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Direct and Residual Subspace Decomposition of
Spatial Room Impulse Responses

Thomas Deppisch, Graduate Student Member, IEEE, Sebastià V. Amengual Garı́, Paul Calamia,
and Jens Ahrens, Senior Member, IEEE

Abstract—Psychoacoustic experiments have shown that direc-
tional properties of the direct sound, salient reflections, and
the late reverberation of an acoustic room response can have
a distinct influence on the auditory perception of a given room.
Spatial room impulse responses (SRIRs) capture those proper-
ties and thus are used for direction-dependent room acoustic
analysis and virtual acoustic rendering. This work proposes a
subspace method that decomposes SRIRs into a direct part, which
comprises the direct sound and the salient reflections, and a
residual, to facilitate enhanced analysis and rendering methods
by providing individual access to these components. The proposed
method is based on the generalized singular value decomposition
and interprets the residual as noise that is to be separated from
the other components of the reverberation. Large generalized
singular values are attributed to the direct part, which is then
obtained as a low-rank approximation of the SRIR. By advancing
from the end of the SRIR toward the beginning while iteratively
updating the residual estimate, the method adapts to spatio-
temporal variations of the residual. The method is evaluated
using a spatio-spectral error measure and simulated SRIRs of
different rooms, microphone arrays, and ratios of direct sound to
residual energy. The proposed method creates lower errors than
existing approaches in all tested scenarios, including a scenario
with two simultaneous reflections. A case study with measured
SRIRs shows the applicability of the method under real-world
acoustic conditions. A reference implementation is provided.

Index Terms—Microphone array, room reflections, spatial
room impulse response, subspace method, virtual acoustic ren-
dering

I. INTRODUCTION

D IRECTIONAL properties of acoustic environments have
been subject to extensive research in recent years as they

are a key factor in human auditory perception. It was found
that salient reflections, i.e., reflections with sufficiently high
energy, can have an individual impact on the perceived spatial
impression [1], the apparent source position and width [2],
and the timbre [3]. On the other hand, statistical properties
of the reverberation, such as the overall energy, its angular
distribution, the direct-to-reverberant energy ratio, and the
reverberation time, influence the perceived envelopment [4],
source distance [5], and room size [6], [7]. Auditory perception
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is also influenced by the directional energy decay of late
reverberation [8], [9].

Spatial room impulse responses (SRIRs) capture the direc-
tional properties of an acoustic environment and facilitate the
analysis and reproduction thereof. Note that the term SRIR
is heavily used in literature but is defined inconsistently. We
refer to an SRIR as a set of room impulse responses that
is captured by a single microphone array to facilitate the
directional analysis or auralization for a single source position
and from the perspective of a single receiver position. Hence,
suitable microphone arrays have a small aperture, typically
smaller than 0.5m. No other requirements are imposed on
the array geometry; however, due to their wide commercial
availability and the possibility to perform a spherical harmonic
(SH) decomposition of the array signals [10], often spherical
microphone arrays are used.

Motivated by their perceptual relevance, SRIR-based direc-
tional room acoustic analysis and virtual acoustic rendering
methods specifically target salient reflections and directional
statistic properties of the reverberation. Common analysis
objectives include the direction-of-arrival (DOA) estimation
of reflections [11]–[13] and the directional energy decay of
the reverberation [9], [14]–[16].

SRIR-based virtual acoustic renderers reproduce the acous-
tics of an environment by convolving a processed SRIR with
source signals. They target multi-channel loudspeaker and/or
binaural headphone playback. The renderers either analyze the
direction of the frequency-dependent instantaneous acoustic
intensity [17] or use a broadband DOA estimator [18]–[20]
to impose spatial information onto an omnidirectional signal.
An extension of [17] generalizes the method using higher-
order SHs and processing in angular sectors [21]. A recently
proposed method [22] analyzes DOAs of reflections as in [18]
but explicitly cuts out salient reflections from the omnidirec-
tional RIR to resynthesize the early part of an SRIR. The
methods render diffuse reverberation either implicitly by a fast
modulation of the reproduction direction, or explicitly by using
a diffuseness estimate and decorrelating diffuse signal parts
to create multi-channel loudspeaker signals. Instead of the
decorrelation, the late reverberation might also be replaced by
filtered noise [23]. Other methods analyze SRIRs to generate
parametric synthetic reverberation [24]–[26].

While most of the renderers are designed to accurately
reproduce salient reflections and diffuse reverberation, none of
the existing methods achieves an explicit separation of salient
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reflections from the SRIR while preserving the spatio-temporal
properties of both the reflections and the residual. To overcome
this limitation, the authors recently proposed to use the spatial
subtraction method to subtract salient reflections from an SRIR
by using a beamformer and a plane-wave prototype [27].
The spatial subtraction method was initially proposed for the
separation of direct and diffuse parts in sound scenes [28]
and was extended in [27] by employing a comprehensive
microphone-array signal model that includes the impacts of
scattering and spatial aliasing, which improved the separation
performance when applied to SRIRs.

The current work proposes a subspace method to separate
SRIRs into a direct part, comprising the direct sound and
salient reflections, and a residual. The proposed method is
shown to improve the separation performance in comparison
to the spatial subtraction method as it avoids the error-prone
estimation of reflection parameters. It is free from typical
assumptions, such as reflections being plane waves and late
reverberation being isotropic, and does not rely on param-
eter estimation regarding, e.g., the number of simultaneous
reflections and their DOAs. In consequence, the method also
does not provide an estimation of such parameters but rather
generates two SRIRs, one containing the direct part and
the other containing the residual, that can then be analyzed
and processed independently. Nevertheless, the method may
improve the performance of existing parameter estimation
algorithms by applying it as pre-preprocessing.

By providing an explicit separation of the direct part and
the residual, the method facilitates advanced rendering and
extrapolation strategies of SRIRs. A perceptual pilot study of
such extrapolation strategies suggests that an efficient SRIR
extrapolation to different positions in a room may be achieved
using the proposed method by combining a residual SRIR from
a single measurement with salient reflections from the target
position [29].

II. SUBSPACE DECOMPOSITION THEORY

A. General Principle

Subspace methods in array processing are based on the
assumption that target signals only occupy a limited subspace
of the full signal space that is spanned by the multiple, noisy
sensor readings. The methods reduce noise by confining the
noisy signal to a subspace containing a superposition of signal
and noise, called the signal subspace, while disregarding
components in the orthogonal noise subspace that are solely
attributed to the noise [30], [31].

Subspace methods essentially exploit the Eckart-Young-
Mirsky theorem [32] to find the best low-rank approximation
of a signal matrix. In array signal processing, this was first
applied by Tufts et al. [33] and they showed that the low-
rank approximation can either be performed via the singular
value decomposition (SVD) of the data matrix or by an
orthogonal projection using eigenvectors of the covariance
matrix. Later, the principle was exploited in beamforming [34,
Ch. 6.8] and parameter estimation [30], [31]. It was also
applied in speech enhancement, first in single-channel [35],
[36] and later in array-based methods [37], [38]. In speech

enhancement, noise components in the signal subspace are typ-
ically further reduced using a signal-dependent post-filter and
several estimators have been proposed for that purpose [39].
Those estimators reduce noise at the cost of increased signal
distortion and thus will be disregarded in this work.

To motivate subspace methods mathematically, it is benefi-
cial to analyze the covariance matrix of a noisy array signal.
Let x(t) be a length-M vector containing the signals that are
captured by M microphones at the discrete time t. Following
a convolutive multiple-input-multiple-output (MIMO) signal
model [40, Ch. 2.1.4], the array signals are convolutive mix-
tures of the source signals s(t) plus additive noise n(t),

x(t) = Hs(t) + n(t) . (1)

In each row, the M × QN matrix H contains Q finite
impulse response (FIR) filters of length N that describe the
transfer paths from each of the Q sources to one of the M
microphones. Accordingly, N observations of each source
signal are stacked in the length-QN source signal vector
s(t) such that Hs(t) describes the convolution of the source
signals with the FIR filters at the time t. The noise vector
n(t) is of length M and contains one noise observation per
microphone at the time t. This general signal model also
forms the basis for the decomposition of SRIRs that will be
introduced in Sec. III. In that context, the source signals s(t)
represent the components of the direct part of the SRIR, i.e.,
direct sound and salient reflections, H describes their transfer
paths to the microphone array, and n(t) represents the residual
SRIR.

The spatial covariance matrix Rx is defined as the expec-
tation E{·} of the outer vector product,

Rx = E{x(t)x(t)T} . (2)

When assuming that the convolutively mixed signals Hs(t)
and the noise n(t) are mutually uncorrelated, the covariance
Rx of the noisy signal is the sum of the covariance of
the mixed source signals Rs = E{Hs(t)s(t)THT} and the
covariance of the noise Rn = E{n(t)n(t)T},

Rx = Rs +Rn . (3)

If the noise is spatially white, i.e., it is uncorrelated across
microphones and has common variance σ2

n, its covariance is
a scaled identity matrix, Rn = σ2

nI . The eigenvalue decom-
position (EVD) of the array signal covariance then shows that
the signal and noise covariance matrices share the same set of
eigenvectors [39], which are collected in the columns of U ,

Rx = UΛUT = U(Λs + σ2
nI)U

T . (4)

Thus, the eigenvalues of the noisy-signal covariance Rx in the
diagonal matrix Λ are equal to the eigenvalues of the source
signal covariance Rs in the diagonal matrix Λs plus the noise
variance σ2

n. Note that due to the convolutive mixture and
possible correlation between the source signals s(t), the rank
Qs of Rs cannot be assumed to be equal to the number of
sources Q. However, if the covariance Rs is singular, i.e., its
rank Qs < M , then Λs contains zero-valued eigenvalues and
the smallest Qn = M −Qs eigenvalues of Rx are equal to the
noise variance σ2

n.
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This is the core observation that subspace methods exploit to
reduce noise as it allows for a separation between eigenvalue-
eigenvector pairs that are attributed to signal-plus-noise com-
ponents and other pairs that are solely attributed to the noise.
The eigenvectors corresponding to large eigenvalues are hence
referred to as signal eigenvectors and are collected in the
columns of Us, while the eigenvectors corresponding to small
eigenvalues equal to σ2

n are referred to as noise eigenvectors
and are collected in the columns of Un. Noise reduction is then
performed by an orthogonal projection of the noisy signal onto
the signal subspace [33],

xs(t) = UsU
T
s x(t) , (5)

and the corresponding noise-only signal is obtained by an
orthogonal projection onto the noise subspace,

xn(t) = UnU
T
n x(t) . (6)

B. Subspace Decomposition Including a Noise Estimate

If the noise n(t) is not spatially white, the noise covariance
matrix Rn is not a scaled identity matrix and the attribution
of eigenvalues of the covariance Rx to the signal or noise
subspace based on their magnitudes fails. Note that, due
to the finite distance between the diaphragms, microphone
array signals in rooms are never fully uncorrelated, not even
in homogeneous diffuse fields [41, Ch. 2.2]. However, if
an estimate of the noise covariance matrix is available, the
generalized eigenvalue decomposition (GEVD) of Rx and Rn

diagonalizes the noisy-signal covariance Rx and the noise
covariance Rn simultaneously [31],

ΨTRxΨ = ∆ , (7)

ΨTRnΨ = I . (8)

The columns of Ψ contain the generalized eigenvectors and
the diagonal matrix ∆ contains the generalized eigenvalues.
As under the assumption of spatially white noise that was
similarly exploited in (4), the generalized eigenvalues ∆ are
equal to the eigenvalues of Rs offset by one, ∆ = Rs + I .
Thus, the generalized eigenvalues can be interpreted as the
eigenvalues of a pre-whitened signal and the generalized
eigenvectors span the signal subspace [42, Ch. 8.7]. Note that
as in the EVD, the eigenvectors are uniquely determined only
up to an arbitrary factor. This factor is commonly chosen such
that ΨTRnΨ = I .

Due to the diagonalization of the noise covariance, a
magnitude-based discrimination between signal and noise
eigenvalues is possible again but the generalized eigenvectors
in the columns of Ψ, which are the eigenvectors of R−1

n Rx,
are not orthogonal as R−1

n Rx is not necessarily symmetric.
The projection onto signal and noise subspace is hence ex-
pressed as [43],

xs(t) = Ψ−TΓsΨ
Tx(t) , (9)

xn(t) = Ψ−TΓnΨ
Tx(t) , (10)

where the diagonal binary selection matrices
Γs = IT

Qs×MIQs×M and Γn = I − Γs contain Qs ones
as the first Qs diagonal entries and Qn = M −Qs ones

as the last Qn diagonal entries, respectively, and zeros
otherwise, to select the Qs and Qn eigenvectors of their
corresponding subspace. As the sum of Γs and Γn is the
identity matrix, the sum of the signal and noise subspace
signals perfectly reconstructs the original array signal,
x(t) = xs(t) + xn(t). The subspace decomposition using
the GEVD is mathematically equivalent to the sequence of
pre-whitening the signal, decomposing it into the subspaces,
and de-whitening the result [42, Ch. 8.7].

If the noise estimate is obtained by discrete measurements
of the noise-only signal, the explicit computation of the signal
and noise covariances can be avoided for computational effi-
ciency by employing the generalized singular value decompo-
sition (GSVD) instead of the GEVD [38]. The GSVD relies on
data matrices, i.e., matrices containing multiple observations of
the signal. Let X and N be K ×M and L×M matrices that
contain K and L observations of their corresponding signals
x(t) and n(t). The GSVD then decomposes the noisy-signal
data matrix X and the noise data matrix N into an orthogonal
matrix Vx or Vn, a non-negative diagonal matrix Σx or Σn,
and a common square matrix Φ,

X = VxΣxΦ
T , (11)

N = VnΣnΦ
T . (12)

The matrices Σx and Σn contain the singular values, while
Vx and Vn contain the respective left singular vectors and
Φ contains the common right singular vectors. For notational
brevity, we assume an economy-sized GSVD and K ≥ M ,
L ≥ M , so that Σx and Σn are M ×M square matrices.

The generalized eigenvalues of Rx and Rn on the diagonal
of ∆ are obtained via the GEVD, cf. (7). If the corresponding
covariance matrices are estimated via the sample covariance,
i.e., Rx = 1

K XTX and Rn = 1
L NTN , the generalized

eigenvalues ∆ can equivalently be obtained via the GSVD [44,
Ch. 8.7.4],

∆ =
L

K
(ΣT

xΣx)(Σ
T
nΣn)

−1 . (13)

For convenience, we further define the vector

σ = diag
(
(ΣT

xΣx)(Σ
T
nΣn)

−1
)
, (14)

that contains the squared generalized singular values (GSVs)
in decreasing order. The diag (·) operator transfers the entries
from the main diagonal of a matrix to a vector. The squared
GSVs are an essential part of the proposed threshold selection
mechanism in Sec. III-D and will simply be referred to as
GSVs in the following.

In the case of the GSVD, the subspace decomposition
is performed as a low-rank approximation, resulting in the
K ×M signal subspace and noise subspace matrices Xs and
Xn [42, Ch. 8.4]. Similar to the subspace decomposition using
the GEVD in (9) and (10), the Qs largest singular values
and their corresponding singular vectors are used to obtain
the signal subspace components and the last Qn = M −Qs

singular vectors corresponding to the smallest singular values
are used to obtain the noise subspace components,

Xs = VxΣxΓsΦ
T , (15)

Xn = VxΣxΓnΦ
T . (16)
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Note that some subspace methods in the literature impose
more assumptions on the signals and thus are able to gain
more information in the decomposition process. They typically
either assume narrow-band signals [30], [31] or assume short-
term stationary signals and perform blockwise processing in
the frequency domain [34, Ch. 5.2]. These assumptions reduce
the convolutive MIMO signal model in (1) to a multiplicative
model, i.e., the FIR filters in H reduce to single-sample
scaling factors. The rank Qs of the source covariance Rs is
then equal to the number of sources Q and the individual
source signals are decorrelated which facilitates a source
parameter estimation. However, as established in Sec. III, the
assumptions that are imposed on the signals in this work are
more restrictive.

III. SUBSPACE DECOMPOSITION OF SPATIAL ROOM
IMPULSE RESPONSES

A. Signal Model

Motivated by their perceptual relevance, the proposed algo-
rithm aims at separating the direct sound and salient reflections
from the SRIR. Applying the nomenclature from Sec. II
to the present context means that direct sound and salient
reflections are considered convolutively mixed source signals
and everything else is considered noise. In the following, the
direct sound and salient reflections will also be referred to
as the direct part or direct subspace components, and the
rest, containing the superposition of an increasing amount of
reflections and noise will be referred to as the residual.

The spatio-temporal properties of the residual of the SRIR
typically change over time. In the early part of the SRIR, the
residual mainly contains noise and non-transient components
of the room response due to room modes. As time progresses,
it is additionally comprised of a superposition of non-salient
reflections. Toward the later part of the SRIR, the residual
is dominated by the superposition of exponentially increasing
numbers of non-salient reflections. This reverberation might
exhibit isotropic or anisotropic properties, or a combination
of both that varies over time [9], [14]. During the late part of
the SRIR, no salient reflections are expected so that the SRIR
is composed of only the residual and no direct part.

To adapt to the spatio-temporal variations of the residual,
we propose to update the residual estimate whenever no
salient reflections are detected within a signal block. The
procedure is assumed to be successful if the properties of the
residual change slower than the residual estimate is updated.
Additionally, we propose to process the SRIR backward in
time to be able to obtain a reliable residual estimate before any
salient reflection occurs. This process is illustrated in Fig. 2
and a more detailed overview of the algorithm will be given
in Sec. III-C.

The covariance matrix is assumed to be estimated via the
sample covariance of a signal block that contains a limited
number of signal observations, cf. Sec. II-B. However, when
the GSVD is used, the sample covariance is not calculated
explicitly. As the direct sound and the salient reflections are
highly transient signals, the rank of the source covariance
matrix depends on the correlation of the captured signals

and the temporal separation of the transients that are induced
by a single or multiple reflections. The correlation depends
on the transfer function from the source to the individual
microphones, i.e., on properties of the acoustic environment
and the array, and the temporal separation depends on the
distance between the microphones.

The only requirement for the microphone array is that it has
a small aperture so that sound pressures that are generated by
a reflection are captured by a single signal block. Determining
the duration of a reflection is not a straightforward task as it
is influenced by the array aperture, diffraction, and scattering.
However, the propagation delay of a sound wave across the
maximum array dimension is often a good approximation. In
practice, often spherical arrays are employed and their signals
are transformed to the spherical harmonic (SH) domain, where
they are radial filtered to compensate for the array radius and
the scattering of the array baffle [10, Ch. 2.6]. This leads
to the typical assumption that spherical arrays in SH-domain
processing have frequency-independent steering vectors so
that, as with narrow-band signals, a multiplicative signal model
is sufficient. However, the necessary regularization of the
radial filters and spatial aliasing in practice limit this property
to a narrow frequency region [27]. Thus, these assumptions
are not made in the proposed broadband algorithm so that it
can either be directly applied to the microphone signals or to
an SH decomposition thereof. We demonstrate the application
of the proposed algorithm with both signal representations in
Sec. IV-A.

B. Rank Analysis of the Covariance Matrix

The core assumption that facilitates noise reduction via
subspace methods is that the source signals, which are in
the present case the direct sound and the salient reflections,
only occupy a subspace of the full signal space. In other
words, noise reduction is only possible if the source covariance
matrix Rs is singular, Qs < M . To determine if a subspace
decomposition is feasible for salient reflections in an SRIR,
in the following, the rank of the source covariance matrix
is analyzed, first for an individual plane wave impinging on
different microphone arrays and then for a simulated SRIR.

Fig. 1 (a) shows the mean and the standard deviation
of the rank Qs of the covariance matrix for a plane wave
that impinges on different spherical microphone arrays under
anechoic conditions. Note that the standard deviations are
small and thus hardly visible. The dashed gray line illustrates
the maximum rank M , which is equal to the number of
microphones in the array. The mean rank Q̄s is obtained
by averaging the rank over 240 incidence directions that are
distributed according to a t-design [45]. The rank for each
incidence direction is calculated as the number of eigenvalues
of the covariance matrix that are less than 100 dB below
the largest eigenvalue. The plane waves and the spherical
scattering were simulated using the spherical microphone array
impulse response generator (SMIRGen) [46]. The simulated
array configurations include 10 different spherical arrange-
ments comprising between 4 and 72 microphones that all are
arranged according to t-designs. All 10 arrangements were
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Fig. 1. The subspace decomposition can be performed if the source covariance matrix Rs is singular, i.e., its rank Qs < M . (a) The mean rank Q̄s due to
a single impinging plane wave depends on the number of microphones M , on the array radius r, and on the array surface being rigid or open. It is singular
if it stays below the dashed gray line illustrating the number of microphones. (b) The source covariance matrix of an SRIR was simulated using the image
source method. It is singular in the early part. The summed magnitude of the SRIR is shown in gray for reference.

simulated as open and rigid arrays, and with radii of 4.2 cm
and 8.5 cm.

The covariance matrix on average has full rank for the
array configurations that comprise 4, 6, and 8 microphones.
The mean rank Q̄s is close to being full in the case of the
array configurations with 16 microphones and in the case of
the arrays with the larger radius and 24 microphones. For
all other configurations, the mean rank is clearly singular.
Thus, a subspace decomposition for a single impinging plane
wave can be performed with the simulated arrays of radius
4.2 cm that comprise M = 24 or more microphones and with
the arrays of radius 8.5 cm that comprise M = 32 or more
microphones. With an increasing number of microphones M ,
all tested configurations converge to a maximum rank that
depends on the array configuration and is equal to 29 and 30
for the open and rigid sphere configurations with a radius of
8.5 cm, and equal to 17 and 19 for the configurations with a
radius of 4.2 cm. The covariance matrices from microphone
arrays with the larger radius generally have a higher rank
Qs than the ones from the smaller arrays since their signals
contain larger temporal delays and since they capture less-
correlated signals because those arrays are large compared
to the wavelength down to lower frequencies. The observed
rank is also slightly higher in the case of rigid arrays because
the scattering of sound waves off their surface additionally
decorrelates the captured signals.

To determine if a subspace decomposition is still feasible
if more than one reflection occurs per analysis window, we
analyze the evolution of the rank Qs for an SRIR. The
SRIR was generated using the image source method [47]
and SMIRGen, assuming a shoe-box room of dimensions
8 × 7 × 6 m. Note that the goal of this simulation is not
to render a highly-realistic SRIR but to investigate the rank
of the direct-part (source) covariance matrix Rs due to the
direct sound and individual reflections, not the full covariance
Rx that will be used in the subspace decomposition. The
separation of eigenvalues can be attempted as in (4) only if
the source covariance Rs is singular. The simulated array is of
radius 4.2 cm and comprises 32 microphones that are arranged
according to a t-design. Fig. 1 (b) shows Qs during the first
80ms of the SRIR. The summed magnitude of the SRIR is
shown in gray for reference. The sample covariance matrix was
calculated in 32-sample (0.7ms) rectangular windows with a

hop size of 4 samples. The rank Qs was calculated as the
number of eigenvalues of the covariance matrix that are less
than 100 dB below the largest eigenvalue in each window.

During the first 38ms, the rank Qs consistently stays below
the maximum possible rank of M = 32, which is again shown
as a dashed gray line. Between 38ms and 59ms, Qs fluctuates
over a wide range of values and approaches the maximum
rank multiple times. After 59ms, the rank stays close to
the maximum rank. Hence, for the given SRIR a subspace
decomposition can separate the direct part from the residual
in the early part of the SRIR until 38ms and might be able
to separate some salient reflections until 59ms. These specific
time spans do not generalize to other SRIRs and microphone
arrays. However, it can be assumed that the time span where a
separation is effective increases with an increasing number of
microphones and that the subspace decomposition is effective
in the early part of typical SRIRs if a suitable microphone
array is used. This is also shown in the case study in Sec. V,
where the proposed method is applied to three measured
SRIRs with different acoustic properties. In practice, the
decomposition of the SRIR might be mainly relevant up to
the perceptual mixing time [48] and thus the method could be
limited to the early part of the SRIR according to a mixing
time estimate.

C. Algorithm Overview
Fig. 2 illustrates the application of the proposed subspace

decomposition algorithm to a simulated SRIR. The SRIR is
simulated as direct sound and first-order image-source reflec-
tions in exponentially decaying noise. For convenience and
without loss of generality, the decaying noise starts before the
direct sound occurs. The simulated, rigid spherical microphone
array is the same that was used in Fig. 1 (b). It has a radius
of 4.2 cm and comprises 32 microphones that are arranged
according to a spherical t-design of degree 7 [45]. Again,
the image-source method was employed using SMIRGen [46].
The microphone signals of the exponentially decaying noise
tail were generated to exhibit the spatial coherence of the
array in an isotropic spherical noise field using the method
from [49].

Fig. 2 (a) shows five channels of the full 32-channel SRIR.
The algorithm first takes a signal block from the end of
the SRIR as an initial residual estimate and then performs
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1.) Initial residual estimate

2.) Blockwise GSVD,
update residual estimate

3.) Threshold exceeded: subspace decomposition

(a)

(b) (c)

(d) (e)
Fig. 2. Direct and residual subspace decomposition of a 32-channel SRIR x(t). (a) The proposed algorithm first takes an initial residual estimate from the
end of the SRIR. It then proceeds toward the beginning of the SRIR and performs the GSVD on every signal block. If the sum of the GSVs σ(t) is below
the detection threshold, the residual estimate is updated. If their sum exceeds the threshold, the subspace decomposition is performed. (b) A zoomed-in part
of the SRIR contains a salient reflection. (c) The eight largest GSVs of the zoomed-in part exhibit a distinct peak at the location of the reflection. The two
smallest GSVs do not exhibit a visible peak. (d) The direct signal xs(t) contains the salient reflection from (b). (e) The residual signal xn(t) does not contain
the reflection.

a blockwise GSVD while proceeding toward the beginning of
the SRIR. If the sum of the generalized singular values (GSVs)
exceeds the detection threshold, the SRIR is decomposed into
the direct part and the residual. Otherwise, only the residual
estimate is updated.

Fig. 2 (b) shows a magnified section of the SRIR that
includes a salient reflection. A subset of the corresponding
GSVs is shown in Fig. 2 (c). The first eight GSVs exhibit a
distinct peak at the location of the reflection while the smallest
two GSVs do not exhibit a visible peak. All Qs GSVs above
a given threshold are attributed to the reflection whereas the
Qn = 32 − Qs smaller GSVs are attributed to the residual.
In the present case, Qs was chosen to be 6. A method that
determines this threshold is proposed in Sec. III-D. The direct
part SRIR that contains the reflection is shown in Fig. 2 (d) and
the residual SRIR in Fig. 2 (e). The sum of the two reconstructs
the original SRIR.

D. Threshold Selection

The selection of appropriate thresholds for the detection of
salient reflections and the estimation of the number of direct
subspace components Qs is key to a successful decomposition.
Common criteria to find the number of signal subspace com-
ponents are either based on the ratio of the geometric mean
to the arithmetic mean of a number of small eigenvalues [50],

in a nutshell rating the equality of a subset of eigenvalues, or
using measures to find the gap between a set of larger and a
set of smaller eigenvalues [51], [52]. The methods are based
on the assumption of eigenvalues of the noise subspace being
similar in size and do not exploit prior information like a noise
estimate.

To facilitate a robust threshold selection by incorporating
information from the residual estimate, we propose a threshold
measure based on the cumulative sum of the GSVs. It is
inspired by [53], where the number of components Qs is
selected so that the reconstruction error is close to an estimate
of the noise variance. The Frobenius norm of a matrix is the
root of the sum of its squared elements and is equal to the root
of the sum of its squared singular values [44, Ch. 2.4.2]. In the
case of data matrices containing microphone array signals, the
Frobenius norm can be interpreted as the energetic sum of all
microphone signals. A threshold that keeps the total energy of
the residual in the presence of salient reflections equal to the
energy of the full signal in the absence of salient reflections
can hence be defined via the sum of squared singular values.

The proposed threshold is based on this idea, however, two
further observations lead to its precise definition: i) In contrast
to the orthogonal left and right singular vectors of the SVD,
the GSVD involves the non-orthogonal right singular vectors
Φ, cf. (11). In consequence, the rooted sum of the squared
singular values in Σx is not equal to the Frobenius norm of
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Fig. 3. The weighted cumulative sums ζ(k, t) of the GSVs, shown in shades from orange to brown, exhibit distinct peaks at times where reflections occur.
(a) The GSV sum, which is the largest of the cumulative sums ζ(k, t), exceeds the detection threshold, drawn as a solid black line, for the direct sound
and each of the 6 reflections. Thus, all direct components are detected. (b) Zoomed-in section of (a) around a reflection. The left and right borders of the
gray rectangle mark the time instances where a reflection is detected. The number of direct subspace components is determined as the number of weighted,
cumulatively summed GSVs ζ(k, t) that exceed the time-averaged sum µ(t) of the GSVs, which is shown as a dotted black line. At the peak, this results in
6 direct components and 26 residual components.

the signal matrix X . However, the GSVs σ can be interpreted
as the singular values of the pre-whitened signal and the SVD
of the pre-whitened signal, which is not explicitly calculated,
involves orthogonal singular vectors. Thus, by choosing the
number of residual components Qn during the decomposition
so that the sum of the corresponding Qn GSVs equals the sum
of all GSVs in the absence of salient reflections, the energy
of the whitened residual can be kept constant.

ii) While the residual subspace only contains residual com-
ponents, the direct subspace contains a superposition of direct
and residual components. The singular values of the whitened
signal are the GSVs and they all carry equal parts of the
variance of the whitened residual. Thus, the sum of the Qn

GSVs during the decomposition needs to be smaller than the
sum of all GSVs in the absence of salient reflections. More
precisely, if Qn GSVs are attributed to the residual, they
should carry a fraction of Qn/M of the full energy that is
determined when no salient reflections are present. Recall that
M denotes the number of microphones.

In mathematical terms, the proposed criterion determines the
number of residual components Qn as the maximum integer
k for which the cumulative sum of k GSVs ζ(k, t) is still
smaller than the time-averaged sum of the GSVs µ(t) in the
absence of salient reflections,

Qn(t) = max({k ∈ N+ : ζ(k, t) < µ(t)}) , (17)

where

ζ(k, t) =
M

k

M∑
m=M−k+1

[σ(t)]m (18)

is the cumulative sum of the k smallest GSVs weighted by
M/k and [σ(t)]m denotes the m-th element of the vector σ(t),
i.e., the m-th largest GSV. The weighting M/k stems from the
above reasoning that showed that the whitened-residual energy
should be a Qn/M part of the GSV sum. As Qn is being
determined at this point, it has been replaced by the index k.
The fraction k/M has further been transferred to the left side
of the inequality in (17) to become M/k. The time-averaged
GSV sum

µ(t) = FCMA

{
M∑

m=1

[σ(t)]m

}
(19)

is obtained by applying the constrained moving average filter
FCMA{·} that time-averages the sum of the GSVs and is only
updated if no salient reflection is present. Once the number
of residual components Qn is known, the number of direct
subspace components is obtained as Qs = M −Qn.

A second thresholding mechanism is needed to detect the
presence of reflections. Only if reflections are detected, the
estimation of the number of subspace components is per-
formed. Similar to the estimator for the number of subspace
components, the proposed detection threshold is based on the
sum of the GSVs that is averaged over time instants without
salient reflections. Reflections are detected if the sum of the
GSVs of the current observation is larger than the time-
averaged sum of previous GSVs µ(t) plus a multiple κ of
their standard deviation sσ(t),

M∑
m=1

[σ(t)]m > µ(t) + κ sσ(t) . (20)

If that concept is to be implemented, a first-in-first-out (FIFO)
buffer that contains a number of observations of the sum of
the GSVs and is only updated during time instances without
salient reflections is beneficial. The averaged GSV sum µ(t)
and the standard deviation sσ(t) are then calculated as the
arithmetic mean and the standard deviation of all observations
in the buffer.

Fig. 3 shows the weighted cumulative GSV sums ζ(k, t)
in shades from orange to brown, the time-averaged sum of
GSVs µ(t) as a dotted black line, and the reflection detec-
tion threshold µ(t) + κ sσ(t) as a solid black line for the
same simulated SRIR as in Fig. 2. The detection threshold
is calculated using κ = 4. The parameter selection process
is further described in Sec. III-E and in the supplementary
material referenced therein. Due to the iterative update of
the residual estimate, the GSVs and also their cumulative
sums stay constant in the absence of reflections although
the reverberation is exponentially decaying, see Fig. 2 (a).
Reflections are detected whenever the sum of the GSVs, which
is equivalent to the largest cumulative sum, is larger than the
detection threshold. As shown in Fig. 3 (a), the GSV sum
exceeds the detection threshold for the direct sound and all 6
reflections and hence all direct components are detected.



8

Fig. 3 (b) shows a zoomed-in section around the occurrence
of the last reflection. The gray rectangle illustrates the estima-
tion of the number of direct subspace components Qs. The left
and right boundaries of the rectangle illustrate the temporal
bounds in which the GSV sum is larger than the detection
threshold. Within these bounds, the subspace decomposition
is performed. The number of direct components is the number
of weighted, cumulatively summed GSVs ζ(k, t) that is larger
than the averaged GSV sum µ(t), resulting in Qs = 6 direct
components and Qn = 26 residual components at the peak
location.

E. Influence of the Parameters

This section discusses the influence of the different pa-
rameters including the block size, the detection threshold
offset κ, the amount of GSV averaging for the calculation
of the thresholds, and the length of the residual estimate. In
practice, the optimal parameter values depend on the acoustic
environment and the employed microphone array, and they
can be found by analyzing the decomposition results, the
evolution of GSV sums, and the proposed thresholds as in
Fig. 3. For brevity, we discuss the influence of the parameters
here and provide examples that illustrate the influence of the
different parameters and the parameter selection process as
supplementary material1.

The block size determines the temporal resolution of the
subspace decomposition. A lower bound of the block size
in samples is given by the number of microphones (or SH
coefficients) of the employed array to be able to exploit the full
signal space. Additionally, the block size should capture the
full propagation delay of a sound wave across the maximum
array dimension. For instance, in the case of the spherical
Eigenmike em32 array with a radius of 4.2 cm, we assume a
maximum dimension of 8.4 cm and a corresponding propaga-
tion delay of 0.24ms. Larger block sizes decrease the temporal
resolution of the calculated GSVs and thus may reduce the
temporal precision of the extraction of salient reflections
from the residual. In this contribution, we use a sampling
rate of 48 kHz and set the block size to either 32 samples,
for microphone arrays with 32 or fewer microphones, or to
64 samples, for arrays with more than 32 microphones. The
hop size between consecutive blocks is set to 1/8 of the block
size to frequently update the thresholds, the residual estimate,
and a possible decomposition.

The detection threshold offset κ determines the number of
standard deviations by which the GSV sum in a signal block
needs to exceed the averaged GSV sum such that a reflection
is detected. With smaller values of κ, weaker energetic peaks
are treated as reflections and with too small values most of
the energy in the early part of the SRIR may be assigned to
the direct part. If, on the other hand, κ is chosen too large,
only very strong reflections will be extracted from the residual.
Values of κ = 3 or 4 yielded good results in our experiments
and are used in all examples in this contribution.

1A MATLAB Live Script and a corresponding PDF document are provided
at https://github.com/thomasdeppisch/SRIR-Subspace-Decomposition.

The averaging of the GSVs ensures that the proposed
thresholds change smoothly over time and are not strongly
influenced by individual reflections, cf. Sec. III-D. If too little
averaging is applied, the thresholds fluctuate strongly when
reflections are detected and reflections that appear slightly
earlier in time than other reflections might not be detected
due to the raised detection threshold. (Recall that the algorithm
proceeds backward in time.) If too much averaging is applied,
the thresholds do not account for overall changes in energy in
the residual. All examples in this work use averaging lengths
between 32 and 64 blocks.

The length of the residual estimate determines how fast the
GSV reacts to changes in the overall covariance of the residual.
Appropriate lengths result in GSV sums that stay constant
in the absence of reflections and exhibit strong peaks in the
presence of reflections, cf. Fig. 3. Too short estimates prevent
the implicit pre-whitening of the residual so that the GSV sums
do not stay constant over time in the absence of reflections.
Very long estimates reduce the relative peak height of GSV
sums and thus make the separation between direct part and
residual more difficult. All examples in this contribution use
a residual estimate with a length of 20ms.

F. Algorithm Summary

This section summarizes the proposed algorithm with ref-
erence to the pseudocode in Algorithm 1.

As illustrated in Fig. 2 (a), the proposed algorithm starts by
taking a signal block from the end of the SRIR as an initial
residual estimate N0 and then advances in a blockwise manner
toward the beginning of the SRIR, starting with the signal
block J that directly precedes the initial residual estimate. The
FIFO buffer ρ that will later contain observations of the sum of
the GSVs in the absence of salient reflections is initialized with
very large values, or infinity, so that the detection threshold
will not be exceeded within the first signal blocks.

The signal is assumed to be divided into overlapping blocks
before the processing and the GSVD is performed for each
signal block Xi and the residual estimate N . The number
of observations of the residual estimate N and the number
of signal observations in the blocks Xi can be chosen in-
dependently. The exemplary SRIR from Figs. 2 and 3 was
decomposed using a block size of K = 32 samples, a hop
size of 4 samples and a residual estimate with a length of
960 samples.

The sum of the GSVs is then compared to the detection
threshold that is calculated from the average of the observa-
tions of the GSV sum in ρ plus a multiple κ of their standard
deviation. For the exemplary SRIR, we set κ = 4 and averaged
the GSV sum over 32 observations. If the current GSV sum
exceeds the detection threshold, the cumulative sum of the
GSVs is calculated, summing from the smallest toward the
largest GSV. The estimated direct subspace dimension Qs is
obtained once the weighted cumulative GSV sum exceeds the
average of the GSV sums in ρ. From the dimension of the
direct subspace, the binary direct subspace selection matrix
Γs is calculated. It is a diagonal matrix, containing ones as
the first Qs diagonal entries and zeros otherwise.
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Algorithm 1 SRIR Subspace Decomposition
1: N = N0 ▷ initial residual estimate
2: i = J ▷ initial block index
3: ρ = inf ▷ initialize GSV sums as infinity
4: while i > 1 do ▷ iterate over signal blocks
5: Xi = VxΣxΦ

T ▷ GSVD of signal and residual data
6: N = VnΣnΦ

T

7: σ = diag
(
ΣT

xΣx(Σ
T
nΣn)

−1
)

▷ GSVs
8: ξ =

∑M
m=1[σ]m ▷ sum of GSVs

9: if ξ > mean(ρ) + κ std(ρ) then ▷ reflection detected
10: cσ = [σ]M
11: k = 1
12: while cσ M/k < mean(ρ) do
13: cσ += [σ]M−k ▷ cumulative GSV sum
14: k + +
15: end while
16: Qs = M − k + 1 ▷ direct subspace dimension
17: Γs = IT

Q×MIQ×M

18: else ▷ no reflection detected
19: Γs = 0M×M

20: N ⟲ Xi ▷ update residual estim. (FIFO)
21: ρ ⟲ ξ ▷ update sum of GSVs (FIFO)
22: end if
23: Γn = IM×M − Γs

24: Xs,i = VxΣxΓsΦ
T ▷ direct signal block

25: Xn,i = VxΣxΓnΦ
T ▷ residual signal block

26: i - -
27: end while

If the current GSV sum does not exceed the detection
threshold, Γs is set to a zero matrix and the residual estimate
N is updated by replacing its oldest rows by the rows of the
current signal data matrix Xi that were not already included
in previous signal blocks, using the FIFO principle. Similarly,
the current GSV sum replaces the oldest element in the vector
ρ.

Subsequently, the residual subspace selection matrix Γn is
calculated from the direct subspace selection matrix Γs. If the
detection threshold was not exceeded, Γn is the identity ma-
trix, attributing all GSVs to the residual subspace. Otherwise,
Γn is a diagonal matrix, whose first Qs diagonal entries are
zero and whose last Qn diagonal entries are one. Finally, the
current signal block is decomposed into a direct part Xs,i and
a residual part Xn,i, by performing low-rank approximations
of the signal matrix Xi.

IV. QUANTITATIVE EVALUATION

This section comprises an evaluation of the proposed
subspace decomposition method using simulated SRIRs. A
perceptual evaluation of the method is beyond the scope
of this contribution, however, a perceptual evaluation of an
application of the herein proposed method is available in [29].
The evaluation starts in Sec. IV-A with an illustration showing
that the application of the subspace decomposition is possible
with unprocessed microphone array signals as well as with an
SH decomposition thereof. The following sections apply the
method to SH-domain signals to make it directly comparable

to the spatial subtraction method whose signal model relies
on SH-domain processing. In Sec. IV-B magnitude spectra
of extracted reflections that are obtained by the proposed
method and the spatial subtraction method using two different
signal models are analyzed. Then, in Sec. IV-C, the proposed
method is evaluated using a spatio-spectral error measure and
is compared to the spatial subtraction method and to a temporal
cut-out approach for different rooms, microphone arrays, and
levels of the residual. The evaluation ends with a comparison
of the performance of the methods in the presence of two
simultaneous reflections in Sec. IV-D. A case study with
measured SRIRs follows in Sec. V.

A. Raw vs. SH-Domain Processing

In a nutshell, the proposed subspace decomposition method
achieves the separation of the direct part and the residual
by comparing the energy of singular values of the array
signals to the energy of a residual estimate. The method
does not assume a particular arrangement or directivity of
the employed microphones. An SH decomposition of the
microphone signals can be interpreted as signals captured by
microphones with a specific directivity, e.g., the zeroth-order
SH has an omnidirectional directivity and first-order SHs have
figure-of-eight directivities that are aligned with the Cartesian
axes. Thus, the subspace decomposition method can be applied
to unprocessed microphone signals or an SH decomposition
thereof.

Fig. 4 (a) shows the norms of the ground truth direct
part ∥xs(t)∥ and of the ground truth residual ∥xn(t)∥ of a
simulated SRIR, i.e., seven simulated reflections are treated as
direct part ground truth and noise with the spatial coherence
of the array in an isotropic spherical noise field is treated as
residual ground truth. The simulated, rigid array is again of
radius 4.2 cm and comprises 32 microphones that are arranged
according to a t-design. Figs. 4 (b) and (c) show the norms
of the direct part ∥xs(t)∥ and of the residual ∥xn(t)∥ that are
obtained by applying the subspace decomposition to the unpro-
cessed SRIR and to an SH decomposition using up to fourth-
order SHs. The subspace decomposition method does not have
access to the individual parts shown in Fig. 4 (a) but only to
their sum. All SH decompositions in this work are accompa-
nied by radial filtering using Tikhonov regularization [54]. The
radial filtering reduces the influence of scattering on the SH
signals and may improve the separability of reflections and the
residual in more complex scenarios. A detailed analysis of this
is however beyond the scope of this contribution and is left
for future work. Following the reasoning from Sec. III-E, the
subspace decomposition was in both cases performed using a
block size of 32 samples (0.7ms), a hop size of 4 samples,
a residual estimate of 20ms, GSV averaging of 32 blocks
and κ = 4. A comparison of Figs. 4 (a), (b), and (c) shows
that the decomposition is successful with unprocessed signals
and with an SH decomposition thereof: in both cases, the
seven reflections are extracted from the rest of the SRIR.
A detailed performance evaluation using a numerical error
measure follows in Sec. IV-C.
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Fig. 4. Norms of the direct part xs(t) and the residual xn(t) of, (a), the
ground truth, (b), the proposed method applied to unprocessed microphone
signals and, (c), the proposed method applied to an SH decomposition of the
array signals.

B. Analysis of Extracted Reflection Spectra

In this section, the norms of the spectra χs(f) of two of
the ground truth reflections from Fig. 4 (a) are compared to
extracted spectra from the direct part xs(t) obtained either
via the spatial subtraction method [27] or the subspace de-
composition. The frequency-domain vector χs(f) contains the
spectrum of all SH-domain signal channels during the presence
of a reflection. Specifically, we analyze the spectra of the
first and the last reflection in Fig. 4 (a) to show results for
different ratios of reflection and residual energy. According to
Parseval’s theorem for the spherical Fourier transform [55],
the norm of an SH-domain signal vector equals the total
signal energy integrated over the surface of the unit sphere
and is thus a suitable measure to illustrate the overall results
of the different methods. For the spatial subtraction method,
we assume that the time-of-arrival (TOA) of the respective
reflection is known and use SH-MUSIC [56] to estimate its
DOA. For both reflections, the DOA estimation errors are
small, they amount to 1.6◦ for the first reflection and to
2.1◦ for the seventh reflection. After the DOA estimation, the
spatial subtraction method is applied using two different signal
models, the one originally proposed in the context of sound
scenes in [28], in the following referred to as SpatSub1, and
the comprehensive signal model from [27] that includes the
influences of scattering, radial filtering, and spatial aliasing and
is referred to as SpatSub2. Note that the proposed subspace
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Fig. 5. Norms of the ground truth spectra χs(f) of, (a), the first and, (b),
the seventh reflection from Fig. 4 (a) and of extracted reflection spectra using
the spatial subtraction method with two different signal models, SpatSub1 and
SpatSub2, as well as the proposed subspace decomposition method SubDec.

decomposition method, which is in the following also referred
to as SubDec, does not have access to the true TOAs and does
not utilize the DOA estimates. The spatial subtraction method
was applied using the discrete Fourier transform (DFT) of
the array signals within a 1ms rectangular window centered
around the respective reflection and the shown spectra are
calculated within the same window. The 1ms window ensures
that the full reflection is captured while limiting the amount of
noise, i.e., the norm of the simulated reflection decays by about
30 dB within the window and is at least 6 dB below the noise
floor at the edge of the window. The subspace decomposition
was performed using the same parameters as in Sec. IV-A.

Fig. 5 (a) shows the obtained norms of the spectra χs(f)
for the first reflection. The norms of the spectra obtained by
both SubDec and SpatSub2 follow the norm of the ground
truth closely. The subspace decomposition (SubDec) shows
a maximum deviation from the ground truth of about 2 dB
around 1 kHz while SpatSub2 has a maximum deviation of
about 1.5 dB around 19 kHz. The method SpatSub1 deviates
more strongly from the ground truth. Its underlying signal
model does not include the influence of non-ideal radial
filtering, leading to a deviation of about 6 dB around 400Hz,
and also neglects the influence of spatial aliasing and the SH
order truncation, leading to large deviations above 8 kHz, with
a maximum deviation of 12 dB around 16 kHz.

The norms of the spectra for the extraction of the seventh re-
flection are shown in Fig. 5 (b). The ratio of reflection peak to
residual energy is in this case much lower in comparison to the
first reflection, cf. Fig. 4 (a), making the extraction task more
difficult. Again SubDec and SpatSub2 follow the spectrum
of the ground truth closely but this time SpatSub2 exhibits
strong fluctuations that increase with frequency, resulting in
a maximum deviation of 13 dB at 17 kHz. The spectrum of
the proposed method SubDec does not show such fluctuations
and has a maximum deviation from the ground truth of about
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Fig. 6. Means and standard deviations of the average direct part error ϵ̄dir (left column) and the average residual error ϵ̄res (right column) of the compared
methods as a function of the omnidirectional direct-sound-peak-to-residual-noise-RMS ratio (DNR), for, (a) and (b), Array1 with 24 microphones, (c) and
(d), Array2 with 32 microphones, and, (e) and (f), Array3 with 48 microphones.

2.6 dB around 6 kHz. The method SpatSub1 shows similar
fluctuations as SpatSub2 but additionally deviates strongly
from the ground truth at high frequencies above 10 kHz.

C. Simulation Study
To systematically evaluate the performance of the proposed

method, a simulation study is performed. SMIRGen was
again used to simulate the direct part of SRIRs as first-
order image sources. No higher-order image sources were
calculated to be able to assume that all generated reflections
can be considered salient and therefore be assigned to the
direct part. This was further achieved by setting the broadband
absorption coefficient to 0.3 in all simulations. The simulation
study comprises the combination of, (i), 15 shoebox-shaped
rooms with random dimensions, (ii), 3 different spherical
microphone arrays, (iii) the direct sound and six first-order
reflections per SRIR, and, (iv), five different ratios of direct-
sound-peak to residual root-mean-square (RMS) energy. The
rooms were generated with uniformly-distributed dimensions
between 4 × 4 × 2 m and 15 × 15 × 10 m. The source and
microphone array positions were randomly generated with
the constraints of having a distance of at least 1m to any
room boundary and at least 2m from each other. Additionally,
it was ensured that the generated reflections arrive at the
microphone array with a time difference of at least 1ms so that
for the subspace decomposition methods it can be assumed

that each subtraction window contains a single reflection.
The case of two simultaneously arriving reflections will be
investigated in Sec. IV-D. The residual part was generated
as noise with the coherence of the simulated arrays in an
isotropic diffuse field with a decay of 60 dB per second. An SH
decomposition was performed for both the direct part and the
residual, and both parts were radial filtered before being added
together with varying energy ratios. For this purpose, we define
the omnidirectional direct-sound-peak-to-residual-noise-RMS
ratio (DNR) that comprises the ratio between the maximum
absolute value of the zeroth-order SH channel and the zeroth-
order-SH RMS value of the generated residual noise. Note
that we define the DNR as a measure per SRIR, meaning
that the direct sound of the simulated SRIR is ensured to
stand out against the residual RMS but this is not necessarily
the case for the six first-order reflections. The DNR was
varied in 5 dB steps between 10 dB and 30 dB. The three
microphone arrays under test are all rigid, spherical arrays
of radii 4.2 cm, 4.2 cm, and 8.5 cm. They comprise 24, 32,
and 48 microphones that are arranged according to t-designs
and allow for SH decompositions of maximum order 3, 4, and
5. They will also be referred to as Array1, Array2, and Array3
in the following.

To facilitate a numerical evaluation, we define a spatio-
spectral error measure that comprises the ratio of the norm of
the difference of the spectrum of the ground truth reflection
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Fig. 7. Mean and standard deviation of the average DOA estimation error
ϵ̄doa for the three microphone arrays and different DNRs.

χgt
s (fb) and the spectrum of an extracted reflection χs(fb), to

the norm of the ground truth reflection,

ϵdir =

∑
b ∥χs(fb)− χgt

s (fb)∥∑
b ∥χ

gt
s (fb)∥

, (21)

where the sum over b denotes the sum over all frequency
bins of a 128-point DFT. The division by the norm of the
ground truth spectrum ensures that the calculated error is
relative to the ground truth energy, i.e., low-energy reflections
do not automatically generate a lower error. The spatio-
spectral residual error ϵres is defined similarly by replacing
the reflection spectrum χs(fb) and its ground truth χgt

s (fb)
by the spectrum of the residual χn(fb) and its ground truth
χgt

n (fb). All spectra are calculated within a 1ms window that
is centered around the ground truth TOA of the reflection.

As before, the spatial subtraction methods have access to the
true TOA of the reflections and use SH-MUSIC for the DOA
estimation. The subspace decomposition method is applied
without access to any additional information from the ground
truth and does not require DOA estimation. It is performed
using a block size of 32 samples for Array1 and Array2, and
64 samples for Array3, a hop size of 1/8 of the block size, a
residual estimate of 20ms, GSV averaging of 32 blocks and
κ = 4. To increase the interpretability of the results, another
approach is added to the comparison that involves a temporal
cut-out of the reflections. It is similarly performed in [22] and,
using an omnidirectional RIR, in [57]. The approach is in the
following also referred to as TempCut and comprises cutting
out individual reflections via a 1ms window that is centered
around the reflection. The cut-out is equally applied to all SH
channels and is a straightforward approach that avoids the need
for beamforming or a subspace decomposition. However, the
TempCut approach cannot provide a residual SRIR and is thus
only considered in the direct-part comparison of the methods.

Fig. 6 shows the mean and the standard deviation of
the average direct part error ϵ̄dir and the average residual
error ϵ̄res, i.e., both errors are averaged over the different
rooms and over the individual reflections. Errors are shown
for the three different microphone arrays and for different
DNRs. The proposed subspace decomposition method SubDec
outperforms the compared methods in all tested cases. The two
spatial subtraction methods perform differently, depending on
the DNR. For lower DNRs, SpatSub1 outperforms SpatSub2
while for higher DNRs SpatSub2 outperforms SpatSub1. For
lower DNRs, the residual noise prevents an accurate DOA
estimate and distorts the estimate of the reflection spectrum
of the underlying plane-wave signal model. These errors
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Fig. 8. Means and standard deviations of, (a), the average direct part error
ϵ̄dir and, (b), the average residual error ϵ̄res for two simultaneous reflections
with different TDOAs. The simulated array is Array2.

more severely influence the results from SpatSub2 as small
inaccuracies have a big influence on the estimate of the spatial
aliasing. The mean and standard deviation of the average DOA
estimation error ϵ̄doa are shown in Fig. 7.

Two overall trends can be observed for all methods: the
average direct part errors ϵ̄dir tend to decrease with increasing
DNR and the average residual errors ϵ̄res tend to increase with
increasing DNR. With increasing DNR, individual reflections
stand out more against the residual and are hence easier to
extract. Further, as shown in Fig. 7, the DOA estimates that are
required for the spatial subtraction methods get more accurate
with higher DNR. For high DNRs, ϵ̄dir of the TempCut method
approaches the results of SubDec because at high DNRs the
residual energy is negligible in comparison to the direct part
energy. At low DNRs, TempCut performs worst as the residual
dominates over the reflection and a simple temporal cut-out
thus creates a large error.

In the case of the average residual errors ϵ̄res, an increase
in error can be observed with increasing DNR. Although the
reflections stand out more against the residual with higher
DNRs and thus the extraction task becomes simpler, the
generated errors increase as the employed error measure,
cf. (21), is normalized by the energy of the ground truth
residual. At high DNRs, the ground truth residual carries low
energy and thus relative errors tend to increase with the DNR.

D. Two Simultaneous Reflections

The reflection density in acoustic environments typically
increases exponentially with time. Thus, multiple reflections
are likely to occur within one analysis signal block of the
different decomposition algorithms. In the following, we refer
to multiple reflections within one signal block as simultaneous
reflections and investigate the decomposition performance
of the different algorithms for two simultaneous reflections.
While this does not require a modification of the subspace
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Fig. 9. Means and standard deviations of the average DOA estimation error
ϵ̄doa for two simultaneously arriving reflections, Array2 and different TDOAs.

decomposition method, the spatial subtraction method using
both signal models is extended as in [28] to support the
simultaneous subtraction of multiple reflections. The number
of simultaneous reflections and their average time of arrival
is assumed to be known by the spatial subtraction methods
and the spatial subtraction window of 1ms length is centered
around the average TOA of the two reflections. We perform
simulations for time-differences-of-arrival (TDOAs) of the
reflections at the array center between 0ms and 0.5ms. Both
reflections are created with the same magnitude and different
angles of arrival. For each simulated TDOA, 100 repetitions
with random, unique incidence angles that are drawn from
the vertices of a dodecahedron are performed. This ensures
that the two reflections have at least an angular separation of
41◦. The subspace decomposition is performed using the same
parameters as in Sec. IV-C. The simulated rigid, spherical
array is the Array2 from the previous simulation, i.e., its
32 microphones are distributed according to a t-design and
a fourth-order SH decomposition is performed. Non-decaying
noise with the coherence of the array in an isotropic diffuse
field is added to achieve a DNR of 20 dB.

Fig. 8 shows the means and the standard deviations of
the average direct part errors ϵ̄dir and the average residual
errors ϵ̄res for TDOAs between 0ms and 0.5ms and Fig. 9
shows the corresponding average DOA estimation errors ϵ̄doa.
Again, the subspace decomposition method outperforms both
spatial subtraction methods in terms of both direct part error
and residual error for all TDOAs, although the average DOA
estimation error means are equal to or below 2◦ for TDOAs
of 0.1ms or more. In contrast to the previous simulations
of the array with a DNR of 20 dB, cf. Figs. 6 (c) and (d),
SpatSub1 now achieves lower errors than SpatSub2 except
for the case with a TDOA of 0.4ms. The plane-wave model
parameters of the comprehensive signal model of SpatSub2
cannot be estimated accurately due to the interference of the
two reflections, which creates the observed error.

V. CASE STUDY WITH MEASURED SPATIAL ROOM
IMPULSE RESPONSES

To demonstrate the practical applicability of the proposed
method, we apply the subspace decomposition to three SRIRs
that were measured in different acoustic environments. The
three SRIRs cover a large variety of acoustic conditions and
include some variation in terms of the employed microphone
arrays. All three SRIRs are publicly available. Binaural ren-
derings of the original SRIRs and the direct part and residual
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Fig. 10. Norms of the direct part xs(t) and the residual xn(t) of SRIRs
measured, (a), in a small conference room, (b), in a concert hall, and, (c),
in the entrance of an anechoic chamber with the measurement loudspeaker
located in the adjacent office.

SRIRs from the subspace decomposition are provided on a
companion website2.

The first SRIR was measured in a 10.3×5.8×3.1 m confer-
ence room with a broadband reverberation time of 0.63 s [58].
The measurement was performed using the Eigenmike em32
32-channel rigid-sphere microphone array with a radius of
4.2 cm. The subspace decomposition was performed using a
block size of 32 samples (0.7ms) and a hop size of 4 samples.
The residual estimate had a length of 20ms and the thresholds
were calculated with a GSV averaging length of 64 blocks and
using κ = 3. Fig. 10 (a) shows the direct and residual subspace
decomposition for measurement position 2 of the data set.

The second SRIR was measured in a 30.3× 16.5× 11.6 m
concert hall with a broadband reverberation time of 1.46 s [59].
It was measured using a sequential 50-channel rigid-sphere
microphone array with a radius of 8.75 cm. The subspace
decomposition used a block size of 64 samples (1.3ms), a
hop size of 8 samples and GSV averaging of 48 blocks. The
other parameters were the same as previously. Fig. 10 (b)
shows the direct and residual subspace decomposition for
the measurement that was performed using a PA loudspeaker
located at the center of the stage.

The third SRIR was measured at the entrance of an anechoic
chamber with the measurement loudspeaker placed within

2http://www.ta.chalmers.se/srir-subspace-decomposition/
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line-of-sight in the adjacent 6× 3.8× 2.8 m office [60]. The
measurement again was performed using the Eigenmike em32
microphone array but in this case, the SRIR is provided as 25-
channel SRIR in the SH domain. The subspace decomposition
was performed in blocks of 32 samples (0.7ms), with a hop
size of 4 samples and the thresholds were calculated with
a GSV averaging length of 32 blocks. The other parameters
were the same as previously. Fig. 10 (c) shows the direct and
residual subspace decomposition for a measurement that was
taken 50 cm from the open door inside the anechoic chamber
and contains strongly anisotropic reverberation.

In the case of the SRIRs from smaller rooms, cf. Figs. 10 (a)
and (c), salient reflections are mainly extracted within the
first 30ms but some weaker reflections are extracted until
100ms after the direct sound. In the case of the SRIR from
the concert hall, Fig. 10 (b), salient reflections are extracted
until 200ms after the direct sound. Although all three SRIRs,
stemming from a small conference room, a concert hall,
and from the transition between an office and an anechoic
chamber, exhibit vastly different reverberation characteristics,
the algorithm successfully separates the direct part and the
residual in all three cases. Thus, the proposed algorithm proves
to be applicable also when using measurement data from a
variety of acoustic environments.

VI. CONCLUSION

In this work, we proposed a subspace method for the
decomposition of SRIRs into a direct part, containing the
direct sound and salient reflections, and a residual. The method
does not rely on a specific microphone array geometry but
the array configuration needs to guarantee a singular rank
of the covariance matrix in the presence of a plane wave,
which, for instance, is shown to be the case for spherical
arrangements with a radius of 4.2 cm and 24 or more mi-
crophones. The proposed method does not assume a specific
wave model and does not rely on corresponding parameter
estimates. It outperforms existing methods that rely on DOA
estimation, beamforming, and the assumption of plane waves
in all simulated scenarios, which include different rooms,
microphone arrays, and ratios of direct sound to residual. It
further generates lower direct part and residual errors than the
compared methods in scenarios with two simultaneous reflec-
tions. The proposed subspace decomposition can be applied
to SH-domain SRIRs without modification and guarantees the
perfect reconstruction of the original SRIR by summing up the
direct part and the residual. The method facilitates novel ways
of SRIR-based virtual acoustic rendering and might enhance
the performance of established parameter estimation methods
when applied as pre-processing. A reference implementation is
provided at https://github.com/thomasdeppisch/
SRIR-Subspace-Decomposition.
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