np and j = 1, . . . , nh satisfying:[
He(W TYi)− Y T

i XiYi ∗

eTi P
k φ−1i

]
≻ 0, (30a)[

φ−1i − 1T Γ̄i1 ∗

φ−1i 1 Λ−1i

]
⪰ 0, (30b)

M̄k,k
i (Λ0

i , Λi) ≻ 0, k = 1, . . . ,Nξ

M̄k,l
i (Λ0

i , Λi)+M̄ l,k
i (Λ0

i , Λi) ≻ 0, k = 1, . . . ,Nξ−1,
l = k+ 1, . . . ,Nξ

⎫⎬⎭
(30c)

Rk,k
j (Π0

j , Πj) ⪰ 0, k = 1, . . . ,Nξ

Rk,l
j (Π0

j , Πj)+R l,k
j (Π0

j , Πj) ⪰ 0, k = 1, . . . ,Nξ−1,
l = k+ 1, . . . ,Nξ

⎫⎬⎭
(31)

to fulfill conditions (11) and (12), where

M̄k,l
i (Λ0

i , Λi)=

⎡⎢⎢⎣
Pk,l(Λ0

i , Λi) ∗ ∗ ∗

0 GT Γ̄iG ∗ ∗

AkW+BkK̄ l φ−1i Ek He(V k
i ) ∗

0 0 V k
i Xi

⎤⎥⎥⎦ (32)

ii. there exist Pk, K̄ k, Q k, Zk, F k and Υ , where k = 1, . . . ,Nξ for
a given performance bound γ satisfying

N k,k
i ⪰ 0, k = 1, . . . ,Nξ

N k,l
i + N l,k

i ⪰ 0, k = 1, . . . ,Nξ − 1,

⎫⎬⎭ (33a)

l = k+ 1, . . . ,Nξ

5

Lk,k(Υ 0, Υ ) ⪰ 0, k = 1, . . . ,Nξ

Lk,l(Υ 0, Υ )+L l,k(Υ 0, Υ ) ⪰ 0, k = 1, . . . ,Nξ−1,
l = k+ 1, . . . ,Nξ

⎬⎭
(33b)

to fulfill condition (13).

A PD-RCI set can then be obtained as in (7) and the PDCL is
K(ξ ) = K̄(ξ )W−1.

Proof.

i. We obtain (30a) from (20a) by application of congruence
transform and since the resultant matrix inequality is
affinely dependent on the parameter. Using Schur comple-
ment on (20b) and substituting Γ̄i = φ−2i Γi, we get (30b).
By replacing Γi = φ2

i Γ̄i and Λ̄i = Λ0
i in (20c),

Nξ∑
k=1

ξ 2
k M̄

k,k
i (Λ0

i , Λi)+

Nξ−1∑
k=1

Nξ∑
l=k+1

ξkξl(M̄
k,l
i (Λ0

i , Λi)+M̄
l,k
i (Λ0

i , Λi))≻0, (34)

where M̄k,l
i is given in (32). Since (34) is homogeneous

matrix valued polynomial of degree 2, we can now employ
zeroth order Polya’s relaxation to obtain (30c). Similarly,
(31) is obtained from (21), by substituting Π̄j = Π0

j and
using zeroth order Polya’s relaxation.

ii. We can prove (33a) and (33b) using similar approach as in
part-i. Notice that in (33b), we replace Ῡ = Υ 0.

By finding a feasible solution for Problem 2, we obtain a PD-
RCI set. However, the inequalities (30), (31) and (33) depend on
the matrices Pk

0 , Λ0
i , Π0

j and Υ 0, which are the initial guess of
matrices Pk, Λi, Πj and Υ , respectively. Finding an initial guess
for these matrices is not straightforward; we thus obtain them by
solving Problem 1. It is easy to verify that using solutions from
Problem 1 to initialize Problem 2, always preserves feasibility of
solutions, see Remark 1. Finally, for clarity of exposition, we sum-
marize the main results presented so far and their interrelation
with the help of a flowchart, as depicted in Fig. 1.

6. Iterative PD-RCI set computation

Our primary goal is to compute PD-RCI set (7) of desirably
large volume and the PDCL controller (8). Thus, we need to
formulate a method which computes a maximum volume set
feasible to conditions proposed in Theorems 1 and 2. In the
original form, the conditions in these theorems were nonlinear,
and to make them tractable for solving, we linearized them by
using Lemma 2. As mentioned in the Remark 1, the linearization
introduces conservatism, which can be reduced by adopting an
iterative scheme, where we first consider Problem 1 in which we
assumed P(ξ ) = P0(ξ ) = Pinit . As shown in Gupta et al. (2021), the
volume of the considered RCI set is proportional to |det(W )|. We
next propose an optimization problem that computes desirably
large RCI set for Problem 1.

6.1. Initial RCI set computation

We develop an iterative scheme in which we solve a deter-
minant maximization problem under LMI conditions presented in
Theorem 1. Similar to Gupta et al. (2019), we will try to iteratively

maximize the volume to avoid enforcing symmetry on W . The
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Fig. 1. Flowchart summarizing the main results.

basic idea is to maximize the determinant of a different matrix J ,
which is required to satisfy

W TW ≽ J ≻ 0, (35)

Condition (35) ensures that det(J) ≤ |det(W )|2. Since (35) is not
an LMI, it needs to be replaced with a sufficient condition. This is
done within the iterative scheme in which the solution of W at
the previous step is represented as W 0. A sufficient condition for
(35) is formulated in terms of W 0 as (see Gupta et al. (2019))

W TW 0
+ (W 0)TW − (W 0)TW 0 ≽ J ≻ 0. (36)

Note that this condition is necessarily satisfied with W = W 0.
Thus, maximization of det(J) under (36) would lead to a solution
W that satisfies |det(W )| ≥ |det(W 0)|. Moreover, as described in
Remark 1, at each iteration we update Yi = (X0

i )
−1W 0 in (27a),

where X0
i is previous solution of Xi. This allows us to develop

the following iterative algorithm to compute RCI sets of increased
volume at each step for a priori chosen matrix Pinit

max log det(J)
φi,W , K̄ k, V k

i , Xi, Λi, Γi
Πj,Q k, Zk, F k, Υ , J

subject to: (27), (28), (29) and (36)

⎫⎪⎬⎪⎭ (37)

Initial Optimization to Compute W 0: Condition (36) is removed
and log det(J) is changed to log det(W + W T ); (27a) is imposed
with Yi → I .

6.2. Computation of PD-RCI sets

In order to compute a desirably large PD-RCI set, conforming
Problem 2, we formulate a new optimization problem. In this
problem, we fix the matrix W obtained by solving (37), and now
6

Algorithm 1: Computing PD-RCI set.

Input: System (2), X u, W , P0, W , Yi Λ0
i , Γ

0
j , Υ

0

Output: P(ξ ), K(ξ )
while Iteration ≥ 0 do

[P ,K̄,Xi,Λi, Γj, Υ ]← solve (38)

Update: Yi ← X−1i W , P0 ← P , Λ0
i ← Λi,

Γ 0
j ← Γ , Υ 0

← Υ

Iteration← Iteration− 1

end while

treat matrices Pk’s as optimization variables. By construction, for
each ξ ∈ Ξ , S(ξ ) is an 0-symmetric polytope in the state-
space. Thus, an intuitive way to maximize the volume of such
a set is to compute matrices Pk’s such that the sum of the
volumes of each slice of S(ξ ) is maximized. However, maxi-
izing infinite slices of the PD-RCI set would lead to solving
emi-infinite problem, which is intractable. Nevertheless, to deal
ith such intractability, we only maximize the slices S(ξm) =
x ∈ Rnx : −1≤P(ξm)W−1x≤1

}
, corresponding to the finite set

f grid points ξm
∈ Ξ , m = 1, . . . ,Nm. For example, a possible

hoice of the grid points can be the vertices of Ξ . We propose
novel volume maximization approach for polytopic sets which

eads to the following SDP problem.

roposition 1. Given Nm number of grid points, the slices S(ξm),
= 1, . . . ,Nm of desirably large volume characterizing a PD-RCI

et, can be obtained by solving the following SDP problem in an
terative manner,

min
∑Nσ

n=1
∑Nm

m=1 σm
n

φi, Pk, K̄ k, V k
i , Xi, Λi, Γi

Πj,Q k
1 , Zk, F k, Υ , σm

n
subject to: σm

n ≥ 0,[
P̃W−1

−P̃W−1

]
x̃n −

[
1
1

]
≤

[
σ̃

σ̃

]
,

(30), (31) and (33).

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(38)

here P̃ = [P(ξ 1)T , . . . ,P(ξNm )T ]T ∈ R(npNm)×nx , σ̃ = [σ 1
n 1, . . . ,

Nm
n 1]T ∈ RnpNm and {̃xn}

Nσ
n=1 are the vertices of some known

x dimensional outer bounding box B which contains the state
onstraint set X .

We refer the reader to Appendix in Gupta et al. (2022) for the
etails of the volume maximization algorithm which is based on
onte-Carlo techniques presented in Benavoli and Piga (2016),
iga and Benavoli (2019).
Assuming that the initial values of P0,W , Yi, Λ0

i , Γ 0
j and Υ 0

re available after solving (37), we summarize the whole ap-
roach to compute PD-RCI set in Algorithm 1. As a consequence
f the adopted successive linearization approach (see Remark 1),
lgorithm 1 always has a feasible solution at the first iteration if
nitialized using solutions from (37). The update scheme in the
lgorithm alleviates the conservatism introduced while lineariz-
ng Eq. (30a), (30c), (31) and (33b) using Lemma 2. The systematic
pdate procedure also guarantees that the solutions from the
revious iteration are feasible in the current iteration. Thus, at
ach iteration we find a new PD-RCI set of larger volume until
he specified number of iterations are performed, or convergence
s achieved. We purposely present the termination of the algo-
ithm based on the number of iteration instead of convergence
o emphasize that latter is not necessary.
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Fig. 2. (a) Plot of the PD-RCI set S(ξ ) in (7) w.r.t ξ1 and (b) projection S(ξ ) on
(x1, x2) axis.

Fig. 3. Volume of the set S̆ plotted against (a) iteration, (b) different scheduling
arameter bounds.

.3. Computation of the RCI set for quasi-LPV systems

If the scheduling parameters ξ are function of system states
x and input u, then the system is called as quasi-LPV (qLPV). For
qLPV systems, we need to keep the RCI set description indepen-
dent of parameter i.e., by restricting Pk

= P, ∀k = 1, . . . ,Nξ .
lternatively, we can construct a set S̆ =

⋂
∀ξ∈Ξ S(ξ ). Notice

that the set S̆ also satisfies conditions (11) and (12) if S(ξ )
atisfies them, and since it is independent of ξ , we call it simply
CI set. The set S̆ can be possibly larger (volume-wise) than
he set obtained by restricting Pk

= P , due to extra degree of
reedom provided by additional variables involved in the overall
ptimization problem when computing the former. Even though
e define S̆ as the intersection of infinite slices of S(ξ ), we have

proved that it can be exactly obtained by intersecting the slices
generated at vertices ξm,m = 1, . . . ,Nξ of the set Ξ (see, Gupta
et al. (2022)), i.e.,

S̆ ≜
⋂
∀ξ∈Ξ

S(ξ ) =
⋂
∀ξm∈Ξ

S(ξm) (39)

7. Numerical examples

We now demonstrate the potential of the proposed algorithm
through examples. The algorithm is implemented in Matlab on a
Intel Core i7-555U CPU with 8 GB RAM using YALMIP (Löfberg,
2004) and the solver SeDuMi.

7.1. Double integrator

Let us consider a parameter-varying double integrator:

x+=
[
1+θ 1+θ

0 1+θ

]
x+

[
0

1+θ

]
u+

[
1
0

]
w, (40)

here |θ |≤0.25 is a time-varying parameter. The state and con-

rol input constraints, and the disturbance bounds are expressed

7

Fig. 4. Admissible set X (red), maximal RCI set Ω∞ (green), and RCI sets S̆
(yellow) and S̆γ (blue). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

as |x|≤ [5, 5]T , |u| ≤ 1, |w| ≤ 0.25. We rewrite (40) in the form
(5) with Nξ = 2 and

[
A1 B1 E1

A2 B2 E2

]
=

⎡⎢⎣ 1.25 1.25 0 1
0 1.25 1.25 0

0.75 0.75 0 1
0 0.75 0.75 0

⎤⎥⎦ , (41)

here ξ1 = (0.25 + θ )/0.5 and ξ2 = (0.25 − θ )/0.5. We then
select Pinit as described in Gupta et al. (2021, Remark 1) and
solve (37) iteratively until convergence, which took 10 iterations
and thus obtain all the matrices needed to initialize Algorithm
1. Finally, the PD-RCI set S(ξ ), shown in Fig. 2, is obtained after
erforming 60 iterations of Algorithm 1. The average computation
ime is 9.31 s per iteration. The obtained matrices characterizing
D-RCI set and PDCL are

P1 P2 ]=

⎡⎢⎣ −0.4111 −0.1354 −0.3257 −0.0854
0.0303 −0.5151 0.0404 −0.3823
0.4867 −0.2474 0.4867 −0.2474
0.4884 −0.0504 0.4883 −0.0506

⎤⎥⎦ ,

[
W K 1

K 2

]
=[

2.4373 −0.6691
−0.7327 0.8379

−0.2246 −0.7898
−0.1506 −0.5601

]
.

The RCI set S̆ in (39) can be seen in Fig. 2 (b) as bounded colorless
region. The region outside the set S̆, highlighted in cyan, consists
of points which can be brought within the RCI set S̆ in one
step for some selectable initial value of the parameter θ , thus,
enlarging the overall set of safe initial states. To compare the
volume gain between Problems 1 and 2, we plot the volume
of the set S̆ at each iteration, as shown in Fig. 3. In the fig-
ure, it can be seen that there is an additional (approximately)
29% gain in the volume when the proposed Monte-Carlo based
volume maximization approach is utilized. For comparison, we
plot the computed set S̆ and the maximal RCI set Ω∞ obtained
using classical geometric approach (Herceg et al., 2013) in Fig. 4.
The geometric approach treats parameter as unknown bounded
signals, and the control input is free from any state-feedback
structure. Not surprisingly, the set S̆ (volume 21.7907) computed
using the proposed approach was found to be larger than the
maximal RCI set Ω∞ (volume 19.3703). Moreover, the overall
representational complexity of the set S̆ is just 8, which is exactly
half the complexity of the set Ω∞, this further demonstrates the
benefits of using PD-RCI sets and PDCL in the LPV setting. We also
show the set S̆γ in Fig. 4, which satisfy performance constraints∑
∞

t=0 x(t)
TQxx(t) + u(t)TQuu(t) ≤ γ , for all x within the set.

Where Qx = I , Qu = 0.1 and γ = 10. Lastly, to demonstrate
the main advantage of the presented algorithm, we perform an
analysis in which the RCI sets are computed by changing the
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Fig. 5. Admissible set X (red), RCI set S̆ (yellow; solid), RCI set using (Gupta
Falcone, 2019) (green; dashed) and RPI set (blue; dotted) for the Van der

ol oscillator system. (For interpretation of the references to color in this figure
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ound θmax on the parameter θ . The volume of the computed set
S̆ is plotted against parameter bound in Fig. 3(b). As expected
from the theory, the volume decreases with an increase in the
value of θmax. Nonetheless, it is interesting to observe that the
proposed method is able to compute the RCI sets even for a
large bound on the scheduling parameter. We remark that the
geometric approach (Herceg et al., 2013), failed to generate any
RCI set for θmax ≥ 0.4

7.2. Nonlinear system

One important application of the proposed approach is to
compute RCI sets for nonlinear systems. For this purpose, we
consider the controlled Van der Pol oscillator system in Hanema
et al. (2017):

ẋ1 = x2, ẋ2 = −x1 + µ(1− x21)x2 + u, (42)

where µ = 2. The system should satisfy the input constraints
|u| ≤ 1 and state constraints |x1| ≤ 1, |x2| ≤ 1. For computation
and simulation purpose we discretize the system using Euler’s
method with sampling time 0.1 units. Further, we rewrite the
system in the quasi-LPV form (5) with scheduling parameters
ξ1 = (2−µ(1− x21))/2 and ξ2 = µ(1− x21)/2. Using the proposed
approach we compute the matrix variables defining the RCI set
and the invariance inducing controller for the nonlinear system
which are given as

[P1
|P2
] =

⎡⎢⎣ −0.5066 −0.1205 −0.5066 −0.1358
−0.4349 −0.0135 −0.4367 −0.0134
0.4238 −0.2686 0.4237 −0.3173
0.5280 0.0385 0.5280 0.0385

⎤⎥⎦ ,

W K 1

K 2

]
=[

0.4409 0.0136
−0.0127 0.1090

0.8341 −2.3111
0.8727 −3.0114

]
.

ince the scheduling parameters ξ1, ξ2 are state dependent, in
ccordance with Section 6.3, we compute RCI set S̆ (39), shown
n Fig. 5. The closed-loop trajectories from all the vertices of the
et S̆ are also shown in Fig. 5. For comparison, we compute an
CI set (of a representational complexity same as S̆) using the
ethod presented in Gupta and Falcone (2019), which assumes

he invariance inducing controller to be linear state-feedback. We
how the computed set in Fig. 5 with green color. It can be seen
hat this set is smaller than the one generated by the proposed al-
orithm presented in this paper. The geometric approach (Herceg
t al., 2013) for computing maximal RCI set did not converge
ven after 24 h, so instead, we show a robust positive invariant
8

RPI) set corresponding to an LQR controller for nominal system
nd tuning matrices Q = I and R = 1. The representational
omplexity of the RPI set is 50. Clearly, the proposed algorithm is
ore advantageous here since it can generate visibly larger RCI
ets of low complexity.

. Conclusion

The paper presented a novel iterative algorithm to compute
PD-RCI set and PD-invariance inducing control law for LPV

ystems. At each iteration of the algorithm, an SDP is solved to
btain a larger PD-RCI set successively until convergence. In the
DP, we introduced the invariance conditions, system constraints
nd performance constraints as LMIs, which were constructed us-
ng Finslers’s lemma and zeroth order Polya’s relaxation. Besides,
e also presented a new approach for volume maximization of
olytopes based on Monte-Carlo principles. It was shown that a
arger invariant set could be obtained by exploiting the knowl-
dge of parameters in the invariant set description as well as
n the controller design. We assumed candidate RCI set to be
-symmetric. This is a reasonable assumption if the system is
inear and the constraints are 0-symmetric. In other cases, this
ssumption would be potentially conservative. Thus, a natural
xtension of this work could be to devise a similar algorithm for
omputing non-symmetrical RCI set.
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