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Abstract

This thesis focuses on the development of programming frameworks to enforce,
by construction, desirable properties of software systems. Particularly, we are in-
terested in enforcing differential privacy–a mathematical notion of data privacy–
while statically reasoning about the accuracy of computations, along with deriv-
ing the sensitivity of arbitrary functions to further strengthen the expressiveness of
these systems. To this end, we first introduce DPella, a programming framework for
differentially-private queries that allows reasoning about the privacy and accuracy
of data analyses. DPella provides a novel component that statically tracks the ac-
curacy of different queries. This component leverages taint analysis to infer statis-
tical independence of the different noises that were added to ensure the privacy of
the overall computation. As a result, DPella allows analysts to implement privacy-
preserving queries and adjust the privacy parameters to meet accuracy targets, or
vice-versa.

In the context of differentially-private systems, the sensitivity of a function de-
termines the amount of noise needed to achieve a desired level of privacy. How-
ever, establishing the sensitivity of arbitrary functions is non-trivial. Consequently,
systems such as DPella provided a limited set of functions—whose sensitivity is
known—to apply over sensitive data; thus hindering the expressiveness of the lan-
guage. To overcome this limitation we propose a new approach to derive proofs
of sensitivity in programming languages with support for polymorphism. Our ap-
proach enriches base types with information about the metric relation between val-
ues and applies parametricity to derive proof of a function’s sensitivity. These ideas
are formalized in a sound calculus and implemented as a Haskell library called
Spar, enabling programmers to prove the sensitivity of their functions through type-
checking alone.

Overall, this thesis contributes to the development of expressive programming
frameworks for data analysis with privacy and accuracy guarantees. The proposed
approaches are feasible and effective, as demonstrated through the implementation
of DPella and Spar.
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I
Introduction

Constantly sharing personal information has been integrated into our daily rou-
tines. From our home devices, online interactions, and the services we use; to more
explicit disclosures such as filling out forms and answering surveys, our data is be-
ing collected, stored, sold, and processed by a wide range of agents. These agents
(e.g., research institutions, government agencies, and businesses) rely on collected
data to improve their services, understand populations, tailor policies, and make in-
formed decisions. Consequently, data processing is at the backbone of our society
and has the potential to impact our communities and lives positively. It is then de-
sirable to share our information with such agents for personal and societal gains.
However, the information provided often contains confidential and sensitive details
about ourselves that we expect to remain private and accessible only to those trusted
parties; unfortunately, this has not always been the case.

The mishandling of sensitive data has become commonplace among companies
and public institutions [17, 14, 21, 27]. As a result, many laws, regulations, and
agreements [6, 4, 16, 2] have been put in place recognizing the importance of pro-
tecting individuals’ privacy and mitigating the occurrence of privacy breaches. Im-
proper disclosure of the information is severely penalized with fines which might
put some companies out of business or heavily affect their reputation and compet-
itiveness [28, 1, 19, 3]. To make matters worst, when privacy breaches occur, they
are irreversible and have lingering consequences on those affected. These incidents
perpetuate distrust between the individuals and the agents interested in their data,
deterring the public from sharing their information in the future [10, 7, 11]. The vast
implications of privacy breaches then severely limit the potential usage of individ-
uals’ data and its availability altogether.

It is in everyone’s interest to avoid privacy breaches, but ensuring data privacy
is a complex problem. Companies, researchers, and policymakers have searched for
robust and concrete ways to define, ensure, and regulate data privacy. Decades of
trial and error have made it evident that data privacy cannot be achieved with a
few hacks or as an afterthought. Instead, it must be a fundamental approach that
can withstand technological changes and unforeseen risks while being feasible for
today’s needs.

Are our requirements for data privacy utopian? Should data analysis be halted
or reduced to preserve individuals’ privacy? Fortunately, that is not the case; var-
ious privacy-preserving techniques are available that allow us to perform statisti-
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2 I. Introduction

cal data analyses while guaranteeing the privacy of individual participants. One
such approach is differential privacy [13], a mathematical and quantifiable defini-
tion of privacy that has gained popularity for its provable guarantees and applica-
bility. Nevertheless, as the problem of privacy is broad and intricate, it is essential
to clarify the domain in which differential privacy is applicable and the drawbacks
that it might have. Concretely, this dissertation explores some challenges concern-
ing the deployment and usability of differential privacy and addresses them in the
context of programming languages.

Before diving into the opportunities and challenges of differential privacy, it is
important to explore the context of privacy protection and its threats. Following
the reader can find a brief description of some well-known and relevant techniques
used by data analysts and privacy practitioners in their daily tasks. This primer will
serve as an introduction to the field of statistical data privacy and as a motivation
for the usage of the study and application of differential privacy.

I.1 Privacy protection in context

Data anonymization or de-identification. Is the process of removing person-
ally identifying information (PII) from datasets so that the remaining information
cannot be linked to specific individuals. In practice, these techniques require data
owners to pre-process datasets by purging explicit identifiability information such
as names and government-issued IDs; as well as potentially identifiability informa-
tion such as IP addresses or next of kin. The remaining data presents a best-of-both-
words scenario in which unscrupulous actors will not be able to identify the peo-
ple providing the information, and honest analysts will have useful data to perform
their studies.

The promise of yielding useful and privacy-preserving results has positioned
anonymization techniques as the de-facto approach among practitioners storing,
sharing, and processing sensitive data. This sense of assurance is further reinforced
by regulatory agents and globally common statutes in which anonymization is con-
sidered sufficient to protect individuals’ privacy [26]. Despise its apparent robust-
ness, data breaches still occur in the presence of anonymized data.

The weakness of anonymization techniques is their incapacity to account for
data’s multiple degrees of identifiability. While PIIs are indeed attributes an adver-
sary can use to identify an individual, the same result can be achieved by combining
attributes that do not classify as personally identifiable. For instance, Sweeney [31]
demonstrated that the combination of ZIP code, birth date, and sex are unique to 87%
of the American population. Furthermore, when considering other available sources
of information, the probability of uniquely identifying individuals is increased by
cross-referencing with the anonymized data. It is then clear that data anonymiza-
tion is susceptible to privacy attacks and cannot always fulfill its promise of provid-
ing useful and privacy-preserving results.

Privacy attacks on anonymized data aim to reverse the process of anonymiza-
tion. Attackers can exploit the aforementioned vulnerabilities by associating anony-
mized records with non-anonymized information from different datasets, this tech-
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nique is known as a linkage attack. Using non-anonymous data as background
knowledge, attackers are capable to trace back individuals (known as re-identification
attacks) or recover large portions of the original dataset (known as reconstruction
attacks). Even though these attacks might seem difficult to perform and unlikely to
succeed, concrete instances of such attacks abound. Consequently, I present two in-
famous cases in which sophisticated data administrators overestimated anonymiza-
tion guarantees and compromised the privacy of hundreds of people.

• AOL Searcher No. 4417749: To provide useful data for academic research,
AOL released a dataset of search queries performed by its users. The com-
pany anonymized said data by replacing user IDs with random numbers and
removing IP addresses. The combination of searches performed by a user
—whose identity was hidden behind an associated random number— were
naively considered non-identifiable attributes of that user. Later on, New York
Times journalists Barbaro and Zeller, prove this assumption to be false [8]. In
the article, the authors showcase how a set of searches can reveal particular
characteristics of the users. Concretely, they re-identified and presented user
No. 4417749, a 62-year-old widow searching for "numb fingers", "60 single
men", "dog that urinates on everything", "homes sold in shadow lake subdivi-
sion gwinnett county georgia.", and "landscapers in Lilburn, Ga,". When noti-
fied about the vulnerabilities, AOL removed the dataset and apologized for its
publication, but, as pointed out by the authors, the data was already copied
and distributed on other sites; thus leaving AOL users’ permanently exposed.

• Netflix competition: Netflix released a dataset containing movie ratings
provided by their users as part of training data for a competition to improve
their recommendation algorithm. To anonymize the dataset, user IDs were
replaced, several ratings were randomly altered and dates were modified. De-
spise their efforts, Narayanan and Shmatikov [25] demonstrated that more
80% of the users were identifiable by knowing the time and rating of only three
movies. By using publicly available ratings from the Internet Movie Database
(IMDB) as background knowledge, the authors were able to re-identify com-
mon users across the datasets, in addition to learning other potentially sensi-
tive information such as users’ apparent political preferences.

These examples exhibit the prevalence of using anonymization for privacy preser-
vation among practitioners, but more importantly, they demonstrate the theoret-
ical and practical limitations of this technique, casting substantial doubts about
anonymization’s power for ensuring privacy.

Summary statistics. A common refrain among data analysts is to "aggregate"
data to make it safe to share and release. The idea behind this approach is that it
provides a hide-in-the-bunch effect where individuals are not likely to be singled
out. Intuitively, this simple approach fulfills the promise of protecting individuals’
privacy, after all, how can an attacker know my specific salary if all that is shared
is the average income of people in my area? As it turns out, this intuition is full of
risks and potential mistakes.
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Region Age Sex Count

A 20 - 29 F -
A 30 - 39 F 20
A 40 - 49 F 9
A 50 - 59 F 17
A 20 - 59 F 49

Table I.1: Summary female population in region A

Straight-forward attacks can be foreseen under the presence of outliers or when
the population is not big enough to "hide" data points. In fact, the field of statisti-
cal disclosure control [29] aroused from the need to protect information on tabular
and aggregated data. Consequently, statistical organizations have devised various
methods to mitigate these attacks, among them, the threshold rule stands as the most
commonly used [5]. The threshold rule consists on requiring a minimum number of
respondents (per categorization) in order to provide the aggregated results. For in-
stance, applying a threshold of 5 would mean that at least 5 individuals must share
the same combination of age, sex, and region of residence in order to provide any
insights about a population with this categorization. Although the threshold rule is
simple to implement and seemly efficient to prevent issues with identifying eccen-
tric data points; the privacy guarantees are broken when the aggregated statistics
are reversible and the releases are accumulated through time.

Consider the aggregated data in Table I.1 containing the summary statistics of
the female population in a certain region. Here the population of females is aggre-
gated within age ranges, additionally, the total population of females (known as a
marginal statistic) is provided. With this information, we can easily identify that
number of females between the ages of 20-29 is 49− 20− 9− 17 = 3. Even though
this example presents an obvious scenario, reversing aggregations across many di-
mensions when marginal statistics are included is a well-known and common prob-
lem [9].

Releasing marginal statistics jeopardizes the privacy guarantees provided by
summary statistics, however, privacy-by-aggregation’s vulnerabilities exist beyond
marginal summaries. When aggregated data is produced over time, attackers are
provided with additional information that can be used to compare and infer sen-
sitive information. Say our previous example was produced for January, in which
{Region:A, Age:40-49, Sex: F} = 9; if the results of the following month are {Re-
gion:A, Age:40-49, Sex: F}= 10, it is easy to notice that one person has been added
thus, violating the threshold rule since less than 5 individuals are represented in the
difference between both counts. To make matters worst, if an attacker has previous
knowledge of Alice moving to region A in this period, they can infer that Alice is
between 40 to 49 years old.

The main problem with privacy-via-aggregation is that all methods of numeri-
cal aggregation can be used to reconstruct the original data. This phenomenon was
called the Fundamental Law of Information Recovery by Dwork and Roth [13] stating
that "overly accurate answers to too many questions will destroy privacy in a spec-
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tacular way". Intuitively, the more statistics generated from a single set of data, the
greater the chance of reconstructing the original data from those statistics; this is
simply because each release decreases the possibilities for the data that could have
produced those statistics. This is why prominent data managers including the U.S.
Census Bureau [24], Google [15], and Apple [18], have shifted their interest to more
robust tools for releasing privacy-preserving statistics such as differential privacy.

I.2 Differential privacy

Differential privacy [13] is a formal mathematical definition of privacy in aggre-
gate statistics (e.g., averages and histograms) and machine learning analysis (e.g.,
k-means and stochastic gradient descent). This formal framework has gained in-
creasing popularity during the past decades as its core mechanisms are a variant
of the classic randomized response [32], protecting individuals’ privacy with formal
guarantees of plausible deniability—i.e., when performing a statistical analysis over
a dataset, any participant can deny the presence of their information in the input
data. Accordingly, differential privacy ensures that anyone observing the result of
a differentially-private computation will likely make the same inferences about an
individual, whether or not their information is included as input for the analysis.
Furthermore, differential privacy specifies mathematical assurance for privacy pro-
tection against various privacy attacks such as re-identification, reconstruction, and
differencing attacks.

The success of differential privacy lies in the fact that it identifies algorithms as
the primary culprits for data breaches. Under differential privacy, data is not anony-
mized, as we have seen that this technique is susceptible to linkage attacks [30, 25,
8, 12]. Additionally, differential privacy does not rely on the potential privacy of
aggregated statistical results, as this approach is susceptible to reconstruction and
membership attacks [20, 12]. Instead, differential privacy focuses on how the algo-
rithms at hand can influence the relationship between the input (possibly sensitive)
data and the outcome of the computations. In this sense, differential privacy is not
a single tool or implementation but a criterion or property that many algorithms for
accessing sensitive personal data are devised to satisfy.

Intuitively, an algorithm (often referred to as query or analysis) is said to sat-
isfy differential privacy when it returns statically indistinguishable outputs when
given two datasets differing in the data of a single individual. In order to fulfill this
condition, differentially-private algorithms add calibrated noise to their result to
mask the absence, inclusion, or modification of someone’s information in the input
dataset. The strength of differential privacy’s guarantees can be tuned via the pri-
vacy parameter ϵ1. This parameter is commonly referred to as the privacy loss as it
can be interpreted as the additional risk a participant is exposed to by partaking in
a specific data analysis. Consequently, the value of ϵ directly influences the noise in
a computation’s result to ensure privacy. As ϵ decreases, the strongest the privacy

1In its general form, differential privacy is parametrized by (ϵ, δ), with ϵ bounding the total privacy
loss and δ referring to a failure probability of the DP guarantees.
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guarantees are; however, this comes at the cost of adding more noise, thus impact-
ing the results’ accuracy.

At the core of every differentially-private algorithm lies the noise calibration
mechanism. Noise calibration is crucial to provide both useful and private results.
While the ϵ parameter quantifies the desired level of privacy, we also need to con-
sider how susceptible the algorithm is to disclose an individual’s information when
the dataset changes. The quantification of how much an operation’s result changes
relative to its inputs is known as sensitivity. Together, ϵ and the algorithm’s sensi-
tivity provide us with enough information to determine how much noise is needed
to achieve differential privacy.

I.2.1 Properties

The rigorous mathematical guarantees provided by differential privacy yield several
practical benefits for its users [13]:

Composability. Differential privacy features beneficial compositional properties
allowing analysts to create complex analyses using basic ones. The principle of se-
quential composition is one of the most basic ones stating that if a family of algo-
rithmsAi satisfy ϵi differential privacy, then executing a sequence of the algorithms
satisfies

∑
i ϵi-differential privacy. The principle of advanced composition can pro-

duce tighter limits on their total privacy loss when considering iterative algorithms.

Provable guarantees. Differential privacy is the only existing approach provid-
ing provable privacy guarantees for successive data releases.

Transparency. Differentially private algorithms and their parameters are not se-
crets to be protected. Opposite to traditional de-identification tools, knowing the
extent to which data has been transformed does not threaten the differential pri-
vacy guarantees. This transparency boosts reproducibility, accountability, and pub-
lic trust in the process of data analysis.

Post-processing resilience. Differential privacy guarantees that any subsequent
processing of data releases does not increase the risk of privacy violation for indi-
viduals.

Group privacy. While differential privacy is commonly used to protect privacy at
the individual level, it has been shown that its guarantees also translate to (weaker)
protection for groups of individuals. Concretely, an algorithm satisfying ϵ-differential
privacy for individuals also provides kϵ-differential privacy for groups of size k.

I.2.2 Models and tools

Since differential privacy is a mathematical property, there are multiple ways in
which we can design algorithms to fulfill it. Depending on whether data collectors
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are trusted, differentially private algorithms can be executed centrally or locally. In
a centralized setting, the individuals transmit their raw data to trusted parties; it is
assumed that these entities will safely store the data and correctly use differential
privacy to access the information. In contrast, in a local setting, data collectors are
not trusted; therefore, each participant will perturb their response before sharing;
hence sensitive information is never stored in one location.

The local model seemingly provides the ideal scenario where privacy is guar-
anteed, and security is boosted by avoiding creating honeypots for hackers. How-
ever, several studies have shown that these algorithms do not perform as accurately
as those in the centralized model for the same level of privacy. Consequently, most
differential privacy tools—including those introduced in this dissertation—are based
on the centralized model.

Most frameworks for differential privacy are based on the same principle: they
provide a set of fundamental private analyses, which the analysts can use as build-
ing blocks to create more complex algorithms. This approach relies heavily on the
compositional property as this principle will determine the final privacy guarantees
of the combined analyses.

I.2.3 Challenges

Privacy-accuracy reasoning

Composability is a fundamental property for developing programming tools for dif-
ferential privacy. When combining building blocks, these tools ensure that the total
privacy loss of the resulting analysis does not exceed the desired privacy level. This
characteristic facilitates reasoning about an analysis’ total privacy loss as a budget
that is distributed and spent through the algorithms’ pieces.

Strongly connected to privacy is the concept of accuracy. Analysts might be in-
terested in controlling their algorithms’ privacy and accuracy. One could argue that
privacy is a concern solely for the individuals (and data holders), while accuracy is
a concern exclusively for the analysts (and those interested in the statistical anal-
yses). Unfortunately, reasoning about accuracy is less compositional than reason-
ing about privacy. Determining the accuracy of arbitrary user-defined algorithms is
complex as it depends on the specific task at hand and the specific error measure-
ment. In the literature, most of the standard algorithms for differentially-private
analyses are provided with accuracy estimations (in the form of confidence inter-
vals or error bounds); however, the accuracy of their combination is addressed on a
case-by-case basis. As a result, most programming frameworks for differential pri-
vacy do not offer any support for tracking, reasoning, and adjusting the accuracy of
the algorithms; the crucial task of predicting accuracy is left to the analysts.

Proof of sensitivity for user-defined functions

Noise calibration is at the backbone of every differentially private algorithm. To
sample the adequate noise required to satisfy differential privacy, we need to con-
sider the desired privacy level (ϵ) and the sensitivity of the algorithm at hand (a mea-
surement of how volatile it is to changes in its inputs). Unfortunately, determining
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the sensitivity of arbitrary operations can be challenging. For this reason, most pro-
gramming tools for differential privacy do not support the definition of arbitrary op-
erations. Instead, they are equipped with predefined operations whose sensitivity is
known, avoiding sensitivity calculations altogether. However, even though prede-
fined operations have allowed for many exciting analyses, it severely constrains the
kind of computations we can perform on the datasets, thus limiting access to valu-
able information.

Several programming frameworks have been proposed to compute the sensitiv-
ity of user-defined operations. The typical approach to statically computing the sen-
sitivity of a program consists of providing a language with a type system enriched
with sensitivity annotations. Then, when combining the provided primitives, the
type system will keep track of the program’s global sensitivity. Unfortunately, most
of these frameworks are never fully deployed because they often rely on advanced
features not available in mainstream programming languages, thus requiring creat-
ing full-stack languages from scratch. Moreover, those frameworks that manage to
create a functioning prototype lack acceptance by data analysts since the tools are
based on niche programming devices (e.g., linear and modal types) unknown out-
side academic circles.

I.3 Statement of contribution

This dissertation encompasses a series of works proposing several programming
techniques to help non-experts write differentially private algorithms and reason
about the different components of these algorithms. With the deployment of such
techniques, we expect to equip data analysts with tools where i) they can create data
analysis satisfying differential privacy by construction, ii) they can reason about the
privacy-accuracy trade-offs before execution and, iii) they are not limited to a set of
predefined algorithms to create their own.

At a high level, the contributions of this dissertation can be grouped into two
categories, each of them tackling one of the challenges listed above:

I.3.1 Addressing challenge 1

We created DPella, a programming framework for differentially-private algorithms
that allows data analysts to reason compositionally about privacy-accuracy trade-
offs at compile time. DPella’s main novelty is that it exemplifies how programming
frameworks can internalize the use of probabilistic bounds for composing different
confidence intervals or error bounds in an automated way. DPella leverages taint
analysis to detect statistical independence of the noise added by its different primi-
tives; this information is then used to achieve better error estimates. Finally, since
DPella’s analysis is data-independent, it showcases howmainstream statically-typed
languages can be used to perform differential privacy analysis as part of their type-
checking process without relying on any runtime execution or information.

These results are recorded in our work "A Programming Language for Data Pri-
vacy with Accuracy Estimations." In 2021 ACM Transactions on Programming Lan-
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guages and Systems (TOPLAS) [23] which in turn is an extension of our previous
work "A Programming Framework for Differential Privacy with Accuracy Concen-
tration Bounds." In 2020 IEEE Symposium on Security and Privacy (SP) [22]. The for-
mer is the only one included in this dissertation as it encompasses both results; the
main differences between both works are highlighted in a subsequent section A.1.

I.3.2 Addressing challenge 2

We proposed a sound calculus (λSpar) for statically determining the sensitivity of
user-defined programs while avoiding using linear and relational refinement types.
Our approach relies on a novel use of parametricity—a well-known abstract unifor-
mity property enjoyed by polymorphic functions—together with type constraints
and type-level naturals to verify a program’s sensitivity by simply type-checking.
Its simplicity facilities embedding λSpar into mainstream richly-typed programming
languages.

We introduced Spar, a concrete implementation of λSpar as a library for the
Haskell programming language. The library Sparis implemented as an embedded
domain-specific language which allows us to leverage Haskell’s advanced type in-
ference to provide some support for sensitivity inference via type error—a feature
that, to our knowledge, has not been explored before. Finally, we complemented our
findings with the implementation of classic examples (such as summing, mapping,
and sorting elements of a vector) to demonstrate how Sparcan be used to prove user-
defined programs’ sensitivity. The main result of this work opens the door to inte-
grating procedures for automatically proving the sensitivity of user-defined analy-
ses into the programming workflow, e.g., by using Spar’s sensitivity proofs as an
input to other Haskell-based DP frameworks.
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A
A Programming Language for Data Privacy

with Accuracy Estimations

Abstract. Differential privacy offers a formal framework for reasoning about
the privacy and accuracy of computations on private data. It also offers a rich set
of building blocks for constructing private data analyses. When carefully cali-
brated, these analyses simultaneously guarantee the privacy of the individuals
contributing their data, and the accuracy of the data analysis results, inferring
useful properties about the population. The compositional nature of differential
privacy has motivated the design and implementation of several programming
languages to ease the implementation of differentially private analyses. Even
though these programming languages provide support for reasoning about pri-
vacy, most of them disregard reasoning about the accuracy of data analyses. To
overcome this limitation, we present DPella, a programming framework provid-
ing data analysts with support for reasoning about privacy, accuracy, and their
trade-offs. The distinguishing feature of DPella is a novel component that stat-
ically tracks the accuracy of different data analyses. In order to provide tight
accuracy estimations, this component leverages taint analysis for automati-
cally inferring statistical independence of the different noise quantities added for
guaranteeing privacy. We evaluate our approach by implementing several clas-
sical queries from the literature and showing how data analysts can calibrate
the privacy parameters to meet the accuracy requirements, and vice-versa.

A.1 Introduction

Differential privacy (DP) [18] is emerging as a viable solution to release statistical
information about the population without compromising data subjects’ privacy. A
standard way to achieve DP is by adding some statistical noise to the result of a data
analysis. If the noise is carefully calibrated, it provides privacy protection for the in-
dividuals contributing their data. At the same time, it enables the inference of accu-
rate information about the population from which the data are drawn. Thanks to its
quantitative formulation, quantifying privacy by means of the parameters ϵ and δ,
DP provides a mathematical framework for rigorously reasoning about the privacy-
accuracy trade-offs. The accuracy requirement is not baked in the definition of DP;

15
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instead, it is a constraint made explicit for a specific task at hand when designing a
differentially private data analysis.

An important property of DP is composability. Multiple differentially private
data analyses can be composed with a graceful degradation of the privacy parame-
ters (ϵ and δ). This property allows reasoning about privacy as a budget: a data an-
alyst can decide how much privacy budget (the ϵ parameter) assigns to each of her
analyses. The compositionality aspects of DP motivated the design of several pro-
gramming frameworks [28, 52, 33, 24, 22, 7, 6, 44, 43, 31, 45, 65] and tools [39, 45,
42, 24] to help analysts design their own differentially private consults. At a high
level, most of these programming frameworks and tools are based on a similar idea
for reasoning about privacy: provide primitives for fundamental differentially pri-
vate analyses as building blocks, and use composition properties to combine these
building blocks. During composition, these systems ensure that the privacy cost of
each data analysis sums up and that the total cost does not exceed the privacy bud-
get. The programming frameworks also provide general support to further com-
bine, through programming techniques, the different building blocks and the results
of several data analyses. Differently, DP tools are optimized for specific tasks at the
price of restricting the kinds of data analyses they can support.

Unfortunately, reasoning about accuracy is less compositional than reasoning
about privacy. It depends both on the specific task at hand and on the specific accu-
racy measure that one is interested in offering to data analysts. Despite this, when
restricted to specific mechanisms and specific forms of data analyses, one can mea-
sure accuracy through estimates given as confidence intervals, or error bounds. As
an example, most of the standard mechanisms from the differential privacy litera-
ture come with theoretical confidence intervals or error bounds that can be exposed
to data analysts to allow them to make informed decisions about the consults they
want to run. This approach has been integrated in tools such as GUPT [45], PSI [24],
and APEx [25]. Users of these tools, can specify the target confidence interval they
want to achieve, and the tools adjust the privacy parameters accordingly, when suf-
ficient budget is available1.

In contrast, all the programming frameworks proposed so far [28, 52, 33, 24, 22,
7, 6, 44, 43, 31, 45, 65] do not offer any support to programmers or data analysts
for tracking, and reasoning about, the accuracy of their data analyses. This phe-
nomenon is in large part due to the complex nature of accuracy reasoning, concern-
ing privacy analyses, when designing arbitrary data analyses that users of these
frameworks may want to implement and execute. In this work, we address this lim-
itation by building a programming framework for designing differentially private
analyses, which supports a compositional form of reasoning about accuracy.

Contribution

Our main contribution is showing how programming frameworks can internalize
the use of probabilistic bounds [15] for composing different confidence intervals or
error bounds, in an automated way. Probabilistic bounds are part of the standard

1APEx goes beyond this by also helping users select the right differentially private mechanism to
achieve the required accuracy.
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toolbox for the analysis of randomized algorithms. Specifically, they are the tools
that differential privacy algorithms designers usually employ for the accuracy anal-
ysis of classical mechanisms [19, 19]. Two important probabilistic bounds are the
union bound, which can be used to compose errors with no assumption on the way
the random noise is generated, and Chernoff bound, which applies to the sum of ran-
dom noise when the different random variables characterizing noise generation are
statistically independent (see Section A.5). When applicable, and when the number
of random variables grows, Chernoff bound usually gives a much “tighter” error es-
timation than the union bound.

Barthe et al. [8] have shown how the union bound can be internalized in a Hoare-
style logic for reasoning about probabilistic imperative programs, and how this logic
can be used to reason in a mechanized way about the accuracy of probabilistic pro-
grams, in particular, programs implementing differentially private primitives.

Building on this idea, we propose a programming framework where this kind of
reasoning is automated, and can be combined with reasoning about privacy. Such
a framework aims to offer programmers the tools they need to implement differen-
tially private data analyses and explore their privacy-accuracy trade-offs, in a com-

positional way. This framework supports not only the use of union bound as a rea-
soning principle, but also the Chernoff bound when applicable. The insight is that
probabilistic bounds relying on probabilistic independence of random variables can
be smoothly integrated in a programming framework by using techniques from
information-flow control [55] (in the form of taint analysis [56]). While these proba-
bilistic bounds are not enough to express every accuracy guarantee onewants to for-
mulate for arbitrary data analyses, they enable the inspection of a large class of user-
designed programs. Our approach allows programmers to exploit the compositional
nature of both privacy and accuracy, complementing in this way the support pro-
vided by tools such as GUPT [45], PSI [24], which yield confidence intervals estimate
only at the level of individual queries; and by APEx [25], which issues confidence
intervals estimate only at the level of a query workload for queries of the same type.

The described tool is materialized as a programming framework called DPella —
an acronym for Differential Privacy in Haskell with accuracy— where data analysts
can explore the privacy-accuracy trade-off while writing their differentially private
data analyses. DPella provides several basic differentially private building blocks
and composition techniques, which can be used by a programmer to design complex
differentially private data analyses. The analyses that can be expressed in DPella are
data-independent and can be built using primitives for counting, average, max, and
any aggregation of their results.

DPella supports both pure-DP, with parameter ϵ, and approximate-DP, with pa-
rameters ϵ and δ. Accordingly, it supports the addition of both Laplace and Gaussian
random noise, and the use of sequential or advanced [19] composition, respectively,
together with parallel composition for both notions. For clarity, wewill mainly focus
on ϵ-DP and the Laplacemechanism, however other variantswill be briefly discussed
(see Section A.5.3). DPella is implemented as a library in the general-purpose lan-
guage Haskell, a programming language that is well-known to support information-
flow analyses [36, 54] easily. Furthermore, DPella is designed to be extensible by
adding new primitives implementing advanced DP routines (see Section A.9).
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To reason about privacy and accuracy, DPella provides two primitives responsi-
ble for interpreting programs (which implement data analyses) symbolically. DPella’s
symbolic interpretation for privacy consists of decreasing the privacy budget of a
query by deducing the required budget of its sub-parts. On the other hand, the accu-
racy interpretation uses as abstraction the inverse Cumulative Distribution Function

(iCDF) representing an upper bound on the (theoretical) error that the program in-
curs when guaranteeing DP. A query’s iCDF is built out from the iCDFs of its com-
ponents by using the union bound as the elemental composition principle. These in-
terpretations provide overestimates of the corresponding quantities that they track.
To make these estimates as precise as possible, DPella uses taint analysis to track the
injection of noise and identify which variables are statistically independent. This in-
formation is used by DPella to replace soundly, when needed, the union bound with
the Chernoff bound, something that to the best of our knowledge other program log-
ics [8] or program analyses [57] also focusing on accuracy do not consider. We en-
vision DPella’s accuracy estimations to be used in scenarios that align with those
considered by tools like GUPT, PSI, and APEx.

In summary, our contributions are:

• Present DPella, a programming framework that allows data analysts to reason
compositionally about privacy-accuracy trade-offs.

• Show how to use taint analysis to detect statistical independence of the noise
that different primitives add, and how to use this information to achieve better
error estimates.

• Inspect DPella’s expressiveness and error estimations by implementing PINQ-
like queries from previous work [40, 28, 6] and workloads from the matrix
mechanism [35, 30, 62].

To present DPella and its components, this document is structured as follows.
Section A.2 provides a brief background on the notions of privacy and accuracy
DPella considers. Section A.3 introduces DPella by showcasing its main features
through simple examples. Section A.4 presents each of DPella’s primitives for the
construction and execution of queries. Section A.5 explains how do we calculate ac-
curacy concentration bounds and the accuracy-aware primitives that can be used by
the data analysts. On Section A.6 we implement case studies from the literature re-
vealing DPella’s advantages and limitations. Section A.7 introduces a new primitive
that allows data analysts to test DPella’s accuracy estimations. Section A.8 shows
DPella’s generalized API that allows data analyst to combine noisy values gener-
ated with different mechanisms. Following, on Section A.9 we discuss DPella’s lim-
itations in detail together with possible extensions to the framework. Lastly, Sec-
tion A.10 puts DPella in context while contrasting it with other approaches and
frameworks.

Highlights This work builds on our previous paper “A Programming Framework
for Differential Privacy with Accuracy Concentration Bounds” [38] that we have im-
proved in its presentation and complemented with novel contributions summarized
as follows:



A.2. BACKGROUND 19

• Comprehensive description of DPella’s components;

• Introduction of a new feature to tests DPella’s accuracy estimations (Sec-
tion A.7), this way analysts will be able to measure the tightness of DPella’s
bound;

• API updates including new accuracy combinators (Section A.5.1) giving more
options to manipulate and modify noisy values without loosing information
of their accuracy;

• Description of (ϵ,δ-)-DP andGaussMechanism integration (SectionA.5.3) which
showcases DPella’s flexibility to host other notions of differential privacy and
mechanisms;

• Presentation of DPella’s generalized API (Section A.8) that facilitates the im-
plementation of query plans involving results from different mechanisms.

A.2 Background

Differential privacy [18] is a quantitative notion of privacy that bounds how much
a single individual’s private data can affect the result of a data analysis. More for-
mally, we can define differential privacy as a property of a randomized query Q̃(·)
representing the data analysis, as follow.

DefinitionA.1 (Differential Privacy (DP) [18]). A randomized query Q̃(·) : db→ R
satisfies ϵ-differential privacy if and only if for any two datasets D1 and D2 in db,
which differ in one row, and for every output set S ⊆ R we have

Pr[Q̃(D1) ∈ S] ⩽ eϵ Pr[Q̃(D2) ∈ S] (A.1)

In the definition above, the parameter ϵ determines a bound on the distance be-
tween the distributions induced by Q̃(·) when adding or removing an individual
from the dataset—the farther away they are, the more at risk the privacy of an indi-
vidual is, and vice versa. In other words, ϵ imposes a limit on the privacy loss that
an individual can incur in, as a result of running a data analysis.

A standard way to achieve ϵ-differential privacy is adding some carefully cali-
brated noise to the result of a query. To protect all the different ways in which an
individual’s data can affect the result of a query, the noise needs to be calibrated to
the maximal change that the result of the query can have when changing an indi-
vidual’s data. This is formalized through the notion of sensitivity.

Definition A.2 (Sensitivity [18]). The (global) sensitivity of a query Q(·) : db→ R
is the quantity ∆Q = max{|Q(D1)−Q(D2)| for D1, D2 differing in one row

The sensitivity gives a measure of the amount of noise needed to protect one
individual’s data. Besides, in order to achieve differential privacy, it is also important
the choice of the kind of noise that one adds. A standard approach is based on the
addition of noise sampled from the Laplace distribution.
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Theorem A.1 (Laplace Mechanism [18]). Let Q(·) : db → R be a deterministic

query with sensitivity ∆Q. Let Q̃(·) : db → R be a randomized query defined as

Q̃(D) = Q(D)+η, where η is sample from the Laplace distribution with mean µ = 0
and scale b = ∆Q/ϵ. Then Q̃ is ϵ-differentially private.

Notice that in the theorem above, for a given query, the smaller the ϵ is, the
more noise Q̃(·) needs to inject in order to hide the contribution of one individual’s
data to the result—this protects privacy but degrades how meaningful the result of
the query is—and vice versa. In general, the notion of accuracy can be defined more
formally as follows.

DefinitionA.3 (Accuracy, see e.g.[19]). Given an ϵ-differentiallly private query Q̃(·),
a target queryQ(·), a distance function d(·), a bound α, and the probability β, we say
that Q̃(·) is (d(·), α, β)-accurate with respect to Q(·) if and only if for all dataset D:

Pr[d(Q̃(D)−Q(D)) > α] ⩽ β (A.2)

This definition allows one to express data independent error statements such as:
with probability at least 1− β the query Q̃(D) diverge from Q(D), in terms of the
distance d(·), for less than α. Then, we will refer to α as the error and 1− β as the
confidence probability or simply confidence. In general, the lower the β is, i.e., the
higher the confidence probability is, the higher the error α is.

As previously discussed, an important property of differential privacy is com-
poseability.

Theorem A.2 (Sequential Composition [18]). Let Q̃1(·) and Q̃2(·) be two queries

which are ϵ1- and ϵ2-differentially private, respectively. Then, their sequential compo-

sition Q̃(·) = (Q̃1(·), Q̃2(·)) is (ϵ1 + ϵ2)-differentially private.

TheoremA.3 (Parallel Composition [28]). Let Q̃(·) be a ϵ-differentially private query
and data1,data2 be a partition of the set of data. Then, the query Q̃1(D) = (Q̃(D ∩
data1), Q̃(D ∩ data2)) is ϵ-differentially private.

Thanks to the composition properties of differential privacy, we can think about
ϵ as a privacy budget that one can spend on a given data before compromising the
privacy of individuals’ contributions to that data. The global ϵ for a given program
can be seen as the privacy budget for the entire data. This budget can be consumed
by selecting the local ϵ to “spend” in each intermediate query. Thanks to the compo-
sition properties, by tracking the local ϵ that are consumed, one can guarantee that
a data analysis will not consume more than the allocated privacy budget.

Given an ϵ, DPella gives data analysts the possibility to explore how to spend it
on different queries and analyze the impact on accuracy. For instance, data analysts
might decide to spend “more” epsilon on sub-queries which results are required to
be more accurate, while spending “less” on the others. The next examples (inspired
by the use of DP in network trace analyses [40]) show how DPella helps to quantify
what “more” and “less” means.
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A.3 DPella by example

DPella’s model considers two kinds of actors: data curators, owners of the private
dataset that decide the global privacy budget and split it among the data analysts,
the ones who write queries to mine useful information from the data and spend
the budget they received. Analysts are not allowed to directly query the dataset,
instead, they need to implement their analyses and send them to the curator who
will execute them and give the results back.

project
SchemaDS.hs
analysts

Queries.hs
curator

Execution.hs
dataset.csv

Figure A.1: File structure

From an implementation standpoint, it means
that the analyses and their run functions are pro-
vided in different files, with different privileges.
More specifically, Figure A.1 depicts a common file
structure for the usage of DPella. File SchemaDS.hs
contains the schema of the dataset owned by the
curator, it does not contain private data, only the
names of the tables and their respective attributes
as a Haskell record type. For example, a dataset
containing just one table called Ages with two at-
tributes name (a String value) and age (an Int

value), will be encoded in SchemaDS.hs as follows, where (::) is used to describe
the type of a term in Haskell:

data Ages = AgeRow {name :: String, age :: Int}

Since the structure of the dataset is not considered sensitive information, the file
SchemaDS.hs can be accessed by both, the data owner and data analysts.

File Queries.hs contains the analyses that have been implemented by the data
analysts, all of these queries should be parameterized by the dataset in which they
will be later executed. Analysts will only have access to their implementations and
the database schema. Lastly, file Execution.hs implements the run functions for
the analyses at Queries.hs, this file is owned by the curator and has access to all
other files in the directory, in particular, it has access to the real data—stored in
dataset.csv.

A.3.1 Basic aggregations

For the following examples, we consider a dataset representing a tcpdump trace of
packets where each row contains the information indicated by its schema:

data Tcpdump =
TCPRow {id :: Integer , timestamp :: Double

, src :: IP , dest :: IP
, protocol :: Integer , size :: Integer
, payload :: ByteString}
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Counting

An analyst wanting to know the number of packets sent to WikiLeaks, with IP
address 195.35.109.53, can do so by writing a simple eps-differentially private
query as follows:

import SchemaDS
import AnalystLP
−
wikileaks :: ϵ→ Data 1 Tcpdump→ Query (Value Double)
wikileaks eps dataset = do
byIP← dpWhere ((≡ 195.35.109.53) ◦ dest) dataset
dpCount eps byIP

First, we import file SchemaDS where Tcpdump’s description (previously presented)
is stored. Then, we import DPella’s interface for analysts called AnalystLP, where
LP indicates that we will use the Laplacian mechanism. Subsequently, we imple-
ment query wikileaks which takes as input the amount of privacy budget eps
(of type ϵ) to be spent by the query and the dataset (of type Data 1 Tcpdump)
where it will be computed; when executed, this query will yield results of type
Query (Value Double), that is, DPella computations of type Double—a more de-
tailed explanation of DPella’s types could be found in the following sections. In
query wikileaks, we use the primitive transformation2 dpWhere to filter all rows
whose dest attribute has a value equal to 195.35.109.53, this operation returns
a transformed dataset that we have called byIP. We proceed to perform the noisy
count using primitive dpCount over the filtered dataset byIP while spending eps
amount of privacy budget. The value of eps will—internally—determine the magni-
tude of noise to be added to the real count.

Having this general implementation, an analyst can write specific queries fixing
the value of eps, for instance:

analysis1 = wikileaks 0.5
analysis2 = wikileaks 1
analysis3 = wikileaks 5

To execute these analyses the data owner needs to implement a function that
loads the required dataset and execute analysts’ queries, such a function will look
like:

import SchemaDS
import CuratorLP (loadDS, dpEval)
import Queries
−
runAnalysis :: (Data 1 Tcpdump→ Query (Value Double))→ ϵ

→ IO Double

2Anticipating on Section A.4, in our code we will usually use the red color for transformations, the
blue color for aggregate operations, and the green color for combinators for privacy and accuracy.
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runAnalysis query bud = do
ds← loadDS "hotspot.csv"
dpEval query ds bud

Function runAnalysis takes as inputs the function to be executed, called query,
and the global privacy budget bud; returning the randomized count as an IO Double.
This function calls an auxiliar function loadDS (provided by DPella’s interface for
curators) to read file hotspot.csvwhich is then saved as a DPella’s dataset in vari-
able ds. Next, it uses DPella’s primitive dpEval indicating which analysis will be
perform, over which dataset, and what’s the tolerance for the privacy loss.

Let’s assume hotspot.csv have the information of 10, 000 packets and 7 of
them where directed to wikileaks’ IP address. Then, when the data owner executes
the analysis she would get results such as:

>runAnalisis analysis1 20
Value = 15.3
>runAnalisis analysis2 20
Value = 4.8
>runAnalisis analysis3 20
Value = 6.7

Which clearly exemplifies the effects of the selection of eps on the queries’ results.
Intuitively, the greater the eps, the closer we are to the real count of packets.

Sums

Suppose we are now interested in computing the amount of transmitted data. This
is, we want to sum up the value of size column which indicates the length of the
packets in bytes.

In DPella, to compute a sum, we need to determine first the range of the values—
our framework supports only integer numbers’ ranges, e.g., [1, 10], [−5, 30], etc.
This information is needed to automatically calculate the sensitivity of sum queries
at compile time, i.e., if every value is in the range [a, b], the sensitivity of their addi-
tion is max{|a|, |b|}. We specify ranges in DPella is via the primitive range.

range :: (IsInt a, IsInt b, IsNat | b-a |, a ⩽ b)⇒ Range a b

This function receives no arguments since the range is indicated at the type-level
with type constraints of the form IsNat n for strictly positive integer numbers, and
IsInt n for positive and negative integers. Then, to create ranges we need to use
type applications, e.g.,

range1 = range @(:+ : 1) @(:+ : 10)
range2 = range @(:- : 5) @(:+ : 30)

Here, functions :+ : and :- : are used to specify the sign of the range’s limits.
For the example of packets size, the data curator indicates that the range of size

attribute goes from 40 to 35, 000 bytes, then we define our query as follows:
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totalBytes eps dataset = do
dpSum eps (range @(:+ : 40) @(:+ : 35000)) size dataset

Function totalBytes uses primitive dpSum to compute the noisy sum of size
attribute—whose values are ranging from 40 to 35000 bytes—over the indicated
dataset. The way this query should be executed does not vary from the execution
of the analyses derived from function wikileaks, thus is omitted.

Changing the question to focus on an specific protocol might require an adjust-
ment on the range to be specified. For instance, if instead we want to inspect the
total amount of data transmitted through Kerberos’ authentication protocol, which
uses port 88, we should use the fact that this port transmits packets of at most of
1465 bytes. Hence, we will need to update our query accordingly

totalBytesKerberos eps dataset = do
kerberos← dpWhere ((≡ 88) ◦ protocol) dataset
dpSum eps (range @(:+ : 40) @(:+ : 1465)) size kerberos

In function totalBytesKerberos we will first filter the dataset to obtain the in-
formation regarding port 88, then we perform the noisy sum over the filtered data.
Observe that we are defining a query with less global sensitivity than the one im-
plemented in function totalBytes, thus, if given the same eps, less noise will be
added to the results of the analyses deriving from function totalBytesKerberos.
Having a notion of the order of magnitude in which the result of a sum ranges be-
comes handy when reasoning about the accuracy of the query. In the following ex-
amples we depict how an analyst can use DPella to inspect the error of her queries,
check out for miscalculations on the consumption of the privacy budget, and more.

A.3.2 Cumulative Distribution Function

Considering the same dataset Tcpdump we would like to inspect—in a differentially
private manner—the packet’s length distribution by computing its Cumulative Dis-
tribution function (CDF), defined as CDF(x) = number of records with value ⩽ x.
Hence, we are just interested in the values of the attribute size. McSherry and Ma-
hajan [40] proposed three different ways to approximate (due to the injected noise)
CDFs with DP, and they argued for their different levels of accuracy. For simplicity,
we revise two of these approximations to show how DPella can assist in showing
the accuracy of these analyses.

Sequential CDF

A simple approach to compute the CDF consists in splitting the range of lengths into
bins and, for each bin, count the number of records that are⩽ bin. A natural way
to make this computation differentially private is to add independent Laplace noise
to each count.

We show how to do this using DPella in Figure A.2a. We define a function cdf1
which takes as input the list of bins describing size ranges, the amount of budget
eps to be spent by the entire query, and the datasetwhere it will be computed. For
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1 cdf1 bins eps dataset = do
2 sizes ← dpSelect size dataset
3 counts← sequence [do elems← dpWhere (⩽ bin) sizes
4 dpCount localEps elems | bin← bins]
5 return (norm∞ counts)
6 where localEps = eps / length bins

(a) Sequential approach

7 cdf2 bins eps dataset = do
8 sizes← dpSelect ((⩽ max bins) ◦ size) dataset
9 -- parts :: Map Integer (Value Double)
10 parts← dpPartRepeat (dpCount eps) bins assignBin sizes
11 let counts = Map.elems parts
12 cumulCounts = [add (take i counts) | i← [1.length counts ] ]
13 return (norm∞ cumulCounts)

(b) Parallel approach

Figure A.2: CDF’s implementations

now, we assume that we have a fixed list of bins for packets’ length. Function cdf1
uses the primitive transformation dpSelect to obtain from the dataset the length
of each packet via a selector function, in this case it is just the column of interest
size. This computation results in a new dataset sizes. Then, we create a counting
query for each bin using the primitive dpWhere. This filters all records that are less
than the bin under consideration (⩽ bin). Finally, we perform a noisy count using
primitive dpCount. The noise injected by the primitive dpCount is calibrated so that
the execution of dpCount is localEps-DP (line 63). The function sequence then
takes the list of queries and compute them sequentially collecting their results in a
list—to create a list of noisy counts. We then return this list. The combinator norm∞
in line 5 is used to mark where we want the accuracy information to be collected,
but it does not have any impact on the actual result of the cdf.

To ensure that cdf1 is eps-differential privacy, we distributed the given bud-
get eps evenly among the sub-queries (this is done in lines 4 and 6). However, a
data analyst may forget to do so, e.g., she can define localEps = eps, and in this
case the final query is (length bins)*eps-DP, which is a significant change in the
query’s privacy price. To prevent such budget miscalculations or unintended expen-
diture of privacy budget, DPella provides the analyst with the function budget (see
Section A.4) that, given a query, statically computes an upper bound on how much
budget it will spend. To see how to use this function, consider the function cdf1
and a its modified version cdf1’ with localEps = eps. Suppose that we want to
compute how much budget will be consumed by running them on a list of 10 bins

3The casting operation fromIntegral is omitted for clarity
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(identified as bins10) and a symbolic dataset symDataset. Then, the data analyst
can ask this as follows:

>budget (cdf1 bins10 1 symDataset)
ϵ = 1
>budget (cdf1’ bins10 1 symDataset)
ϵ = 10

The function budget will not execute the query, it simply performs an static
analysis on the code of the query by symbolically interpreting it. The static analysis
uses information encoded by the type of symDataset (explained in Section A.4),
that, in this particular case, will be provided by Tcpdump’s schema.

DPella also provides primitives to statically explore the accuracy of a query. The
function accuracy takes a noisy query Q̃(·) and a probability β and returns an
estimate of the (theoretical) error that can be achieved with confidence probability
1−β. Suppose we want to estimate the error we will incur in by running cdf1with
a budget of ϵ = 1 with the same list of bins and symbolic dataset as before, and we
want to have this estimate for β = 0.05 and β = 0.2, respectively. Then, the data
analyst can ask this as follow:

>accuracy (cdf1 bins10 1 symDataset) 0.05
α = 53
>accuracy (cdf1 bins10 1 symDataset) 0.2
α = 40

Since the result of the query is a vector of counts, we measure the error α in
terms of ℓ∞ distance with respect to the CDF without noise. This is the max differ-
ence that we can have in a bin due to the noise. The way to read the information
provided by DPella is that with confidence 95% and 80%, we have errors 53 and 40,
respectively. These error bounds can be used by a data analyst to figure out the ex-
act set of parameters that would be useful for her task.

Parallel CDF

Another way to compute a CDF is by first generating an histogram of the data ac-
cording to the bins, and then building a cumulative sum for each bin. To make this
function private, an approach could be to add noise at the different bins of the his-
togram, rather than to the cumulative sums themselves, so that we could use the par-
allel composition, rather than the sequential one [40], which we show how to imple-
ment in DPella in Figure A.2b—where double-dashes are used to introduce single-
line comments.

In cdf2, we first select all the packages whose length is smaller than the max-
imum bin (line 8), then we partition the data accordingly to the given list of bins
(line 10). To do this, we use dpPartRepeat operator to create as many (disjoint)
datasets as given bins, where each record in each partition belongs to the range de-
termined by an specific bin—where the record belongs is determined by the func-
tion assignBin :: Integer→ Integer. After creating all partitions, the primitive
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Figure A.3: Error comparison (95% confidence)

dpPartRepeat computes the given query dpCount eps in each partition—the name
dpPartRepeat comes from repetitively calling dpCount eps as many times as par-
titions we have. As a result, dpPartRepeat returns a finite map where the keys are
the bins and the elements are the noisy count of the records per partition—i.e., the
histogram. In what follows (lines 12–13), we compute the cumulative sums of the
noisy counts using the DPella primitive add, and finally we build and return the list
of values denoting the CDF.

The privacy analysis of cdf2 is similar to the one of cdf1. The accuracy analysis,
however, is more interesting: first it gets error bounds for each cumulative sum,
then these are used to give an error bound on the maximum error of the vector. For
the error bounds on the cumulative sums DPella uses either the union bound or the
Chernoff bound, depending on which one gives the lowest error. For the maximum
error of the vector, DPella uses the union bound, similarly to what happens in cdf1.
A data analyst can explore the accuracy of cdf2.

>accuracy (cdf2 bins10 1 symDataset) 0.05
α = 22
>accuracy (cdf2 bins10 1 symDataset) 0.2
α = 20

Exploring the privacy-accuracy trade-off

Let us assume that a data analyst is interested in running a CDF with an error
bounded with 90% confidence, i.e., with β = 0.1, having three bins (named bins3),
and ϵ = 1. With those assumptions in mind, which implementation should she use?
To answer that question, the data analyst can ask DPella:

>accuracy (cdf1 bins3 1 symDataset) 0.1
α = 11

>accuracy (cdf2 bins3 1 symDataset) 0.1
α = 12
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So, the analyst would know that using cdf1 in this case would give, likely, a lower
error. Suppose further that the data analyst realize that she prefers to have a finer
granularity and have 10 bins, instead of only 3. Which implementation should she
use? Again, she can compute:

>accuracy (cdf1 bins10 1 symDataset) 0.1
α = 46

>accuracy (cdf2 bins10 1 symDataset) 0.1
α = 20

So, the data analyst would know that using cdf2 in this case would give, likely,
a lower error. One can also use DPella to show a comparison between cdf1 and
cdf2 in terms of error when we keep the privacy parameter fixed and we change
the number of bins, where cdf2 gives a better error when the number of bins is
large [40] as illustrated in Figure A.3. In the figure, we also show the empirical error
to confirm that our estimate is tight—the oscillations on the empirical cdf1 are given
by the relative small (300) number of experimental runs we consider.

Now, what if the data analyst chooses to use cdf2 because of what we discussed
before but she realizes that she can afford an error α ⩽ 50; what would be then the
epsilon that gives such α? One of the feature of DPella is that the analyst can write a
simple program that finds it by repetitively calling accuracy with different epsilons—
this is one of the advantages of providing a programming framework. These differ-
ent use cases shows the flexibility of DPella for different tasks in private data anal-
yses.

A.4 Privacy

DPella is designed to help data analysts to have an informed decision about how to
spend their budget based on exploring the trade-offs between privacy and accuracy.
In this section, we introduce DPella’s primitives and design principles responsible
to ensure differential privacy of queries written by data analysts.

A.4.1 Components of the API

Figure A.4 shows part of DPella API. DPella introduces two abstract data types to
respectively denote datasets and queries:

data Data s r -- datasets
data Query a -- queries

The attentive reader might have observed that the API also introduces the data type
Value a. This type is used to capture values resulting from data aggregations.
However, we defer its explanation for Section A.5 since it is only used for accuracy
calculations—for this section, readers can consider the type Value a as isomorphic
to the type a. It is also worth noticing that the API enforces an invariant by con-
struction: it is not possible to branch on results produced by aggregations—observe
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-- Transformations (data analyst)
dpWhere :: (r→ Bool)→ Data s r→ Query (Data s r)
dpGroupBy :: Eq k⇒ (r→ k)→ Data s r→ Query (Data (2*s) (k, [r]))
dpIntersect :: Eq r⇒ Data s1 r→ Data s2 r→ Query (Data (s1+s2) r)
dpSelect :: (r→ r′)→ Data s r→ Query (Data s r′)
dpUnion :: Data s1 r→ Data s2 r→ Query (Data (s1+s2) r)
dpPart :: Ord k⇒ (r→ k)→ Data s r→ Map k (Data s r)

→ Query (Value a)→ Query (Map k (Value a))

-- Aggregations (data analyst)
dpCount :: Stb s⇒ ϵ→ Data s r→ Query (Value Double)
dpSum :: Stb s⇒ ϵ→ Range a b→ (r→ Double)→ Data s r

→ Query (Value Double)
dpAvg :: Stb s ⇒ ϵ→ Range a b→ (r→ Double)→ Data s r

→ Query (Value Double)
dpMax :: Eq a ⇒ ϵ→ Responses a→ (r→ a)→ Data 1 r

→ Query (Value a)

-- Budget
budget :: Query a→ ϵ
-- Execution (data curator)

dpEval :: (Data 1 r→ Query (Value a))→ [r]→ ϵ→ IO a

Figure A.4: DPella API: Part I

that there is no primitive capable to destruct a value of type Value a. While it might
seem restrictive, it enables to write counting queries, which are the bread and but-
ter of statistical analysis and have been the focus of the majority of the work in DP.
Section A.9 discusses, however, how to lift this limitation for specific analyses.

Values of type Data s r represent sensitive datasets with accumulated stability

s, where each row is of type r. Accumulated stability, on the other hand, is instan-
tiated to type-level positive natural numbers, i.e., 1, 2, etc. Stability is a measure
that captures the number of rows in the dataset that could have been affected by
transformations like selection or grouping of rows. In DP research, stability is asso-
ciated with dataset transformations rather than with datasets themselves. In order
to simplify type signatures, DPella uses the type parameter s in datasets to repre-
sent the accumulated stability of the transformations for which datasets have gone
through—as done in [20]. Different than, e.g., PINQ [28], one novelty of DPella is
that it computes stability statically using Haskell’s type-system.

Values of type Query a represent computations, or queries, that yield values of
type a. Type Query a is a monad [44], and because of this, computations of type
Query a are built by two fundamental operations:

return :: a→ Query a
( >>= ) :: Query a→ (a→ Query b)→ Query b

The operation return x outputs a query that just produces the value x without
causing side-effects, i.e., without touching any dataset. The function ( >>= )—called
bind—is used to sequence queries and their associated side-effects. Specifically,
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qp >>= f executes the query qp, takes its result, and passes it to the function f, which
then returns a second query to run. Some languages, like Haskell, provide syntactic
sugar for monadic computations known as do-notation. For instance, the program
qp1 >>= (λx1 → qp2 >>= (λx2 → return (x1, x2))), which performs queries qp1
and qp2 and returns their results in a pair, can be written as do x1 ← qp1; x2 ←
qp2; return (x1, x2) which gives a more “imperative” feeling to programs. We split
the API in four parts: transformations, aggregations, budget prediction, and execu-
tion of queries—see next section for the description of API’s accuracy components.
The first three parts are intended to be used by data analysts, while the last one is
intended to be only used by data curators4.

A.4.2 Transformations

The primitive dpWhere filters rows in datasets based on a predicate functions (r→
Bool). The created query (of type Query (Data s r)) produces a dataset with
the same row type r and accumulated stability s as the dataset given as argument
(Data s r). Observe that if we consider two datasets which differ in s rows in two
given executions, and we apply dpWhere to both of them, we will obtain datasets
that will still differ in at most s rows—thus, the accumulated stability remains the
same. The primitive dpGroupBy returns a dataset where rows with the same key
are grouped together. The functional argument (of type r → k) maps rows to keys
of type k. The rows in the return dataset (Data (2*s) (k, [r ])) consist of key-
rows pairs of type (k, [r ])—syntax [r ] denotes the type of lists of elements of type
r. What appears on the left-hand side of the symbol⇒ are type constraints. They
can be seen as static demands for the types appearing on the right-hand side of⇒.
Type constraint Eq k demands type k, denoting keys, to support equality; other-
wise grouping rows with the same keys is not possible. The accumulated stability
of the new dataset is multiplied by 2 in accordance with stability calculations for
transformations [28, 20]—observe that 2*s is a type-level multiplication done by a
type-level function (or type family [21]) *, in other words, it is an arithmetic oper-
ation computed at compile time. Our API also considers transformations similar to
those found in SQL like intersection (dpIntersect), union (dpUnion), and selec-
tion (dpSelect) of datasets, where the accumulated stability is updated accordingly.
Providing a general join transformation is known to be challenging [28, 46, 10, 32].
The output of a join may contain duplicates of sensitive rows, which makes diffi-
cult to bound the accumulated stability of datasets. However, and similar to PINQ,
DPella supports a limited form of joins, where a limit gets imposed on the number
of output records mapped under each key in order to obtain stability. For brevity,
we skip its presentation and assume that all the considered information is contained
by the rows of given datasets.

A.4.3 Partition

Primitive dpPart deserves special attention. This primitive is a mixture of a trans-
formation and aggregations since it partitions the data (transformation) to subse-

4A separation that can be enforced via Haskell modules [36]
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1 q :: ϵ→ [Color]→ Data 1 Double→ Query (Map Color Double)
2 q eps bins dataset = dpPart id dataset dps
3 where dps = fromList [(c, λds→ dpCount eps dataset) | c← bins]
4 -- dps = fromList [(c, λds→ dpCount eps ds) | c← bins]

Figure A.5: DP-histograms by using dpPart

quently apply aggregations on each of them. More specifically, it splits the given
dataset (Data s r) based on a row-to-key mapping (r→ k). Then, it takes each par-
tition for a given key k and applies it to the corresponding function Data s r →
Query (Value a), which is given as an element of a key-query mapping of type
Map k ((Data s r) → Query (Value a)). Subsequently, it returns the values pro-
duced at every partition as a key-value mapping (Query (Map k (Value a))). The
primitive dpPartRepeat, used by the examples in Section A.3, is implemented as a
special case of dpPart and thus we do not discuss it further.

Partition is one of the most important operators to save privacy budget. It allows
to run the same query on a dataset’s partitions but only paying for one of them—
recall Theorem A.3. The essential assumption that makes this possible is that every
query runs on disjoint datasets. Unfortunately, data analysts could ignore this as-
sumption when writing queries.

To illustrate this point, we present the code in Figure A.5. Query q produces an ϵ-
DP histogram of the colors found in the argument dataset, which rows are of type
Color and variable bins enumerates all the possible values of such type. The code
partitions the dataset by using the function id :: Color → Color (line 2) and exe-
cutes the aggregation counting query (dpCount) in each partition (line 3)—function
fromList creates a map from a list of pairs. The attentive reader could notice that
dpCount is applied to the original dataset rather than the partitions. This type of
errors could lead to break privacy as well as inconsistencies when estimating the
required privacy budget. A correct implementation consists on executing dpCount
on the corresponding partition as shown in the commented line 4.

To catch coding errors as the one shown above, DPella deploys an static analysis
of information-flow control (IFC) similar to that provided by MAC [53]. IFC ensures
that queries run by dpPart do not perform queries on shared datasets by attaching
provenance labels to datasets Data s r indicating to which part of the query they
are associated with and propagates that information accordingly.

Coming back to our previous example (see Figure A.5), the IFC analysis will
assign the provenance of dataset in q to the top-level fragment of the query rather
than to sub-queries executed in each partition—and DPella will raise an error at
compile time when ds is accessed by the sub-queries! Instead, if we comment line 3
and uncomment line 4, the query qwill be successfully run by DPella (when there is
enough privacy budget) since every partition is only accessing their own partitioned
data (denoted by variable ds).

The implemented IFC mechanism is transparent to data analysts and curators,
i.e., they do not need to understand how it works. Analysts and curators only need
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to know that, when the IFC analysis raises an alarm, is due to a possibly access to
non-disjoint datasets when using dpPart.

A.4.4 Aggregations

DPella presents primitives to count (dpCount), sum (dpSum), and average (dpAvg)
rows in datasets. These primitives take an argument eps :: ϵ, a dataset, and build
a Laplace mechanism which is eps-differentially private from which a noisy result
gets returned as a term of type Value Double. The purpose of data type Value a
is two fold: to encapsulate noisy values of type a originating from aggregations
of data, and to store information about its accuracy—intuitively, how “noisy” the
value is (explained in Section A.5). The injected noise of these queries gets adjusted
depending on three parameters: the value of type ϵ, the accumulated stability of the
dataset s, and the sensitivity of the query (recall Definition A.2). More specifically,
the Laplace mechanism used by DPella uses accumulated stability s to scale the
noise, i.e., it consider b from Theorem A.1 as b = s · ∆Q

ϵ . The sensitivity of DPella’s
aggregations are either hard-coded into the implementation—similar to what PINQ
does—or calculated statically. The sensitivities of dpSum and dpAvg are determined
by the range of the values under consideration i.e., for the indicated Range a b, the
sensitivity is computed as max {|a|, |b|} and |b-a|, respectively. This is enforced by
applying a clipping function (r → Double). This function ensures that the values
under scrutiny fall into the interval [a, b] before (and, for dpAvg, after) executing the
query. The sensitivity of dpCount and dpMax is set to 1. To implement the Laplace
mechanism, the type constrain Stb s in dpCount, dpSum, and dpAvg demands the
accumulated stability parameter s to be a type-level natural number in order to
obtain a term-level representation when injecting noise. Finally, primitive dpMax
implements report-noisy-max [19]. This query takes a list of possible responses
(Responses a is a type synonym for [a]) and a function of type r→ a to be applied
to every row. The implementation of dpMax adds uniform noise to every score—in
this case, the amount of rows voting for a response—and returns the responsewith the
highest noisy score. This primitive becomes relevant to obtain the winner option in
elections without singling out any voter. However, it requires that the accumulated
stability of the dataset to be 1 in order to be sound [8]. DPella guarantees such
requirement by typing: the type of the given dataset as argument is Data 1 r.

A.4.5 Privacy budget and execution of queries

The primitive budget statically computes how much privacy budget is required to
run a query. It is worth notice that DPella returns an upper bound of the required
privacy budget rather than the exact one—an expected consequence of using a type-
system to compute it and provide early feedback to data analysts. Finally, the prim-
itive dpEval is used by data curators to run queries (Query a) under given privacy
budgets (ϵ), where datasets are just lists of rows ([r ]). It assumes that the initial ac-
cumulated stability as 1 (Data 1 r) since the dataset has not yet gone through any
transformation, and DPella will automatically calculate the accumulated stability
for datasets affected by subsequent transformations via the Haskell’s type system.
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This primitive returns a computation of type IO a, which in Haskell are computa-
tions responsible to perform side-effects—in this case, obtaining randomness from
the system in order to implement the Laplace mechanism.

A.4.6 Implementation

DPella is implemented as a deep embedded domain-specific language (EDSL) inHaskell.
Due to such design choice, data analysts can piggyback on Haskell’s infrastructure
to build queries in a creative way. For instance, it is possible to leverage on any of
Haskell’s pure functions. The following one-liner (of type Query [Value Double])
uses several Haskell functions to filter a dataset ds in several (possibly non-disjoint)
ways according to a list of predicates ps :: [r → Bool], then for each filtered ver-
sion of ds it performs a noisy count spending eps on each count.

mapM (flip dpSelect ds >=> dpCount eps) ps

The high-order functions flip, mapM, and ( >=> ) are standard in Haskell and rep-
resent a function who switches arguments, the monadic versions of map, and the
Kleisli arrow, respectively. Despite DPella being a first-order interface, data analysts
can use Haskell’s high-order functions to compactly describe queries.

A.5 Accuracy

DPella uses the data type Value a responsible to store a result of type a as well as
information about its accuracy. For instance, a term of type Value Double stores a
noisy number (e.g., coming from executing dpCount) together with its accuracy in
terms of a bound on the noise introduced to protect privacy.

DPella provides a static analysis capable to compute the accuracy of queries via
the following function

accuracy :: Query (Value a)→ β → α

which takes as an argument a query and returns a function, called inverse Cumula-

tive Distribution Function (iCDF), capturing the theoretical error α for a given con-
fidence 1-β. Function accuracy does not execute queries but rather symbolically
interpret all of its components in order to compute the accuracy of the result based
on the sub-queries and how data gets aggregated. DPella follows the principle of
improving accuracy calculations by detecting statistical independence. For that, it
implements taint analysis [56] in order to track if values were drawn from statisti-
cally independent distributions. DPella’s primitives involving accuracy calculations
are presented in Figure A.6 and will be described in the following subsections.

A.5.1 Accuracy calculations

DPella starts by generating iCDFs at the time of running aggregations based on the
following known result of the Laplace mechanism:
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-- Accuracy analysis (data analyst)
accuracy :: Query (Value a)→ β → α

-- Norms (data analyst)
norm∞ :: [Value Double]→ Value [Double]
norm2 :: [Value Double]→ Value [Double]
norm1 :: [Value Double]→ Value [Double]
rmsd :: [Value Double]→ Value [Double]

-- Accuracy combinators (data analyst)
add :: [Value Double]→ Value Double
sub :: [Value Double]→ Value Double
neg :: Value Double → Value Double
scalar :: Value Double→ Double→ Value Double

Figure A.6: DPella API: Part II

Definition A.4 (Accuracy for the Laplace mechanism). Given a randomized query

Q̃(·) : db→ R implemented with the Laplace mechanism as in Theorem A.1, we have

that

Pr
[
|Q̃(D)−Q(D)| > log

(
1
β

)
· ∆Q

ϵ

]
⩽ β (A.3)

Recall that the Laplace mechanism used by DPella utilizes accumulated stabil-
ity s to scale the noise, i.e., it considers b from Theorem A.1 as b = s · ∆Q

ϵ . Con-
sequently, DPella stores the iCDF λβ → log

(
1
β

)
· s · ∆Q

ϵ for the values of type
Value Double returned by aggregation primitives like dpCount, dpSum, and dpAvg.
However, queries are often more complex than just calling aggregation primitives—
as shown by cdf2 in Figure A.2b. In this light, DPella provides combinators respon-
sible to aggregate noisy values, while computing its iCDFs based on the iCDFs of
the arguments. Figure A.6 shows DPella API when dealing with accuracy.

Norms

DPella exposes primitives to aggregate the magnitudes of several errors predictions
into a single measure—a useful tool when dealing with vectors. Primitives norm∞,
norm2, and norm1 take a list of values of type Value Double, where each of them
carries accuracy information, and produces a single value (or vector) that contains a
list of elements (Value [Double]) whose accuracy is set to be the well-known ℓ∞-
, ℓ2-, ℓ1-norms, respectively. Finally, primitive rmsd implements root-mean-square

deviation among the elements given as arguments. In our examples, we focus on
using norm∞, but other norms are available for the taste, and preference, of data
analysts.

Adding values

The primitive add aggregates values and, in order to compute the accuracy of the
addition, it tries to apply the Chernoff bound if all the values are statistically inde-
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Figure A.7: Union vs. Chernoff bounds

pendent; otherwise, it applies the union bound. More precisely, for the next def-
initions we assume that primitive add receives n terms v1 :: Value Double, v2 ::
Value Double, ... , vn :: Value Double. Importantly, since we are calculating the
theoretical error, we should consider random variables rather than specific numbers.
The next definition specifies how add behaves when applying union bound.

Definition A.5 (add using union bound). Given n ⩾ 2 random variables Vj with

their respective iCDF j , where j ∈ 1 . . . n, and αj = iCDFj(
β
n ), then the addition

Z =
∑n

j=1 Vj has the following accuracy:

Pr[|Z| >
∑n

j=1 αj ] ⩽ β (A.4)

Observe that to compute the iCDF of Z , the formula uses the iCDFs from the
operands applied to β

n . Union bound makes no assumption about the distribution of
the random variables Vj .

In contrast, the Chernoff bound often provides a tighter error estimation than the
commonly used union bound when adding several statistically independent queries
sampled from a Laplace distribution. To illustrate this point, Figure A.7 shows that
difference for the cdf2 function we presented in Section A.3 with ϵ = 0.5 (for each
DP sub-query) and β = 0.1. Clearly, the Chernoff bound is asymptotically much
better when estimating accuracy, while the union bound works best with a reduced
number of sub-queries—observe how lines get crossed in Figure A.7. In this light,
and when possible, DPella computes both union bound and Chernoff bound and
selects the tighter error estimation. However, to apply Chernoff bound, DPella needs
to be certain that the events are independent. Before explaining how DPella detects
that, we give a specification of the formula we use for Chernoff.

Definition A.6 (add using Chernoff bound [13]). Given n ⩾ 2 independent random
variables Vj ∼ Lap(0, bj), where j ∈ 1 . . . n, bM = max{bj}j=1...n, and ν >

max
{√∑n

j=1 b
2
j , bM ·

√
ln
(
2
β

)}
, then the addition Z =

∑n
j=1 Vj has the following

accuracy:

Pr
[
|Z| > ν ·

√
8 · ln

(
2
β

)]
⩽ β (A.5)
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DPella uses the value ν = max
{√∑n

j=1 b
2
j , bM ·

√
ln

(
2
β

)}
+ 0.00001 to sat-

isfy the conditions of the definition above when applying the Chernoff bound—any
other positive increment to the computedmaximumworks as well5. It is worthmen-
tioning that DPella’s error estimations for the sums of noisy values rely on avail-
able concentration bounds. Hence, even though there exist better approximations
for the error of adding random variables (e.g., dependency-dependent bounds for
dependent variables [34]), currently, union and Chernoff bounds are the only statis-
tical tools that can be used out of the box.

Lastly, to support subtraction, DPella provides primitive neg responsible to change
the sign of a given value. And sub uses the results of neg and add to subtract a list
of values. Following we explain how DPella checks that values come from statisti-
cally independent sampled variables.

Detecting statistical independence

To detect statistical independence, we apply taint analysis when considering terms
of type Value a. Specifically, every time a result of type Value Double gets gener-
ated by an aggregation query in DPella’s API (i.e., dpCount, dpSum, etc.), it gets as-
signed a label indicating that it is untainted and thus statistically independent. The
label also carries information about the scale of the Laplace distribution from which
it was sampled— useful information when applying Definition A.6. When the prim-
itive add receives all untainted values as arguments, the accuracy of the aggrega-
tion is determined by the best estimation provided by either the union bound (Defi-
nition A.5) or the Chernoff bound (Definition A.6). Importantly, values produced by
add are considered tainted since they depend on other results. When add receives
any tainted argument, it proceeds to estimate the error of the addition by just using
union bound.

1 totalCount :: Query (Value Double)
2 totalCount = do
3 v1 ← dpCount 0.3 ds1
4 v2 ← dpCount 0.25 ds2
5 ...
6 v100 ← dpCount 0.5 ds100
7 return (add [v1, v2, ..., v100 ])

Figure A.8: Combination of sub-queries
results

As an example, Figure A.8 presents
the query plan totalCount which
adds the results of hundred dpCount

queries over different datasets, namely
ds1, ds2, . . . , ds100. (The ... de-
notes code intentionally left unspeci-
fied.) The code calls the primitive add
with the results of calling dpCount —
we use [x1, x2, x3 ] to denote the list
with elements x1, x2, and x3. What
would it be then the theoretical error
of totalCount? The accuracy calcula-
tion depends on whether all the values

are untainted in line 7. When no dependencies are detected between v1, v2, . . . ,
v100, namely all the values are untainted, DPella applies Chernoff bound in order to
give a tighter error estimation. Instead, for instance, if v3 was computed as an aug-
mentation of v1 by a factor of 5, this is, let v3 = scalar v1 5. Then, line 7 applies

5There are perhaps other ways to compute the Chernoff bound for the sum of independent Laplace
distributions, changing this equation in DPella does not require major work.
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union bound since v3 is a tainted value—its noise is not freshly sampled but rather
inherit from v1’s noise. With taint analysis, DPella is capable to detect dependencies
among terms of type Value Double, and leverages that information to apply differ-
ent concentrations bounds. The next section formally defines such a procedure.

A.5.2 Implementation

The accuracy analysis consists on symbolically interpreting a given query, calculat-
ing the accuracy of individual parts, and then combining them using our taint analy-
sis. We introduce two polymorphic symbolic values: D::Data s r andS[iCDF, s, ts]::
Value a. Symbolic dataset D represents concrete datasets arising from data trans-
formations. A symbolic value S[iCDF, s, ts] represents concrete values with tags
ts and a iCDF which is computed assuming a noise scale s. Tags are used to detect
the provenance of symbolic values and when they arise from different noisy sources.

Function accuracy takes queries producing results of type Value a. Such
queries are essentially built by performing data aggregation queries (e.g., dpCount)
preceded by a (possibly empty) sequence of other primitives like data transforma-
tions6. Figures A.9 and A.10 show the interesting parts of our analysis. Given a well-
typed query q :: Query (Value a), accuracy q = iCDF where q ▷ S[iCDF, s, ts]
for some s and ts. The rules in A.9 are mainly split into two cases: considering data
aggregation queries and sequences of primitives glued together with ( >>= ).

The symbolic interpretation of dpCount is captured by rule DPCount—see Fig-
ure A.9a. This rule populates the iCDF of the return symbolic value with the cor-
responding error calculations for Laplace as presented in Definition A.4 (with the
scale adjusted with the accumulated stability). Observe that it extracts the stability
information from the type of the considered dataset (ds :: Data s r) and attaches a
fresh tag indicating an independently generated noisy value. The symbolic interpre-
tation of dpSum and dpAvg proceeds similarly to dpCount and we thus omit them
for brevity.

Rule DPMax shows the symbolic interpretation of dpMax whose iCDF aligns
with the one appearing in [8]. Observe that the return value is tainted. The rea-
son for that relies in the fact that the result, which is one of the responses in res,
contains no noise—it is rather the process that lead to determining the winning re-
sponse which has been “noisy.” In this light, no scale of noise nor distribution can
be associated to the response—as we did, for instance, with dpCount.

To symbolically interpret a sequence of primitives, the analysis gets further split
into two cases depending if the first operation to interpret is a transformation or an
aggregation, respectively—see Figure A.9b. Rule Seq-Trans considers the former,
where transform can be any of the transformation operations in Figure A.4. It
simply uses the symbolic value D to pass it to the continuation k. It can happen
that k D does not match (yet) any part of DPella’s API required for our analysis
to continue7. However, the EDSL nature of DPella makes Haskell’s to reduce k D

6We ignore the case of return val :: Query (Value a) since the definition of accuracy is trivial
for such case.

7For instance, k D = (λx → dpCount 1 x) D, and thus ((λx → dpCount 1 x) D) ⇝∗

dpCount 1 D.
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DPCount
dataset :: Data s r iCDF = λβ → log

( 1

β

)
· s · 1

ϵ
t fresh

dpCount ϵ dataset▷ S
[
iCDF, s · 1

ϵ
, {t}

]
DPMax
dataset :: Data 1 r iCDF = λβ → 4

ϵ
· log

(length res
β

)
dpMax ϵ res vote ds▷ S[iCDF, 0, ∅]

(a) DP-queries

Seq-Trans
k D ⇝∗ next next▷ S[iCDF, s, ts]

transform >>= k▷ S[iCDF, s, ts]

Seq-Query
query▷ S[iCDFq, sq, tsq] k (S[iCDFq, sq, tsq])⇝∗ next next▷ S[iCDF, s, ts]

query >>= k▷ S[iCDF, s, ts]

(b) Sequential traversal

Seq-Part
(m j D ⇝∗ nextj)j∈dom(m) (nextj ▷ S[iCDFj , sj , tsj ])j∈dom(m)

m’ = (j 7→ S[iCDFj , sj , tsj ])j∈dom(m) k m’⇝∗ next next▷ S[iCDF, s, ts]
dpPart sel dataset m >>= k▷ S[iCDF, s, ts]

(c) Accuracy calculation when partitioning data

Figure A.9: Accuracy analysis implemented by accuracy

to the next primitive to be considered, which we capture as k D ⇝∗ next—and
we know that it will occur thanks to type preservation. We represent ⇝ (⇝∗) to
pure reduction(s) in the host language like function application, pair projections, list
comprehension, etc. The analysis then continues symbolically interpreting the next
yield instruction. Rule Seq-Query computes the corresponding symbolic value for
the aggregation query. The symbolic value is then passed to the continuation, and
the analysis continues with the next yield instruction.

Rule Seq-Part shows the symbolic interpretation of dpPart. The argument m ::
Map k (Data s r→ Query (Value a)) describes the queries to execute once given
the corresponding bins. Since these queries produce values, we need to symbolically
interpret each of them to obtain their accuracy estimations. The rule applies each of
those queries to a symbolic dataset (m j D)8. The symbolic values yield by each bin

8For simplicity, we assume that maps are implemented as functions
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Union-Bound
vj = S[iCDFj, sj, tsj] αj = iCDFj

(
b
n

)
iCDF = λβ →

∑n
j=1 αj

ub [v1, v2, ..., vn ]⇝ iCDF

Chernoff-Bound
vj = S[iCDFj, sj, tsj] sM = max{sj}j=1...n

ν = max
{√∑n

j=1 s
2
j , sM ·

√
ln

(
2
β

)}
+ 0.0001 iCDF = λβ → ν ·

√
8 · ln

(
2
β

)
cb [v1, v2, ..., vn ]⇝ iCDF

Add-Union
(∃j.tsj = ∅) ∨

⋂
j=1...n tsj ̸= ∅

add [v1, v2, ..., vn ]⇝ S[ub [v1, v2, ..., vn ], 0, ∅]

Add-Chernoff-Union
vj = S[iCDFj, sj, tsj] (∀j.tsj ̸= ∅)⋂

j=1...n tsj = ∅ iCDF = λβ → min (ub [v1, v2, ..., vn ] β) (cb [v1, v2, ..., vn ] β)

add [v1, v2, ..., vn ]⇝ S[iCDF, 0, ∅]

Figure A.10: Calculation of concentration bounds

are collected into the mapping m’, which is then passed to continuation k in order
to continue the analysis on the next yield instruction.

Concentration Bounds

FigureA.10 shows the part of our analysis responsible to apply concentration bounds.
Rules Union-Bound and Chernoff-Bound define pure functions (reduction ⇝)
which produces the concentration bounds as described in Definitions A.5 and A.6,
respectively. We define the function add based on two cases. Rule Add-Union
produces a symbolic value with a iCDF generated by the union bound (expressed
as ub [v1, v2, ..., vn ]). The symbolic value is tainted, which is denoted by the
empty tags (∅). The scale 0 denotes that the scale of the noise and its distribution is
unknown—adding Laplace distributions do not yield a Laplace distribution. (How-
ever, the situation is different with Gaussians, see Section A.5.3) This rule gets ex-
ercised when either the list of symbolic values contains a tainted one (∃j.tsj = ∅)
or have not been independently generated (

⋂
j=1...n tsj ̸= ∅). Differently, Add-

Chernoff-Union produces a symbolic value with a iCDF which chooses the mini-
mum error estimation between union and Chernoff bound for a given β—sometimes
union bound provides tighter estimations when aggregating few noisy-values (re-
call Figure A.7). This rule triggers when all the values are untainted (∀j.tsj ̸= ∅)
and independently generated (

⋂
j=1...n tsj = ∅). At a first glance, one could be-

lieve that it would be enough to use the scale of the noise to track when values are
untainted, i.e., if the scale is different from 0, then the value is untainted. Unfortu-
nately, this design choice is unsound: it will classify adding a variable twice as an
independent sum: do x ← dpCount ϵ ds; return (add [x, x]). It is also possible
to consider various ways to add symbolic values to boost accuracy. We could easily
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Norm-Inf
vj = S[iCDFj, sj, tsj] iCDF = λβ → max

{∣∣iCDFj( β
n

)∣∣}
j=1...n

norm∞ [v1, v2, ..., vn ]⇝ S[iCDF, 0, ∅]

Norm-1
vj = S[iCDFj, sj, tsj] iCDF = λβ →

∑n
j=1

∣∣iCDFj( β
n

)∣∣
norm1 [v1, v2, ..., vn ]⇝ S[iCDF, 0, ∅]

Figure A.11: Calculation of norms

write a pre-processing function which, for instance, firstly partitions the arguments
into subset of independently generated values, applies add to them (thus triggering
Add-Chernoff-Union), and finally applies add to the obtained results (thus trig-
gering Add-Union). The implementation of DPella enables to write such functions
in a few lines of code.

Norms calculation

Figure A.11 shows our static analysis when computing norm∞ and norm1, respec-
tively. There is nothing special about the rules except to note that the results are
symbolic values which are tainted. The reason for that is that norms are designed
to condense (in one measure) the error of the list of the arguments. By doing so,
it is hard to assign an specific Laplace distribution with sensitivity s to the overall
given vector. We simply say that the return symbolic values are tainted—thus they
can only be aggregated by Add-Union in Figure A.10.

A.5.3 Accuracy of Gaussian mechanism

As aforementioned, DPella supports other notions of differential privacy—such as
approximate differential privacy—together with the use of the Gaussian mechanism.
Specifically, DPella supports a relaxation of the notion of differential privacy known
as (ϵ, δ)-DP, formally defined as follow.

DefinitionA.7 ((ϵ, δ)-Differential Privacy[18]). A randomized query Q̃(·) : db→ R
satisfies (ϵ, δ)-differential privacy, with ϵ, δ ⩾ 0, if and only if for any two datasets

D1 and D2 in db, which differ in one row, and for every output set S ⊆ R we have

Pr[Q̃(D1) ∈ S] ⩽ eϵ Pr[Q̃(D2) ∈ S] + δ (A.6)

Themain difference between this notion of privacy and the one described in The-
orem A.1 is that (ϵ, δ)-DP introduces the probability mass δ that, intuitively, offers
a probabilistic notion of privacy loss. More concretely, (ϵ, δ)-DP ensures that for all
adjacent datasets, the absolute value of the privacy loss will be bounded by ϵ with
probability 1− δ. Observe that when δ = 0, an (ϵ, 0)-DP query satisfies pure ϵ-DP.

A standard implementation of (ϵ, δ)-DP queries is based on the addition of noise
sampled from the Gauss distribution, this is, for Q : db → R an arbitrary function
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DPCount
dataset :: Data s r

σ =
√

2 · log
(
1.25
δ

)
· s · 1

ϵ
iCDF = λβ → σ ·

√
2 · log

(
2
β

)
t fresh

dpCount ϵ dataset▷ S[iCDF, σ2, {t}]

(a) Aggregations

Chernoff-Bound-Gauss
vj = S[iCDFj, sj, tsj] iCDF = λβ →

√
2 ·

∑n
j=1 sj · log (

1
β
)

cb [v1, v2, ..., vn ]⇝ iCDF

Add-Chernoff-Union
vj = S[iCDFj, sj, tsj] (∀j.tsj ̸= ∅)⋂

j=1...n tsj = ∅ iCDF = λβ → min(ub [v1, v2, ..., vn ] β)(cb [v1, v2, ..., vn ] β)

add [v1, v2, ..., vn ]⇝ S[iCDF,
∑n

j=1 sj,
⋃

j=1...n tsj]

(b) Concentration bounds

Figure A.12: Accuracy analysis for Gaussian mechanism

with sensitivity ∆Q (as described in Definition A.2) the Gaussian mechanism with
parameter σ adds noise scaled toN (0, σ2) to its output. When the noise to be added
is calibrated in terms of ϵ, δ, and∆Q, the Gaussian mechanism satisfies (ϵ, δ)-DP as
stated on the following theorem.

TheoremA.4 (Gaussian Mechanism [2]). For any ϵ, δ ∈ (0, 1), the Gaussian output

perturbation mechanism with standard deviation σ =
√
2 · log( 1.25δ ) · ∆Q

ϵ is (ϵ, δ)-

differentially private

Similarly as with the Laplace mechanism, to provide bound estimates on the er-
rors caused by the addition of Gaussian noise, DPella keeps track of Gauss’ inverse
Cummulative Distribution Function (iCDF). By following the general form of accu-
racy introduced in Definition A.2, we have that:

Definition A.8 (Accuracy for the Gaussian mechanism). Given a randomized query

Q̃(·) : db → R implemented with the Gaussian mechanism as previously described,

then

Pr
[
|Q̃(D)−Q(D)| > σ ·

√
2 · log

(
2
β

)]
⩽ β (A.7)

where the iCDF to be stored by DPella refers to the function λβ → σ ·
√

2 · log( 2β ).
From an implementation standpoint, adding the Gaussian mechanism to our

framework does not alter significantly the presented primitives, and, in particular,
privacy’s preservation remains (almost) unchanged. The most significant changes
can be seen when calculating the accuracy of aggregations and their combinations.

The symbolic interpretation of aggregations is updated accordingly to keep track
of Gauss’ iCDF, as well as, its respective noise scale determined by σ2 as depicted
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in Figure A.12a for the case of dpCount. Additionally, Figure A.12b shows how
concentration bounds are applied for the case of the Gaussian mechanism—Union-
Bound and Add-Union are omitted since they are the same as the ones in Fig-
ure A.10. In general, the accuracy analysis for addition of aggregations follows
the one presented previously for the Laplace mechanism. The main difference is
seen when adding independent values. In this case, we use the well-known fact
of the addition of independent normally distributed random variables are also nor-
mally distributed. This means that after executing the Add-Chernoff-Union we
do not lose information about the distribution of our results as we used to do un-
der the Laplacian setting. This effect can be seen in the generated symbolic value
S[iCDF,

∑n
j=1 sj ,

⋃
j=1...n tsj ] where

∑n
j=1 sj indicates that the variance of the

new value is calculated as the addition of the variances of the components being
added, and

⋃
j=1...n tsj indicates that the new value is statistically dependent on

the involved values.

1 totalCountG :: Query (Value Double)
2 totalCountG = do
3 v1 ← dpCount (0.3 , 1e-5) ds1
4 v2 ← dpCount (0.25, 1e-5) ds2
5 ...
6 v100 ← dpCount (0.5 , 1e-3) ds100
7 let h1 = add [v1, v2, ..., v50 ]
8 let h2 = add [v51, v52, ..., v100 ]
9 return (add [h1, h2 ])

Figure A.13: Combination in batches

This is an useful feature when
combining queries in batches, for in-
stance, Figure A.13 shows the query
plan totalCountG that adds the re-
sults of hundred queries—using Gaus-
sian dpCount that takes as input the
tuple (ϵ, δ) and the dataset—similar to
the one presented in Figure A.8, but it
does so by adding the first half of the
queries (line 7), then the second half
(line 8), and finally returning the ad-
dition of the two halves (line 9). How
will DPella calculate the theoretical
error of totalCountG?

Observe that h1 and h2 are constructed as combinations of untainted values,
meaning that when performing the additions at lines 7-8, the Chernoff bound could
be triggered. More importantly, DPella still have information about their distribu-
tion. Furthermore, h1 and h2 are statistically independent (they do not share sub-
queries), so when computing their addition at line 9, Chernoff bound could also be
triggered, this could not have been possible under the Laplace mechanism, since
once a value is calculated as a combination of values, their distribution becomes un-
known and only union bound could be applied. In this sense, the Gaussian mech-
anism might yield tighter error bounds when dealing with queries that are created
in batches, specially when the number of batches is big enough to trigger the use of
the Chernoff bound.

A.6 Case studies

In this section, we will discuss the advantages and limitations of our programming
framework. Moreover, we will go in-depth into using DPella to analyze the interplay
of privacy and accuracy parameters in hierarchical histograms.
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Category Application Programs

PINQ-like

CDFs [40] cdf1, cdf2, cdfSmart
Term frequency [28] queryFreq, queriesFreq
Network analysis [40] packetSize, portSize
Cumulative sums [6] cumulSum1, cumulSum2,

cumulSumSmart
Counting
queries

Range queries via Identity, His-
tograms [30], and Wavelet [62] i_n, h_n, y_n

Table A.1: Implemented literature examples

A.6.1 DPella expressiveness

First, we start by exploring the expressiveness of DPella. For this, we have built
several analyses found in the DP literature—see Table A.1—which we classify into
two categories, PINQ-like queries and counting queries. The former class allows us
to compare DPella expressivity with the one of PINQ, while the latter with APEx.

PINQ-like queries We have implemented most of PINQ’s examples [28, 40], such
as, different versions of CDFs (sequential, parallel, and hybrid) and network tracing-
like analyses (such as determining the frequency a term or several terms have been
searched by the users, and computing port’s and packets’ size distribution); addition-
ally, we considered analyses of cumulative sums [6]—which are queries that share
some commonalities with CDFs. The interest over differentially private CDFs and
cumulative partial sums applications rely on the existing several approaches to in-
ject noise, such choices will directly impact the accuracy of our results, and there-
fore, are ideal to be tested and analyzed in DPella. The structures of these exam-
ples follow closely the ones of the CDFs presented in previous sections, which are
straightforward implementations. DPella supports these queries naturally since its
expressiveness relies on its primitives and, by construction, they follow PINQ’s ones
very closely. However, as stated in previous sections, our framework goes a step
further and exposes to data analysts the accuracy bound achieved by the specific
implementation. This feature allows data analyst to reason about accuracy of the
results—without actually executing the query—by varying i) the strategy of the im-
plementation ii) the parameters of the query. For instance, in Section A.3, we have
shown how an analyst can inspect the error of a sequential and parallel strategy to
compute the CDF of packet lengths. Furthermore, the data analyst can take advan-
tage of DPella being an embedded DSL and write a Haskell function that takes any
of the approaches (cdf1 or cdf2) and varies epsilon aiming to certain error toler-
ance (for a fixed confidence interval), or vice versa. Such a function can be as sim-
ple as a brute force analysis or as complex as an heuristic algorithm.

Counting queries To compare our approach with the tool APEx [25], we con-
sider range queries analyses—an specific subclass of counting queries. APEx uses
the matrix mechanism [35] to compute counting queries. This algorithm answers a
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Figure A.14: Workload of all range queries and query strategies for 4 ranges

set of linear queries (called the workload) by calibrating the noise to specific proper-
ties of the workload while preserving differential privacy. More in detail, the matrix
mechanism uses some query strategies as an intermediate device to answer a work-
load; returning a DP version of the query strategies (obtained using the Laplace or
Gaussian mechanism), from which noisy answers of the workload are derived. The
matrix mechanism achieves an almost optimal error on counting queries. To achieve
such error, the algorithm uses several non-trivial transformations which cannot be
implemented easily in terms of other components. APEx implements it as a black-
box and we could do the same in DPella (see Section A.9). Instead, in this section
we show how DPella can be directly used to answer sets of counting queries using
some of the ideas behind the design of the matrix mechanism, and how these an-
swers improve with respect to answering the queries naively, thanks to the use of
partition and the Chernoff bound.

To do this, we have implemented several strategies to answer an specific work-
load WR: the set of all range queries over a domain. Figure A.14 illustrates the
workload that would be answer for a frequency count of four ranges. The iden-
tity strategy I4, represents 4 queries (number of rows) computing the noisy count
of each range (number of columns). The hierarchical strategy H4 contains seven
queries representing a binary hierarchy of sums, while the wavelet strategyY4 con-
tains four queries representing the Haar wavelet matrix.

Our implementation generates noisy counts and any possible combination of
them will yield (at least) the same error as using strategy I4. In other words, the
more accurate answer for WR will be yield by the identity strategy. This is not
unexpected, since in order to use the other queries strategies more efficiently we
would need transformations similar to the ones used in the matrix mechanism.

Figure A.15 exposes the error of answering each range query (i.e., each row) in
WR with strategy In and n = 512. While we use the same kind of plot, this error
cannot be directly compared with the one shown in Figure 7 of [35], since we use a
different error metrics: (α,β)-accuracy vs MSE. Nonetheless, we share the tendency
of having lower error on small ranges and significant error on large ranges. Now,
since the noisy values that will be added (using the function add) are statistically in-
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Figure A.15: Error of each range query inWR using strategy In with n = 512, ϵ =
1, and β = 0.05

1 alert :: ϵ→ Data 1 RowV→ Query (Value [Phone])
2 alert eps ds = do
3 atRisk← dpMax eps allZIPs zip ds

4 return (useIndex getPhone atRisk)
5 where
6 getPhone :: ZIP→ [Phone]
7 getPhone z = [snd info | info← contact, fst info ≡ z]

Figure A.16: Using dpMax

dependent, we can use the Chernoff bound to show that the error is approximately
O(
√
n) for each range query, and a maximum error of O(

√
n log n) for answering

any query inWR. If we compare our maximum error O(
√
n log n) with the one of

the matrix mechanism based on the identity strategy O(n/ϵ2), it becomes evident
how Chernoff bound is useful to provide tighter accuracy bounds. Unfortunately,
as previously stated, the error of strategies Hn and Yn in DPella is not better than
the one of the strategy In, so we cannot reach the same accuracy the matrix mecha-
nism achieves with these strategies (see Figure 7 of [35]). This limitation can be ad-
dressed by leveraging the fact that DPella is a programming framerwork that could
be extended by adding the matrix mechanism—and some other features—as black-
box primitives.

Black-box primitives To demonstrate the effects of adding black-box operators
in DPella, let us consider a rather simple query using primitive dpMax. Suppose there
is a highly contagious virus spreading in a state. To reduce this virus’s rapid spread-
ing, one might want to alert the population where there are more cases of infections
so they can quarantine. In this scenario, we will consider two sources of informa-
tion. One that is private, containing information about infected patients such as their
identity number and ZIP code (this is, data RowV = V {id :: String, zip :: ZIP});
and other that is public, such as the phone numbers of people living in each ZIP
code (referred to as contact :: [(ZIP, Phone)]).
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With this information at hand, we implement query alert (Figure A.16). Func-
tion alert uses primitive dpMax (line 3) to access the private dataset of infected
patients and return the ZIP code with more infection cases, which will determine
which zone is at risk. Then we obtain the phone number of all residents of the area
using getPhone function (lines 6-7). Additionally, in line 4, we function useIndex
to access ZIP code enclosed in atRisk to latter be used by function getPhone.

Function useIndex is then a new combinator with type useIndex :: (a→ b)→
Value a→ Value b that has been introduced to be applied only to values generated
with dpMax. The insight behind its implementation relies on the fact that the output
of a dpMax computation does not contain noise; therefore, applying any function to
its result should not affect its interpretation of accuracy.

From this example, we expect to illustrate the convenience of adding deferentially-
private algorithms as black-boxes in DPella (such as dpMax) and their relatively
smooth integration into the system once their accuracy estimation has been deter-
mined. Ultimately, it highlights that integrating these primitives usually cascades
into defining new combinators (as useIndex) to further manipulate their outputs.

A.6.2 Privacy and accuracy trade-off analysis

We study histograms with certain hierarchical structures (commonly seen in Cen-
sus Bureaus analyses) where different accuracy requirements are imposed per level
and where varying one privacy or accuracy parameter can have a cascade impact on
the privacy or accuracy of others. We consider the scenario where we would like
to generate histograms from the Adult database9 to perform studies on gender bal-
ance. The information that we need to mine is not only an histogram of the genders
(for simplicity, just male and female) but also how the gender distributes over age,
and within that, how age distributes over nationality—thus exposing a hierarchical
structure of three levels.

Our first approach is depicted in Figure A.17a, where hierarchical1 generates
three histograms with different levels of details. This query puts together the results
produced by queries byGen, byGenAge, and byGenAgeNationality where each
query generates an histogram of the specified set of attributes. Observe that these
sub-queries are called with potentially different epsilons, namely e1, e2, and e3,
then under sequential composition, we expect hierarchical1 to be e1+e2+e3-
differentially private.

We proceed to explore the possibilities to tune the privacy and accuracy param-
eters to our needs. In this case, we want a confidence of 95% for accuracy, i.e.,
β = 0.05, with a total budget of 3 (ϵ = 3). We could manually try to take the budget
ϵ = 3 and distribute it to the different histograms in many different ways and ana-
lyze the implication for accuracy by calling accuracy on each sub-query. Instead,
we write a small (simple, brute force) optimizer in Haskell that splits the budget uni-
formly among the queries, i.e., e1 = 1, e2 = 1, and e3 = 1, and tries to find the
minimum epsilon that meets the accuracy demands per histogram. In other words,
we are interested in minimizing the privacy loss at each level bounding the max-

9https://archive.ics.uci.edu/ml/datasets/adult

https://archive.ics.uci.edu/ml/datasets/adult
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1 hierarchical1 [e1, e2, e3] dat = do
2 -- h1 :: Map Gen (Value Double)
3 -- h2 :: Map (Gen, Age) (Value Double)
4 -- h3 :: Map (Gen, Age, Nationality) (Value Double)

5 h1 ← byGen e1 dat
6 h2 ← byGenAge e2 dat
7 h3← byGenAgeNat e3 dat
8 return (h1, h2, h3)

(a) Approach I: distribute budget among levels

9 hierarchical2 e dat = do
10 h3← byGenAgeNat e dat
11 h2 ← level2 h3
12 h1 ← level1 h3
13 return (h1, h2, h3)

(b) Approach II: query most detailed level

Figure A.17: Implementation of hierarchical histograms

imum accepted error. The optimizer essentially adjusts the different epsilons and
calls accuracy during the minimization process. To ensure termination, the opti-
mizer aborts after a fixed number of calls to accuracy, or when the local budget
e_i is exhausted.

Table A.2 shows some of our findings. The first row shows what happens when
we impose an error of 100 at every level of detail, i.e., each bar in all the histograms
could be at most +/ − 100 off. Then, we only need to spend a little part of our
budget—the optimizer finds the minimum epsilons that adheres to the accuracy con-
strains. Instead, the second row shows that if we ask to be gradually more accurate
on more detailed histograms, then the optimizer could fulfill the first two demands

Histogram α tolerance Status ϵ α

byGen 100 ✓ 0.06 61.48
byGenAge 100 ✓ 0.06 96.13
byGenAgeNat 100 ✓ 0.11 85.74
byGen 10 ✓ 0.41 8.99
byGenAge 50 ✓ 0.16 36.05
byGenAgeNat 5 ×MaxBud 1 9.43
byGen 5 ✓ 0.76 4.85
byGenAge 5 ×MaxBud 1 5.76
byGenAgeNat 10 ✓ 0.96 9.82

Table A.2: Budgeting with α tolerances, β = 0.05, & total ϵ = 3
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Figure A.18: hierarchical1 vs. hierarchical2

and aborted on the most detailed histogram (byGenAgeNat) since it could not find
an epsilon that fulfills that requirement—the best we can do is spending all the bud-
get and obtain and error bound of 9.43. Finally, the last row shows what happens
if we want gradually tighter error bounds on the less detailed histograms. In this
case, the middle layer can be “almost” fulfilled by expending all the budget and ob-
taining an error bound of 5.76 instead of 5. While the results from Table A.2 could
be acceptable for some data analysts, they might not be for others.

We propose an alternative manner to implement the same query which con-
sists on spending privacy budget only for the most detailed histogram. As shown
in Figure A.17b, this new approach spends all the budget e on computing h3 ←
byGenAgeNat e dat. Subsequently, the algorithm builds the other histograms based
on the information extracted from the most detailed one. For that, we add the noisy
values of h3 (using helper functions level2 and level1) creating the rest of the
histograms representing the Cartesian products of gender and age, and gender, re-
spectively. This methodology will use add and norm∞ to compute the derived his-
tograms, and therefore will not consume more privacy budget. Observe that the
query proceeds in a bottom-up fashion, i.e., it starts with themost detailed histogram
and finishes with the less detailed one. Now that we have two implementations,
which one is better? Which one yields the better trade-offs between privacy and ac-
curacy? Figure A.18 shows the accuracy of the different level of histograms, i.e., h1,
h2, and h3, when fixing β = 0.05 and a global budget of ϵ = 1 (h1-ϵ1, h2-ϵ2, and h3-
ϵ3) and ϵ = 3 (h1-ϵ3, h2-ϵ3, and h3-ϵ3)—we obtained all this information by running
repetitively the function accuracy. From the graphics, we can infer that splitting
the privacy budget per level often yields more accurate histograms. However, ob-
serve the exception at the most detailed histogram h3: as expected hierarchical1
will use just one third of the budget while hierarchical2 uses all the of it, hence
the fist approach will return noisier count.

A.6.3 K-way marginal queries on synthetic data

When compared with (non-compositional) approaches to estimating accuracy based
on synthetic or public data, such as [29], the static analysis of DPella can be used in
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1 -- Perform all 3-way combinations up to attribute dim
2 allChecks :: ϵ→ Int→ Data s BinR→ [Query (Value Double)]
3 allChecks localEps dim db = do
4 (i, j, k)← combinatory (dim-1) 3
5 let allOne r = (r !! i) ≡ (r !! j) ≡ (r !! k) ≡ 1
6 return (do tab← dpWhere allOne db
7 dpCount localEps tab)

8 -- Compute k-way marginals
9 threeMarginal :: ϵ→ Int→ Data s BinR→ Query (Value [Double])
10 threeMarginal localEps dim db = do
11 checks← sequence (allChecks localEps dim db)
12 return (norm∞ checks)

Figure A.19: K-way marginal implementation

a complimentary manner to quickly (and precisely) estimate privacy and accuracy
for a wide range of simple queries. There are certain kinds of queries where it is
more convenient to use our static analysis than synthetic data for high-dimensional
datasets.

As an example, we focus on the problem of releasing, in a differentially private
manner, the k-way marginals of a binary datasetD ∈ ({0, 1}d)n. This is a classical
learning problem that has been extensively studied in the DP literature, see [59, 22,
14] among others. A k-marginal query, also called a k-conjunction, returns the count
of how many individual records in D have k < d attributes set to certain values.
For simplicity, we will work with 3-way marginal queries to compare performance
between DPella and using synthetic data. The goal of our analysis is to release all the
3-way marginals of a dataset. This is implemented through the functions depicted
in Figure A.19.

Function allChecks counts howmany records have 3-attributes set to 1. Auxil-
iary function combinatory d k generates k-tuples arising from the combination of
indexes 0, 1, . . . , d taken k at the time. In our example, the number of generated tu-
ples is

(dim
3

)
. For each tuple, allChecks filters the rows which have attributes i, j,

and k set to 1 (implemented as dpWhere allOne db) for then making a noisy count
(dpCount localEps tab). Lastly, function threeMarginal collects the counts for
the different considered attributes and places them into a vector (norm∞ checks).

We run threeMarginal considering a synthetic dataset (db) which has only 1

row with all the attributes set to zeros. Setting all the attributes to zero produces
that all the counts are 0, thus we can measure the noise on each run and accuracy
accordingly. We run threeMarginal approx. 1000 times for each dimension to
measure the noise magnitude, where we took the 1-β percentile with β = 0.05
(as we did in many of our case studies). Observe that we have

(dim
3

)
queries and so(dim

3

)
independent sources of noise, which need a high number of runs to be well-

represented. In general, for this kind of task, one is interested in bounding the max
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Figure A.20: Performance comparison between accuracy (DPella) and estimating
errors using synthetic analysis

error that can occur in one of the queries (the ℓ∞ norm over the output). For this
task, the empirical error is well aligned with the theoretical one provided by DPella
by calling the function accuracy. The latter is computed by taking a union bound
over the error of each individual query. For each querywe have a tight bound and the
union bound gives us a tight bound over the max. However, we observe a significant
difference in performance.

Figure A.20 shows (in log scale) the time difference when calculating accuracy
by DPella and on synthetic data when the dimension of the dataset increases. Al-
ready in low dimension, the difference in performance is many orders of magnitude
in favor of DPella—a tendency that does not change when the dimension goes above
20. The main reason for this is that DPella’s static analysis, do not execute the filter-
ing dpWhere allOne db (as well as any other transformation, recall Section A.5.2)
which an approach based on synthetic data should do many times—in our case 1000
iterations for each dimension. We expect that for more complex tasks this difference
is even more evident.

A.7 Testing accuracy

In previous sections we have seen the usefulness of accuracy function to inspect
queries’ error, reason about the trade-offs of privacy and accuracy, among other
perks. It is clear then that providing theoretical bounds over the errors of the im-
plemented queries becomes handy to ease and assist data analysts’ tasks. However,
one might argue that having a theoretical bound is as important as producing a mea-
surement of the tightness of such calculations. In this section, we focus on the veri-
fication of how close DPella’s accuracy calculations are to the real error bounds.

Thanks to DPella’s data independence, we have been able to create the prim-
itive empiric that allows analysts to compare the theoretical bound (provided by
accuracy) against an empirical one. It offers a way to compare DPella’s estimations
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Figure A.21: Results of empiric over 3-way marginals

for a query against its empirical error while still preserving the privacy of the data
subjects.

The primitive empiric is a follows:

empiric :: (ϵ→ Data 1 r→ Query (Value a))→ Iter→ ϵ→ β → IO α

Given a query plan (of type ϵ → Data 1 r → Query (Value a)), a number
of iterations (where Iter is isomorphic to the type Int), a fixed privacy loss ϵ and
confidence β; primitive empiric will return the empirical error αemp of the given
query using the theoretical error αth provided by accuracy with β.

Ideally, αemp should be significantly close to αth. In particular, since accuracy
yields an upper bound of the error, when empiric is run multiple times we expect
αemp to be less or equal than αth most of the time. The unsatisfiability of this condi-
tion indicates that the probability of being above the theoretic error is higher than
anticipated, from which we can deduce that DPella’s error estimation is unsound
and it does not actually yield an upper bound of the query’s accuracy. On the other
hand, if for most of the runs we observe that αemp ≪ αth, we can infer that DPella’s
estimations are loose, indicating that we could either increase the confidence or de-
crease the error.

The procedure followed by empiric is fairly simple. Firstly, it executes the given
query as many times as indicated over an empty dataset, this process clearly does
not involve any sensitive information. However, the attentive reader might have
noticed that these executions will allow us to inspect the query’s noise since they
will only return the perturbation to be added, this is, we are sampling as many times
as iterations from the Laplace distribution (or Gauss, depending on the mechanism)
scaled by the sensitivity of the query under consideration. From the samples, we
calculate each empirical error αi

emp either applying the absolute value to the i-th
sample if the query’s output is a scalar, or the specified norm (i.e., ℓ∞, ℓ2, ℓ1, or rmsd)
if the output is multi-dimensional. Then, αemp is computed as the 1 − β percentile
of all αi

emp, where i = 1, . . . , iter.
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Figure A.22: Results of empiric over addition of noisy counts

To illustrate how empiric could be used by an analyst, recall the example of
the 3-way marginal discussed in the previous section (see Section A.6.3). Previ-
ously, we claimed that the empirical error of the function threeMarginal from
Figure A.19 is well aligned with the theoretical one provided by DPella. This state-
ment can be now verified using empiric primitive. For localEps = 0.1 and dim
ranging from 3 to 20, Figure A.21 shows the results of calculating the empirical er-
ror of threeMarginal with β set to 0.05 and iterating 1000 and 10000 times. From
these results, we can conclude that increasing the number of iterations will stabi-
lize the results, making the analyses easier, and that, the empirical error provided
for DPella for function threeMarginal is indeed very close to the empirical error
bound. Moreover, it depicts DPella’s soundness, since in both cases (for 1K and 10K
iterations), most of the αemp where below αth’s line.

We acknowledge that not all configurations of DPella programs will have an ac-
curacy estimation as tight as the one presented above. In particular, one can imag-
ine a scenario where n non-independent noisy values are being added. The theo-
retical error of such a query will be calculated using the union bound, which has
been established [25] to be a loose approximation of the sum’s error. Thus, when
comparing the empirical error of these queries against accuracy’s projection we
should expect a greater discrepancy in favor of the empiric calculation. Under these
circumstances, analysts can consider modifying code’s structure to take advance of
Chernoff bound as much as possible or adjust their parameters (ϵ and β).

Since triggering the Chernoff bound produces the best error estimation when
adding several (independent) noisy values, one might ask, how tight is this bound?
Figure A.22 compares the results of empiric over a query adding up to 50000 in-
dependent noisy values with β = 0.2 and localEps = 1, against the results of
accuracy triggering the Chernoff bound; additionally the estimations under union
bound are shown as a baseline for comparison. Clearly, the union bound’s theoret-
ical errors are several orders of magnitude apart from the empirical errors, show-
casing its over-conservative calculations. On the other hand, the Chernoff bound
provides a much tighter bound that grows by a constant factor w.r.t. the empirical
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error—the reader should keep in mind that the log scale might make it difficult to
appreciate this claim; still, it could be quickly confirmed by analyzing the ratio be-
tween the two errors.

We argue that DPella’s estimations can be seen as a quick initial step into in-
specting queries’ accuracy that could be further complemented by other techniques
of error estimation—integration of such algorithms are left as future work. DPella’s
analyses are particularly useful when dealing with high-dimensional or more com-
plex tasks since—as shown previously—its estimations do not have computational
overheads.

A.8 API generalization

Up to this point, we have seen DPella as a framework where data analysts can im-
plement their differentially private consults using either the Laplace or the Gaus-
sian mechanism, but not both simultaneously. However, there might be cases where
analysts would want to combine queries using Laplace and Gaussian noise. DPella
is designed to allow programmers to mix results from different mechanisms as long
as they are implemented under the same privacy notion; for instance, only results
from mechanisms deploying approximate-DP can be combined within themselves.
To support this behavior, DPella’s computations are generalized by their privacy no-
tion, for which we introduce the abstract data types presented in Figure A.23.

Values of type Query p a represent computations yielding outputs of type a un-
der the privacy notion p. Variable p can be instantiated to types PureDP or AproxDP,
thus, a term of type q ::Query Pure (Value Double) is a pure differentially private
computation whose output has type Value Double. As established in Section A.4,
type Query p a is a monad, and then sequencing queries is done through the bind
function. Hence, to enforce combination of queries only withing the same privacy
notion, the type of function ( >>= ) changes to:

( >>= ) :: Query p a→ (a→ Query p b)→ Query p b

where, all the computations involved must share the same privacy notion p. This
restriction ensures that the principles of composition can be properly applied when
combining queries.

-- Computations
data Query p a

-- Privacy notions
data PureDP
data AproxDP

-- Privacy parameters
data Input p m

-- Mechanisms
data Laplace
data Gauss

Figure A.23: New types for DPellas’s generalization
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dpCount :: (Stb s, PrivN p, Mech p m)⇒ Input p m→ Data s r

→ Query p (Value Double)
dpSum :: (Stb s, PrivN p, Mech p m)⇒ Input p m→ Range a b

→ (r→ Double)→ Data s r→ Query p (Value Double)
dpAvg :: (Stb s, PrivN p, Mech p m)⇒ Input p m→ Range a b

→ (r→ Double)→ Data s r→ Query p (Value Double)
dpMax :: (Eq a, PrivN p, Mech p m)⇒ Input p m→ Responses a

→ (r→ a)→ Data 1 r→ Query p (Value a)

Figure A.24: Updated aggegations

In order to determine which mechanism (or source of noise) will be used in a
computation, aggregations are updated to take an argument of type Input p m (in-
stead of ϵ or (ϵ, δ)) as depicted in Figure A.24. Type variable p still refers to the
privacy notion, while m indicates which mechanism should be used to ensure p-
DP. Variable m can be instantiated to types Laplace or Gauss. Hence, a term of
type arg :: Input AproxDP Gauss represents and input for a computation guar-
anteeing approximate-DP using the Gaussian mechanism. The introduction of type
Input p m allows us to refer to our mechanisms’ arguments without specifying
them directly. However, when privacy notion and mechanism are chosen, the in-
put gets concretized to either ϵ or (ϵ, δ). More precisely, the implementation of
Input PureDP Laplace is isomorphic to ϵ while Input AproxDP Gauss and
Input AproxDP Laplace are isomorphic to (ϵ, δ).

Lastly, new type constraints PrivN p and Mech p m are introduced in all ag-
gregations (recall Figure A.24) to avoid invalid combinations of p and m, e.g., q ::
Query Bool a and arg :: Input PureDP Gauss.

With this new interface analysts can implement generic programswithout speci-
fying which mechanism (and privacy notion) will be used during its execution, these
computations can be later used to instantiate specific queries. For instance, Fig-
ure A.25 presents functions hist (lines 1-6) which creates a histogram of ages taking
as input a list of bins, a selector function f, the general input of the mechanism arg
and the dataset. This function filters the given dataset accordingly to the selector
functor (line 4), partitions the data into the bins and performs a noisy count on each
partition (line 5), and finally it returns a list with all noisy counts (line 6). Later, the
analyst can call hist to define a noisy query under approximate-DP, called mixHist,
returning a histogram where some bins are computed using the Laplace mecha-
nism (lines 9 and 11-12), while others use the Gaussian mechanism (lines 10 and 13-
14). Observe that we use type applications, such as In @AproxDP @Laplace (...)
and In @AproxDP @Gauss (...), to specify which privacy notion and mechanism
should be used.

A.8.1 Implementation and Accuracy estimations

The accuracy analysis of generalized computations follow closely the one defined for
the Laplace and Gaussian mechanism. The main difference is that symbolic values
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1 hist :: (Stb s, PrivN p, Mech p m)⇒ [Age]→ (Age→ Bool)→ Input p m
2 → Data s Age→ Query p [Value Double]
3 hist bins f arg dataset = do
4 tab ← dpWhere f dataset
5 parts← dpPartRepeat (dpCount arg) bins assignBin tab
6 return (Map.elems parts)

7 mixHist :: Query AproxDP (Value [Double])
8 mixHist = do
9 let binsLap = [5, 10, 15, 20, 25]
10 binsGauss = [50, 55, 60, 65]
11 lapHist←
12 hist binsLap (⩽ 25) (In @AproxDP @Laplace (0.25, 1e-3)) ages
13 gaussHist←
14 hist binsGauss (⩾ 50) (In @AproxDP @Gauss (0.5, 1e-3)) ages
15 return (norm∞ (lapHist++ gaussHist))

Figure A.25: Histogram using Laplace and Gauss mechanism

S[iCDF, d, ts, η] now keep track of an extra value, η, representing the distribution
from where the noise is drawn. Values of η are limited to L for Laplace, G for Gauss,
and U for unknown distributions when noisy values are combined.

The interpretation of aggregations can be summarized by inspecting dpCount.
Rule DPCount in Figure A.26 shows that the value of η is determined by the dis-
tribution indicated at the type of input arg, i.e., η = m. Internally, type Laplace
gets translated into the value L and type Gauss into the value G. With this informa-
tion function noiseScale computes the scale of Laplace (following Theorem A.1)
or the variance of Gauss (according to Theorem A.4) depending on the value of η.
Similarly, function errorDist returns the iCDF of the corresponding distribution.

Major changes occur on the interpretation of combinator add since now the list
of values to be added are potentially mixed w.r.t their distribution. If not done care-
fully, computing the error of such addition will rarely trigger the Chernoff bound.
Tomaximize the chances of using Chernoff bound ruleAdd-Chernoff-Union illus-
trates how the static analysis splits the symbolic values vj into three disjoints sets:
values VL are independent Laplacian, values VG are independent Gaussians, and val-
ues VU are either non-independent or their distribution is unknown. Each of these
groups of values will be added between them to latter be used as partial sums for
the final result. The resulting value of the partial sum for values in VL and VG will
have an error estimation computed as the minimum between union and Chernoff
bound, this is, iCDFd = λβ → min (ub Vd β) (cb Vd β) for d ∈ {L, G}. Since val-
ues grouped in VU do not have an associated Chernoff bound, the iCDF of their ad-
dition will be determined by union bound iCDFU = ub VU. Lastly, the iCDF of the
addition of all values v1, v2, ..., vn is computed as the union bound between the
values from VL, VG, and VU. This computation is done in such a way that if all values
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DPCount
dataset :: Data s r arg :: Input p m η = m sc = noiseScale (s, arg, η)

iCDF = λβ → errorDist (β, s, arg, sc, η) t fresh

dpCount arg dataset▷ S[iCDF, sc, {t}, η]

Add-Chernoff-Union
vj = S[iCDFj, sj, tsj, ηj] d ∈ {L, G} Vd = {vi | ηi = d ∧

⋂
i=1... tsi = ∅}

VU = vj /∈ {VL ∪ VG} iCDFd = λβ → min (ub Vd β) (cb Vd β)
iCDFU = ub VU (s, ts, η) = track (sj, tsj, ηj)

add [v1, v2, ..., vn ]⇝ S[ub [VL, VG, VU ], s, ts, η]

Figure A.26: Accuracy analysis for mixed mechanisms

vj come from the same distribution d, the final iCDF will be the same as presented
in Figure A.10 for Laplace and Figure A.12b for Gauss.

To determine the values of s, ts, and η function track checks if all values are
untainted (∀j.tsj ̸= ∅), independent (

⋂
j=1...n tsj = ∅) and Gaussian (∀j.ηj = G), if

that is the case then s =
∑n

j=1 sj , ts =
⋃

j=1...n tsj , and η = G as done previously
with the Gaussian mechanism; otherwise s = 0, ts = ∅, and η = U.

Evidently, combinator add’s new behavior will likely yield tighter bounds com-
pared to our previous version since now it procures triggering Chernoff bound on
intermediate stages. One can imagine other optimizations over the interpretation of
add to postpone the tainting of values asmuch as possible. For example, nested addi-
tions such as add [add [v1, v2 ], v3, v4, v5 ] could be flattened as add [v1, v2, ..., v5 ]
potentially improving their sum’s bound, especially when the noisy values come
from the Laplace mechanism. We leave the integration of other optimizations as fu-
ture work.

With this generalization DPella is also extensible to other notions of privacy
(e.g., Rényi-DP [43]) or other mechanisms by simply declaring a new data type, its
principles of composition, a way to sample noise (to compute noiseScale) and
determine its iCDF (to compute errorDist). Additionally, if not Chernoff bound is
provided DPella will use union bound instead. All extensions to our framework are
delimited and clearly identified thanks to our typed approach.

A.9 Limitations & Extensions

We have discussed so far the use of DPella as an API allowing a programmer to
implement her own data analyses. However, we foreseen DPella also serving as a
"glue" which enables a programmer to integrate arbitrary DP-algorithms, as (black-
box) building blocks while reasoning about accuracy. In this light, our design sup-
ports the introduction of new primitives when some analyses cannot be directly im-
plemented because either (i) the static analysis for accuracy provided by DPella is
too conservative, or (ii) DPella’s API building blocks are not enough to express the
desired analysis. Below, we describe several possible extensions.
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The matrix mechanism (MM)

As we discussed in the previous section, in some situations DPella allows to answer
in an accurate way multiple counting queries in a way that is similar to the MM.
As an example, DPella estimates accuracy better then MM for the strategy I—recall
Section A.6. However, for other workloads and other strategies the accuracy pro-
vided by DPella is too conservative. To consider other workloads and strategies, the
MM can be incorporated into DPella as a primitive for answering counting queries.
The requirements for this are that the return values are tainted, and that we have
an iCDFs for it—this can be calculated as in [25]. In general, it is sound to add new
primitives which permit a more precise accuracy analysis as long as the return val-
ues are tainted, and an accuracy information is provided—thus effectively allowing
to further compose the primitive with other analyses by means of the union bound.

Branching on noisy values

By construction, DPella programs are not allowed to branch on results produced by
aggregations; this restriction has been enforced since computing the (α, β)-accuracy
of such programs poses a challenge in terms of the complexity of their error estima-
tion. More specifically, determining the accuracy of a program branching on a noisy
value involves the computation of conditional probabilities (together with the no-
tion of conditional independence); we have identified two main difficulties carried
by the consideration of this measurement. Firstly, it must account for both branches’
error, thus, quickly loosening the bounds as the program’s complexity increases.
Secondly, it is challenging to define a general and compositional way of reasoning
about the accuracy of the combination of such programs and their independence
tracking. To overcome this limitation, we have proposed adding programs that rely
on branching over noisy values (e.g., SVT) as black-box primitives in DPella; below,
we elaborate on this approach.

Primitives with non-compositional privacy analyses

Several DP-algorithms have a privacy analysis which does not follow directly by
composition. Some well-known examples are report-noisy-max, the exponential
mechanism, and the sparse-vector technique—see [19] and [9] for more details. In
their natural implementations, these algorithms branch on the result of some noised
query’s result, and the privacy analyses use some properties of the noise distribu-
tions that are not directly expressible in terms of composition of differentially pri-
vate components. Because DPella’s API does not allow to branch on the results of
noised queries, and because the privacy analyses that DPella support are based on
composition, we cannot implement these analyses directly using the DPella API.
However, we can provide them as (black-box) primitives. We already discussed how
to integrate report-noisy-max through a primitive dpMax (Figure A.4). The expo-
nential mechanism (EM) can be incorporated into DPella in a similar way. A sub-
tlety that one has to consider is the fact that the privacy guarantee of EM depends
on a bound of the sensitivity of the score function. We handle this by requiring
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the score function’s output to be bound between 0 and 1, bounding the sensitivity
to be at most 1. As with dpMax, the output of EM is tainted. The EM is an impor-
tant mechanism which allows to implement many other techniques. In particular,
we can use EM to implement the offline version of the sparse vector technique, as
discussed in [19]. These components allow DPella to support automated reasoning
about accuracy for complex algorithms such as the offline version of the MWEM al-
gorithm [27] following an analysis similar to the one discussed in [8].

Generally, one of the biggest challenges of introducing black-box primitives into
DPella is to determine their (α, β)-accuracy. There is a significant disparity in how
the accuracy of well-known differentially private routines is determined in the lit-
erature; thus, there is no straightforward approach to translate such results into our
error measurement—if possible at all. Recent work from Barthe et al. [3] provides
a uniform definition of accuracy across differentially-private routines; we consider
these results a promising starting point to systematically interpret these algorithms’
accuracy calculations into DPella’s error measurement.

Online adaptive algorithms

Several DP-algorithms have different implementations depending if they work of-
fline — where all the decisions are taken upfront before running the program — or
online — where some of the decisions are taken while running the program. Online
algorithms usually have a more involved control flow which depends on informa-
tion that are available at runtime. As an example, the online version of the sparse
vector technique uses the result of a DP query to decide whether to stop or not the
computation (or whether to stop or not giving meaningful answers). These kind of
algorithms usually are based on some re-use of a noised result which correspond to
a taint value in DPella. So, the current design of DPella cannot support them. We
plan to explore as future how to integrate these algorithms in DPella.

Improving accuracy through post-processing

Several works have explored the use of post-processing techniques to improve on
accuracy, e.g. [30, 28, 48]. Most of these works use accuracy measure that differ from
the one we consider here, and use some specific properties of the particular prob-
lem at hand. As an example, the work by Hay et al. [30] describes how to boost ac-
curacy in terms of Mean Squared Error (MSE) for DP hierarchical queries by post-
processing the DP results by means of some relatively simple optimization. This im-
provement in accuracy relies among other things on the impact that the optimiza-
tion has on the MSE, which does not directly apply to the α-β notion of accuracy we
use here. We expect that, also for the notion of α-β accuracy we use, it is possible to
use post-processing for improve accuracy. However, we leave this for future works.
Moreover, the reason for us to chose α-β accuracy as the principal notion of accu-
racy in DPella is because of its compositional nature expressible through the use of
probability bounds. It is an interesting future direction to design a similar composi-
tional theory also for other accuracy notions such as MSE. We expect DPella to be
extensible to incorporate such a theory, once it is available.
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A.10 Related work

Programming frameworks for DP

PINQ [28] uses dynamic tracking and sensitivity information to guarantee privacy
of computations. Among the frameworks and tools sharing features with PINQ we
highlight: Airavat [52] ; wPINQ [50]; DJoin [46]; Ektelo [45]; Flex [32]; and Pri-
vateSQL [33]. In contrast to DPella, none of these works keeps track of accuracy, nor
static analysis for privacy or accuracy. As discussed in Section A.4, DPella supports
a limited form of joins, and it is still able to provide accuracy estimates. We leave as
future work to support more general join operations through techniques similar to
the ones proposed in Flex and PrivateSQL. While several of the components from
the frameworks discussed above are not supported in the current implementation of
DPella, these can be added as black-box primitives, as we discussed in Section A.9.
All the programming frameworks discussed above support reasoning about privacy
for complex data analyses while neglecting accuracy, whereas DPella supports ac-
curacy, but restricts the programming framework to rule out certain analysis (e.g.,
adaptive ones) for which we do not have a general compositional theory, yet.

Tools for DP

In a way similar to DPella, there exist tools which support reasoning about accu-
racy and restrict the kind of data analyses they support. GUPT [45] is a tool based
on the sample-and-aggregate framework for differential privacy [49]. GUPT allows
analysts to specify the target accuracy of the output, and compute privacy from it—
or vice versa. This approach has inspired several of the subsequent works and also
our design. The limitations of GUPT are that it supports only analyses that fit in the
sample-and-aggregate framework, and it supports only confidence intervals esti-
mates expressed at the level of individual queries. In contrast, DPella supports anal-
yses of a more general class, such as the ones we discussed in Section A.3 and Sec-
tion A.6, and it also allows to reason about the accuracy of combined queries, rather
that just about the individual ones. PSI [24] offers to the data analyst an interface
for selecting either the level of accuracy that she wants to reach, or the level of pri-
vacy she wants to impose. The error estimates that PSI provides are similar to the
ones that are supported in DPella. However, similarly to GUPT, PSI supports only a
limited set of transformations and primitives, it supports only confidence intervals
at the level of individual queries, and in its current form it does not allow analysts
to submit their own (programmed) queries.

APEx [25] has similar goals as DPella and it allows data analysts to write queries
as SQL-like statements. However, themodel that APEx uses is different fromDPella’s.
It supports three kind of queries: WCQ (counting queries), ICQ (iceberg counting
queries), and TCQ (top-k counting queries). To answer WCQ queries, APEx uses
the matrix mechanism (recall Section A.6) and applies a Monte Carlo simulations
to achieve accuracy bounds in terms of α and β, and to determine the least pri-
vacy parameter (ϵ) that fits those bounds. We have shown how DPella can be used
to answer queries based on the identity strategies using partition and concentra-
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tion bounds. To answer effectively different workloads and strategies as well as ICQ
and TCQ queries, we would need to extend DPella with the matrix mechanism as
a black-box (recall Section A.9). While APEx supports advanced query strategies, it
does not provide means to reason about combinations of analyses, e.g., it does not
support reasoning about the accuracy of a query using results from WCQs queries
to perform TCQs ones. DPella instead has been designed specifically to support the
combination of different queries. As we discussed in Section A.9, DPella can be seen
as a programming environment that could be combined with some of the analyses
supported by tools similar to PSI, GUPT or APEx in order to reason about the accu-
racy of the combined queries.

Formal Calculi for DP

There are several works on enforcing differential privacy relying on different models
and techniques. Within this group are Fuzz [33]—a programming language which
enforces (pure) differential privacy of computations using a linear type systemwhich
keeps track of program sensitivity—and its derivatives DFuzz [22], Adaptive Fuzz [43],
Fuzzi [65], and Duet [47]. Hoare2 [7], a programming language which enforces
(pure or approximate) differential privacy using program verification, together with
its extension PrivInfer [6] supporting differentially private Bayesian programming;
and other systems using similar ideas [9, 1, 44, 42].

Barthe et al. [6] devise a method for proving differential privacy using Hoare
logic. Their method uses accuracy bounds for the Laplace Mechanism for proving
privacy bounds of the Propose-Test-ReleaseMechanism, but cannot be used to prove
accuracy bounds of arbitrary computations. Later, Barthe et al. [8] develop a Hoare-
style logic, named aHL, internalizing the use of the union bound for reasoning about
probabilistic imperative programs. The authors show how to use aHL for reason-
ing in a mechanized way about accuracy bounds of several basic techniques such as
report-noisy-max, sparse vector and MWEM. This work has largely inspired our de-
sign of DPella but with several differences. First, aHL mixes the reasoning about ac-
curacy with the more classical Hoare-style reasoning. This choice makes aHL very
expressive but difficult to automate. DPella instead favors automation over expres-
sivity. As discussed before, the use of DPella to derive accuracy bound is transpar-
ent to a programmer thanks to its automation. On the other hand, there are mech-
anisms that can be analyzed using aHL and cannot be analyzed using DPella, e.g.
adaptive online algorithms. Second, aHL supports only reasoning about accuracy
but it does not support reasoning about privacy. This makes it difficult to use aHL
for reasoning about the privacy-accuracy trade-offs. Finally, aHL supports only rea-
soning using the union bound and it does not support reasoning based on the Cher-
noff bound. This makes DPella more precise on the algorithms that can be analyzed
using the Chernoff Bound. Barthe et al [5] use aHL, in combination with a logic
supporting reasoning by coupling, to verify differentially private algorithms whose
privacy guarantee depends on the accuracy guarantee of some sub-component. We
leave exploring this direction for future work. More recently, Smith et al. [57] pro-
pose an automated approach for computing accuracy bounds of probabilistic imper-
ative programs. This work shares some similarities with our. However, it does not
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support reasoning about privacy, and it only uses the Union Bound and do not at-
tempt to reason about probabilistic independence to obtain tighter bounds.

Other works

In a recent work, Ligett et al. [37] propose a framework for developing differentially
private algorithms under accuracy constraints. This allows one to chose a given
level of accuracy first, and then finding the private algorithm meeting this accuracy.
This framework is so far limited to empirical risk minimization problems and it is
not supported by a system, yet.

A.11 Conclusions

DPella is a programming framework for reasoning about privacy, accuracy, and their
trade-offs. DPella uses taint analysis to detect probabilistic independence and derive
tighter accuracy bounds using Chernoff bounds. We believe the principles behind
DPella, i.e., the use of concentration bounds guided by taint analysis, could gener-
alize for more notions of privacy such as Rényi-DP [43], concentrated differential
privacy [18], zero concentrated differential privacy [12], or truncated concentrated
differential privacy [11] (as done with (ϵ, δ)-DP). As future work, we envision lift-
ing the restriction that programs should not branch on query outputs.
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B
Sensitivity by Parametricity: Simple Sensi-

tivity Proofs for Differential Privacy

Abstract. The work of Fuzz has pioneered the use of functional programming
languages where types allow reasoning about the sensitivity of programs. Fuzz
and subsequent work (e.g., DFuzz and Duet) use advanced technical devices
like linear types, modal types, and partial evaluation. These features usually re-
quire the design of a new programming language from scratch—a major task on
its own! While these features are part of the classical toolbox of programming
languages, they might be unfamiliar to non-programming language experts. In
this work, we propose to take a different direction. We present the novel idea
of applying parametricity, i.e., a well-known abstract uniformity property en-
joyed by polymorphic functions, to compute sensitivity of functions. A direct
consequence of our result is that calculating the sensitivity of functions can be
reduced to simply type-checking in a programming language with support for
polymorphism. We formalize our main result in a calculus, prove its sound-
ness, and implement a software library in the programming language Haskell—
where we reason about the sensitivity of canonical examples. We also show
that thanks to type-inference, our approach supports a limited form of sensitiv-
ity inference—something that, to the best of our knowledge, has not been ex-
plored before. Our library, called Spar, is implemented in 365 lines of code.

B.1 Introduction

Differential privacy (DP) is a mathematical definition of privacy that challenges the
paradox of learning helpful information about a population while protecting the
data of individuals. The standard way to achieve DP is by computing the desired
analysis in a dataset and adding calibrated noise before publication [18]. This simple
idea has spawned a series of works (e.g., [28, 45, 27, 29, 2]) on designing program-
ming languages to help analysts implement differentially-private analyses accessing
sensitive information. At the backbone of every DP programming language resides
the noise-calibration mechanism, which determines how much noise is required to
mask an individual’s membership to the population depending on the query’s global
sensitivity–how volatile a function can be concerning changes in its inputs.
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Unfortunately, automatically calculating the global sensitivity of arbitrary func-
tions can be challenging. Current DP programming languages provide data analysts
with a limited set of pre-defined functions whose global sensitivity is known a pri-
ori. However, even though the use of pre-defined functions has allowed for many
exciting analyses, it severely constrains the kind of queries one can express. Aiming
to tackle this issue, Reed and Pierce [33] designed Fuzz, a functional programming
language that uses linear indexed types (with indexes representing sensitivities) to
track every expressable program’s sensitivity. Their approach has been further de-
veloped in a series of works [22, 20, 43, 29], incorporating additional programming
language features such as partial evaluation, linear, and modal types, thus extend-
ing Fuzz’s expressivity. However, these features are not mainstream and usually re-
quire the design of a new language from scratch—a significant task that can signifi-
cantly hinder the adoption of those ideas. Moreover, features like linear and modal
types are rarely known outside academic circles, which also constitute a significant
barrier of entry to the non-programming language expert.

In a concurrent work, Abuah et al. [2] introduced Solo, a type system for dif-
ferential privacy where programs’ sensitivity is determined with respect to a set of
data sources instead of their variables; thus avoiding linear typing disciplines. In
their approach, base types are annotatedwith sensitivity information tracked and al-
tered by the various operations in a taint-analysis fashion. The soundness of Solo’s
sensitivity analysis is then proven via metric preservation. While Solo showcases
that features available on mainstream richly-typed programming languages are suf-
ficient to compute the sensitivity of user-defined functions statically, their system
does not allow users to implement higher-order recursive functions (such as map).
To overcome this limitation, higher-order functions are added as trusted primitives
and their soundness is left to be proven by the authors.

In this work, we explore a different direction. We propose a novel use of para-
metricity—a well-known abstract uniformity property enjoyed by polymorphic func-

tions—that in combination with type constraints [40, 26] and type-level numbers can
verify the sensitivity of functions—including higher-order ones—by simply type-
checking.

We formalize our ideas in λSpar: a sound calculus capable of proving the sensi-
tivity of programs by just relying on features currently available in strongly-typed
declarative programming languages. We also present Spar, a concrete implementa-
tion of λSpar as a library for the Haskell programming language. We showcase how
Spar can be used to reason about the sensitivity of classical examples like summing,
mapping, and sorting elements of a vector. Because Spar is provided as an embedded
domain-specific language, our implementation leverages Haskell’s advanced type-
inference to provide limited support for sensitivity inference—a feature that, to the
best of our knowledge, has not been explored before. We argue that the main result
of this work opens the door to integrating procedures for automatically proving the
sensitivity of functions into the programming workflow, e.g., by using Spar’s sensi-
tivity proofs as an input to other Haskell-based DP frameworks [27].

In summary, the main contributions of this paper are as follows:
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• a novel use of parametrically polymorphic functions to prove sensitivity of
functions,

• a formal calculus that captures our ideas (Section B.2), and a soundness proof
of our claims (Section B.3.1),

• an implementation of our calculus as a library in Haskell with case studies
(Sections B.4), and

• an analysis about how to realize our calculus in another programming lan-
guages (Section B.5).

B.1.1 Motivating examples

Before we dive into our formalism and soundness proof, we showcase our main con-
tributions by examples in our software library Spar. The library is thought for de-
velopers to write functions and, by doing so, discover and provide a proof of their
sensitivity. Despite Spar being implemented in the functional programming lan-
guage Haskell, we argue that the ideas presented here can be deployed in program-
ming languages supporting parametric polymorphism and a type system with sup-
port for type-level natural numbers—a detailed discussion about the required fea-
tures in Section B.5.

We consider a function to be k-sensitive (or have sensitivity k) if it magnifies the
distance of its inputs by a factor of at most k. Formally:

Definition B.1 (Sensitivity). Given two metric spaces (A, dA) and (B, dB), a func-

tion f : A→ B is k-sensitive iff:

∀n ∈ R, (x1, x2) ∈ A.

dA(x1, x2) ⩽ n⇒ dB(f(x1), f(x2)) ⩽ k ∗ n

We start by considering a simple function that adds the constant 42 to any given
numerical value; in Haskell, we write:

add42 :: Int→ Int
add42 x = x+42

If dInt (for brevity d) is defined as the euclidean distance, we can intuitively notice
that add42 is 1-sensitive since for any two possible inputs at a certain distance, it
produces outputs that are at the same distance. For instance, if we consider inputs
5 and 23, where d(5, 23) = 18, then outputs 47 and 65 are also at distance 18, i.e.,
d(47, 65) = 18.

User-defined functions, however, are often more complex than add42, and as
functions’ complexity increases, the less intuitive it’s to reason about their sensitiv-
ity. For instance, the following function utilizes its input several times to create a
series of nested pairs:

nest :: Int→ (Int, (Int, (Int, Int)))
nest x = (x, (add42 x, (x, x)))
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What is nest’s sensitivity? While the sensitivity-knowledgeable reader could quickly
answer this question, the everyday programmer might struggle to perform such a
cumbersome analysis. More importantly, we argue that the responsibility of con-
ducting such critical calculations should not fall on the (error-prone) programmer
but rather on its (reliable) programming tools.

With this in mind Spar introduces the following abstract datatype to write pro-
grams:

data Rel (d :: Nat) a

This data type is indexed by type-level natural numbers (d::Nat), where d stands
for distance. When programming, developers can think about the term t :: Rel d a
simply as a term of type a—i.e., Rel d a is isomorphic to a. However, for sensitivity
calculations, a term t :: Rel d a will be interpreted as the collection of all pairs of
values of type awhose distance is at most d. From now on, we will refer to the terms
t :: Rel d a, for a given d and a, as relational terms or values.

Together with the data type Rel d a, Spar exposes a set of basic relational
operations such as:

lit :: Int→ Rel d Int
(:+:) :: Rel d1 Int→ Rel d2 Int→ Rel (d1+d2) Int
(:⋆:) :: Rel da a→ Rel db b→ Rel (da+db) (a, b)

In essence, the types of these primitives encode how distances of the resulting

relational values change with respect to the distances of the inputs. Primitive lit x
lifts a regular integer into a relation one, which means that an integer can be at any
distance from another one—thus, the distance is parametric on d. Primitive (:+:)
indicates that the distance of added values is, at most, d1+d2. The primitive (:⋆:)
creates relational pairs at distance da+db, thus encoding pairs under the ℓ1 norm.
For simplicity, we demonstrate how Spar works for the norm ℓ1 but other norms
like ℓ∞ are possible.

With these simple operations, we can rewrite our previous examples as Spar
functions:

add42 x = x:+:(lit@0 42)
nest x = x:⋆:(add42 x:⋆:(x:⋆:x)))

where we use Haskell’s type applications (@) to indicate that 42 will be a constant,
thus its distance is set to 0. Aided by Haskell’s type-system we can inspect how
much add42 and nest magnify the distance between their inputs.

> : type add42
Rel d Int→ Rel d Int
> : type nest
Rel d Int→ Rel (4*d) (Int, (Int, (Int, Int)))

Function add42 preserves its inputs distanceswhile nest quadruples them. Spar,
by construction, tracks how many occurrences of x affect the distance inferred for
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the results—which diverges from previous work [33, 22, 29] in requiring the utiliza-
tion of linear type-systems. Moreover, since the code that we wrote is generic, the
type signatures produced by the type-system are polymorphic in d. In other words,
the code of add42 and nest can be applied to relational terms at distance 1 (i.e.,
terms of type Rel 1 a), terms at distance 2 (i.e., terms of type Rel 2 a), etc.

The central insight of this work is that parametric polymorphism can capture
the fact that outputs’ distances in functions are bounded in the same manner inde-
pendently of the inputs’ distances, which is no more than the definition of sensitiv-
ity! For instance, the type of nest indicates that this function magnifies the distance
of its inputs by a factor of 4, thus nest has sensitivity 4.

Spar uses the type synonym

type Sen (k :: Nat) a b = ∀ d . Rel d a→ Rel (k*d) b

to directly refer to functions from a to b with proven sensitivity k. The proof comes
from the explicit use of parametricity. Specifically, to create a function of type
Sen k a b, we need to implement a polymorphic function on the distance of its inputs

(observe the ∀ d in the type-signature) whose outputs’ distance is scaled by k.
With this data type, we can provide a proof of sensitivity for our previous ex-

amples:

sen_add42 :: Sen 1 Int Int
sen_add42 = add42
sen_nest :: Sen 4 Int (Int, (Int, (Int, Int)))
sen_nest = nest

Observe that the definitions of sen_add42 and sen_nest do not require us to per-
form any transformations to our functions, meaning that the proof of sensitive con-
sists in just being able to type-check these expressions.

Parametric polymorphism gives us a simple proof mechanism for sensitivity, but
how far can we go with it? How expressive our programs can be? In the following
sections, we show that the core calculus of this library is sound and how it can cover
some advanced examples similar to the ones found in previous work [33, 22, 29].

B.2 λSpar: a calculus for distance tracking

In this section, we present λSpar, a calculus that annotates types with distances and
keep track of them using special operators. Importantly, functions in the calculus
can be defined on parametric distances, this feature is key to obtaining proof of
their sensitivity. For clarity, this section will introduce a simplified version of λSpar
showcasing the main technical ideas; however, we will let the reader know when
these simplifications occur.

B.2.1 Syntax

Types The syntax of types is described by the following grammar:

i ∈ dvar r ∈ R⩾0 l ∈ N
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τ ∈ type ::= σ | τ × τ | τ⃗l | τ → τ | Rel d σ

σ ∈ type ::= R | σ × σ | σ⃗l

d ∈ dist ::= i | r | d+ d | d ∗ d

Our formalism includes a basic numeric type R, pairs (_ × _), functions (_ → _),
fixed-length lists or vectors (⃗_)l, and the novel relational type Rel d (_). As previ-
ously stated, the relational type is essentially a regular type annotated with an up-
per bound on the distance between its inhabitants. To keep distance-reasoning as
intuitive and straightforward as possible, we introduce a hierarchical structure in
the types preventing nesting within relational types. The reader should consider the
overloaded usage of (_× _) and (⃗_)l as one and the same.

Distances are represented as terms in a small language at the type level including
variables i, non-negative real constants r (i.e., r ∈ R⩾0), and two operators denoting
addition (_+_) and multiplication (_∗_). We remark that, without loss of generality,
the implementation of λSpar in Section B.4 encodes distances as type-level natural
numbers with their respective operations. Vectors’ lengths are represented by type-
level natural numbers. The opaque expression l ∈ N captures the fact that there is
a small language for natural numbers with variables similar to that of distances and
DFuzz’s size terms. In favor of readability, we omit the details of such a language.

Contrary to previous calculus for sensitivity analysis, λSpar’s types do not carry
sensitivity information associated with variables (as in Fuzz [33]) or values (as in
Solo [2]). Instead, the use of relational types to track distances allow us to explicitly
model bounded metric spaces from which function sensitivity can be proven as a
uniform continuity property.

Terms The grammar for expressions is straightforward. It includes the canoni-
cal introduction and elimination forms of an ordinary typed functional program-
ming language: variables, literals and arithmetic operations, pairs, and projections,
abstractions and applications, and lists. Moreover, for each non-relational term—
excluding variables—there exists its relational counterpart marked with a distin-
guishing color. The only difference between non-relational and relational terms
resides in how pairs get eliminated. While non-relational pairs use projections
(terms fst and snd ), the relational ones are eliminated via pattern-matching (term
let (x, y) = e in e).

x ∈ evar n ∈ R

e ∈ expr ::= x | n | e+ e | (e, e) | fst e | snd e

| λx.e | e @ e

| [ ] | e :: e | case e of {[ ].e}{(x :: xs).e}
| N e | e + e | (e, e) | let (x, y) = e in e

| [ ] | e :: e
| case e of {[ ].e}{(x :: xs).e}
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t.Numr

Ψ; C; Γ ⊢ e : R vars(d) ⊆ Ψ

Ψ; C; Γ ⊢ N e : Rel d R

t.Addr

Ψ; C; Γ ⊢ e1 : Rel d1 R Ψ; C; Γ ⊢ e2 : Rel d2 R i /∈ FV(Ψ)

Ψ, i; C ∧ i = (d1 + d2); Γ ⊢ e1 + e2 : Rel i R

t.Pairr
Ψ; C; Γ ⊢ e1 : Rel d1 σ1 Ψ; C; Γ ⊢ e2 : Rel d2 σ2 i /∈ FV(Ψ)

Ψ, i; C ∧ i = (d1 + d2); Γ ⊢ (e1, e2) : Rel i (σ1 × σ2)

t.⊑
Ψ; C; Γ ⊢ e : τ1 Ψ; C |= τ1 ⊑ τ2

Ψ; C; Γ ⊢ e : τ2

t.Letr
Ψ; C; Γ ⊢ e1 : Rel d (σ1 × σ2)

Ψ, i1, i2; C ∧ d = (i1 + i2); Γ, x : Rel i1 σ1, y : Rel i2 σ2 ⊢ e2 : τ
i1, i2 /∈ FV(Ψ)

Ψ; C; Γ ⊢ let (x, y) = e1 in e2 : τ

Figure B.1: Selected typing rules for relational terms

Typing rules The inference rules in Figure B.1 define the typing relation for rela-
tional. Type judgments for non-relational expressions are entirely routine. Besides
the usual environment Γ for term variables, a judgmentΨ; C; Γ ⊢ e : τ contains two
extra parameters, Ψ and C, conforming to the grammar:

Γ ∈ tenv ::= ∅ | Γ, x : τ

Ψ ∈ denv ::= ∅ | Ψ, i

C ∈ cenv ::= ∅ | d = d | C ∧ C

Set Ψ represents the environment for distance variables. Distinctly from Γ, this en-
vironment does not map variables to a type (or kind) since all distances are implic-
itly typed as positive real numbers. The practical effect of allowing variables within
distance expressions is that it models the effect of polymorphism on distances. Ev-
idently, a term Ψ, i; C; Γ ⊢ e : Rel i R can be interpreted as a term of type Rel 5 R
or Rel 1 R under the substitutions [i := 5] and [i := 1], respectively. In Haskell, we
write e :: ∀ i . Rel i Int and apply the substitutions with e@5 and e@1. This in-
sight will be explored in Section B.4.

Set C records the constraints under which typing is obtained. These constraints
are carried out to ensure that the interpretation of expressions with free (distance)
variables preserve the metric of their respective types. For instance, the consequent
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Ψ; C |= d1 ⩽̇ d2 ⇐⇒ ∀ρ. Ψ ⊆ dom(ρ) ∧ ρ |= C ⇒ Jd1Kρ ⩽ Jd2Kρ

st.Refl

Ψ; C |= τ ⊑ τ

st.Trans
Ψ; C |= τ1 ⊑ τ2 Ψ; C |= τ2 ⊑ τ3

Ψ; C |= τ1 ⊑ τ3

st.Rel
C; Ψ |= d1 ⩽̇ d2

Ψ; C |= Rel d1 σ ⊑ Rel d2 σ

Figure B.2: Selected subtyping rules and distance comparison

in rule t.Pairr can be read as: no matter which value gets assigned to the distance
of the pair (i.e., when substituting variable i) as long as it amounts to the distance
of its components—thus, adhering to the ℓ1 metric.

In a nutshell, the typing rules in Figure B.1 depict how distances are altered
depending on the underlying operation. As in Fuzz [33], type safety under this
setting not only ensures that “well-typed programs can’t go wrong” but also that
“they can’t go too far.” In our case, data type Rel d σ directly encodes how far they
can go.

Rules t.Numr, t.Addr, and t.Pairr correspond to the operators lit, (:+:), and
(:⋆:) introduced in Section B.1.1. The rule for relational numbers has the premise
var(d) ⊆ Ψ preventing d from referring to unbounded variables; when a distance
expression d satisfies this condition we say that d is covered by Ψ. Rule t.Letr allows
deconstructing a relational pair under a scoped environment where the distance of
the pair components is represented by the fresh variables i1 and i2, additionally the
set of constraints is extended requiring that the addition of these variables is equal
to the distance of the original pair; this way, it is ensured that the metric for pairs is
preserved under elimination.

Our calculus considers vectors with statically known lengths captured by the
type σ⃗l.

Vector’s introduction and elimination rules are excluded as they require explicit
handling of length variables—these details can be found in the accompanying ma-
terial. Intuitively, given that vectors of fixed lengths can be represented by nested
pairs, their introduction, and elimination typing rules impose the same distance con-
straints as pairs.

Lastly, rule t. ⊑ follows the standard procedure for subtyping. Themain purpose
of the subtyping relation⊑ (see Figure B.2) is to capture the fact that values that are
at distance d1 are also at distance d2 for d1 ⩽ d2. To compare distance expressions
under⩽, we provide an interpretation to distance expressions over the domainR⩾0.
Concretely, given an assignment ρ ∈ dvar → R⩾0 such that var(d) ⊆ dom(ρ), the
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inductive interpretation JdKρ is defined as:

JiKρ = ρ(i)

JrKρ = r

Jd1 + d2Kρ = Jd1Kρ + Jd2Kρ
Jd1 ∗ d2Kρ = Jd1Kρ ∗ Jd2Kρ

Observe thatwhile the arithmetic operators (_+_ and _∗_)were symbolic in distance
terms, their usage on the right-hand side of the equations refers to the addition and
multiplication of real numbers.

With this interpretation, we define an ordering relation over distances Ψ; C |=
d1 ⩽̇ d2 taking into account the constraints they must satisfy (see Figure B.2). This
relation encapsulates the fact that a term d1 can be considered less or equal than
term d2 under the constraints C, only if for every closing assignment ρ satisfying the
constraints, the interpretation of d1 is less or equal than that of d2. The subtyping
relation relies on such a condition to increase the distance of a relational term (rule
st.Rel). In other words, a relational term can only be subtyped if its distance is
upgraded (or remains intact).

Lastly, when considering vectors’ length variables within the typing rules, sets
Ψ and C are extended to track these variables and their constraints. Accordingly,
assignments ρ and interpretations J·Kρ are adapted to handle distance and length
expressions separately.

B.2.2 Operational semantics

We provide a big-step operational semantics with explicit substitutions. The values
to which an expression is allowed to evaluate are defined by the following grammar:

v ∈ val ::= n | (v, v) | ⟨λx.e | γ⟩ | [ ] | v :: v

| N v | (v, v) | [ ] | v :: v

With γ a value environment (also referred to as substitution) mapping variables to
values (i.e.,γ ∈ var → val). The rules for evaluation are standard (refer to the
accompanying material) with judgment γ ⊢ e ⇓ v stating that a configuration with
value environment γ and term e evaluates to value v.

B.3 Formal guarantees

Soundness for λSpar is defined as ametric preservation property. Intuitively, the met-
ric preservation property ensures that closing an open term with two distinct but
related substitutions will produce related expressions whose distance is bounded.

We adopt the technique of logical relations in which we determine how two
well-typed expressions can be considered related at a determined distance. As is
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DJRKρd = {(N n1,N n2) | |n1 − n2| ⩽ JdKρ.d}
DJσ1 × σ2K

ρ
d = {((v11, v21), (v12, v22)) | ∃d1, d2. ρ |= d = d1 + d2

∧ (v11, v12) ∈ DJσ1K
ρ
d1
∧ (v21, v22) ∈ DJσ2K

ρ
d2
}

DJσ⃗0K
ρ
d = {([ ], [ ])}

DJσ⃗(l+1)K
ρ
d = {(v11 :: v21, v12 :: v22) | ∃d1, d2. ρ |= d = d1 + d2

∧ (v11, v12) ∈ DJσKρd1
∧ (v21, v22) ∈ DJσ⃗lK

ρ
d2
}

VJRKρ = {(v1, v2) | v1 ≡ v2}
VJτ1 × τ2Kρ = {((v11, v21), (v12, v22)) | (v11, v12) ∈ VJτ1Kρ ∧ (v21, v22) ∈ VJτ2Kρ}
VJτ1 → τ2Kρ = {(⟨λx.e1 | γ1⟩, ⟨λx.e2 | γ2⟩) | ∃Γ.(γ1, γ2) ∈ SJΓKρ

∧ ∀v1, v2. (v1, v2) ∈ VJτ1Kρ

⇒ (γ1[x := v1] ⊢ e1, γ2[x := v2] ⊢ e2) ∈ EJτ2KρΓ,x:τ1}
VJτ⃗0Kρ = {([ ], [ ])}

VJτ⃗(l+1)Kρ = {(v11 :: v21, v12 :: v22) | (v11, v12) ∈ VJτKρ ∧ (v21, v22) ∈ VJτ⃗lKρ}
VJRel d σKρ = DJσKρd

EJτKρΓ = {(γ1 ⊢ e1, γ2 ⊢ e2) | ∀γ1, γ2, v1, v2.(γ1, γ2) ∈ SJΓKρ

∧ γ1 ⊢ e1 ⇓ v1 ∧ γ2 ⊢ e2 ⇓ v2 ⇒ (v1, v2) ∈ VJτKρ}

SJΓKρ = {(γ1, γ2) | dom(γ1) ≡ dom(γ2) ≡ dom(Γ)

∧ ∀(x : τ). x ∈ dom(Γ)⇒ (γ1(x), γ2(x)) ∈ VJτKρ}

Figure B.3: Mutually-recursive logical relations
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customary, we define mutually-recursive logical relations VJτKρ, EJτKρΓ, and SJΓKρ
relating values, open expressions and typing contexts, respectively (see Figure B.3).
Moreover, we introduce a new relationDJσKρd specifying themetric relation between
relational values (i.e., values of type Rel d σ).

All of these relations are indexed with an assignment ρ mapping distance vari-
ables to non-negative real numbers. Such assignment is used by the relation DJσKρd
to evaluate the distance term d and use it as an upper bound on the distances of
its components. We use (v1, v2) ∈ DJσKρd to denote that given an assignment ρ,
relational values v1 and v2 are related at type σ and distance d—similarly for non-
relational values, expressions, and environments.

At a high level, our logical relations state:

• Two relational values are related underDJσKρd if the distance of their operands
is less or equal to the value resulting from interpreting the distance term d
with the assignment ρ.

• Two values are related under VJτKρ if they are equivalent (base types) or their
components are related accordingly. For example, two functions of type τ1 →
τ2 are related if they map related inputs (v1, v2) ∈ VJτ1Kρ to related outputs
(γ1 ⊢ λx.e1 @ v1, γ2 ⊢ λx.e2 @ v2) ∈ EJτ2KρΓ.

• Two expressions are related under EJτKρΓ when both reduce to values that are
related at VJτKρ

• Two substitutions are related under SJΓKρ when both map all of their vari-
ables to related values.

Note that these relations depart from previous work as they do not assign a
metric interpretation to all of the types in the calculus, instead, such interpretation
will be restricted only to relational types. More precisely, those expressions where
none of its components have been annotated with a distance will be assumed to
have distance zero—i.e., related under equivalence. For instance, consider the non-
relational pairs (5, 42) : R× R and (1, 42) : R× R, then

((5, 42), (1, 42)) /∈ VJR× RKρ

since 5 ̸≡ 1. However, non-relational pairs with relational components can be re-
lated in a metric relation; this is:

((N 5, 42), (N 1, 42)) ∈ VJRel 7 R× RKρ

since |5− 1| ⩽ 7 and 42 ≡ 42
With these logical relations, we establish the notion of type soundness via the

fundamental lemma of logical relations (i.e., well-typed terms are related to them-
selves), which also corresponds to the metric preservation theorem [33].

Theorem B.1 (Metric preservation). Let a well-typed expression Ψ; C; Γ ⊢ e : τ
be given. For any ρ for which Ψ ⊆ dom(ρ) and ρ |= C; suppose γ1, γ2 are two

substitutions for Γ such that (γ1, γ2) ∈ SJΓKρ, then we have (γ1 ⊢ e, γ2 ⊢ e) ∈
EJτKρΓ.
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Proof. By induction on the typing derivations of e. The cases for non-relational
terms are standard. A full-blown proof of all relational and non-relational terms can
be found in the accompanying material.

B.3.1 Sensitivity by Parametricity

In this section, we explore the connection between parametricity and function sen-
sitivity. In a nutshell, we show that by assigning a relational interpretation for λSpar’
types, a proof of function sensitivity can be derived from such interpretation given
that λSpar is parametric on distances.

The concept of parametricity [39] refers to a generic property of programming
languages supporting parametric polymorphism. This property captures the intu-
ition that every instance of a polymorphic function should behave the same. Wadler’s
key observation is that by interpreting types as relations, instead of sets, one can
produce useful theorems about programs directly from their types. For instance,
when considering any polymorphic list-transformation function r : ∀A.[A]→ [A],
one can use parametricity to obtain the following (free) theorem:

∀ f xs. map f (r xs) ≡ r (map f xs)

This theorem tells us insightful information about the way r interacts with its input:
it works on the structure of the input list in a way that is independent of the elements
of the list. Formally, parametricity states that any closed term e of type τ is related
to itself under a relational interpretation of its types, this is:

Ψ; C; ∅ ⊢ e : τ ⇒ (e, e) ∈ JτK (B.1)

with JτK ∈ τ×τ denoting the relational interpretation for τ . In the previous section,
we defined a set of logical relations providing a metric interpretation to our types.
Then, if we define JτK as EJτKρ∅ , the parametricity lemma corresponds to the fun-
damental lemma of logical relations—i.e, metric preservation Theorem B.1—where
the substitutions γ1 and γ2 are empty; thus trivially related.

With this in mind, we argue that given a parametric closed function f , which
for any distance i, it has type Rel i σ1 → Rel (k ∗ i) σ2, we can prove that f satis-
fies k-sensitivity via metric preservation. Concretely, when we consider parametric
functions such as:

Ψ, i; C; ∅ ⊢ f : Rel i σ1 → Rel (k ∗ i) σ2

the previous statement describes a sensitivity soundness theorem of the form:

TheoremB.2 (Sensitivity soundness). Given a function f and type variable i, it holds
that

Ψ, i; C; ∅ ⊢ f : Rel i σ1 → Rel (k ∗ i) σ2 ⇒ f is k-sensitive

Proof. Recall Definition B.1 stating that a function f is k-sensitive if the distance be-
tween its outputs is bounded by k times the distance between its inputs—for what-
ever distance they might have. In terms of our logical relations, k-sensitivity for
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closed functions can be expressed as follows:

∀(Ψ, i), C, ρ, v1, v2. (Ψ, i) ⊆ dom(ρ) ∧ ρ |= C
∧ (v1, v2) ∈ VJRel i σ1Kρ

⇒ (· ⊢ f @ v1, · ⊢ f @ v2) ∈ EJRel (k ∗ i) σ2K
ρ
∅ (B.2)

By parametricity (i.e, metric preservation) over f we know:

∀ (Ψ, i), C, ρ. (Ψ, i) ⊆ dom(ρ) ∧ ρ |= C
⇒ (· ⊢ f, · ⊢ f) ∈ EJRel i σ1 → Rel (k ∗ i) σ2K

ρ
∅ (B.3)

Now, let’s expand the conclusion of this implication:

(· ⊢ f, · ⊢ f) ∈ EJRel i σ1 → Rel (k ∗ i) σ2K
ρ
∅

≡⟨By definition of EJ_Kρ∅⟩
∀f1, f2.· ⊢ f ⇓ f1 ∧ · ⊢ f ⇓ f2

⇒ (f1, f2) ∈ VJRel i σ1 → Rel (k ∗ i) σ2Kρ

≡⟨By determinism of (_ ⇓ _) with · ⊢ f ⇓ ⟨λx.e | ·⟩⟩
(⟨λx.e | ·⟩, ⟨λx.e | ·⟩) ∈ VJRel i σ1 → Rel (k ∗ i) σ2Kρ

≡⟨By definition of VJ_Kρ with Γ = ∅⟩
∀v1, v2. (v1, v2) ∈ VJRel i σ1Kρ

⇒ ([x := v1] ⊢ e, [x := v2] ⊢ e) ∈ EJRel (k ∗ i) σ2K
ρ
x:Rel i σ1

≡⟨By definition of EJ_Kρx:Rel i σ1
and (_ ⇓ _)⟩

∀v1, v2. (v1, v2) ∈ VJRel i σ1Kρ

⇒ (· ⊢ λx.e @ v1, · ⊢ λx.e @ v2) ∈ EJRel (k ∗ i) σ2K
ρ
∅

≡⟨Since · ⊢ f ⇓ ⟨λx.e | ·⟩ and · ⊢ λx.e ⇓ ⟨λx.e | ·⟩⟩
∀v1, v2. (v1, v2) ∈ VJRel i σ1Kρ

⇒ (· ⊢ f @ v1, · ⊢ f @ v2) ∈ EJRel (k ∗ i) σ2K
ρ
∅ (B.4)

When rewriting (B.3) with (B.4) we obtain:

∀(Ψ, i), C, ρ, v1, v2. (Ψ, i) ⊆ dom(ρ) ∧ ρ |= C
∧ (v1, v2) ∈ VJRel i σ1Kρ

⇒ (· ⊢ f @ v1), · ⊢ f @ v2) ∈ EJRel (k ∗ i) σ2K
ρ
∅

Which is no less than the definition (B.2) of a k-sensitive function expressed in terms
of logical relations.

Our reasoning showcases the usefulness of parametricity as a technique for
obtaining insightful theorems about parametric functions. In particular, we have
shown that by giving a metric interpretation to λSpar’ types, sensitivity soundness
(Theorem B.2) follows directly from the metric preservation Theorem B.1. In con-
clusion, we have shown that tracking programs’ distances and allowing parametric-
ity on distance terms are sufficient conditions to prove sensitivity soundness.
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data Rel (d :: Nat) a
-- Numbers

lit :: Int→ Rel d Int
(.+) :: Rel d1 Int→ Rel d2 Int
→ Rel (d1+d2) Int

-- Pairs
(:⋆:) :: Rel d1 a→ Rel d2 b→ Rel (d1+d2) r
-- Vectors

Nil :: Rel d (Vec 0 a)
(:>) :: Rel da a→ Rel dv (Vec m a)

→ Rel (da+dv) (Vec (m+1))
-- Sub-typing

up :: Rel d a→ Rel (d+c)
-- Sensitivity type synonym

type Sen (k :: Nat) a b =
∀ (d :: Nat) . Rel d a→ Rel (k*d) b
-- Using sensitivity functions

run :: (Rf a, Rf b)⇒ Sen k a b→ (a→ b)

Figure B.4: Spar API

B.4 λSpar as a library

In this section, we present Spar, the software library that realizes the calculus from
Section B.2. As captured by our main result in Section B.3.1, the library relies
on Haskell’s parametrically polymorphic functions to compute sensitivity for user-
defined functions. Besides polymorphism, our implementation uses some of the ad-
vanced features of Haskell’s type-system to facilitate the usage of the library—we
defer explanations about such features to Section B.5.

Spar is a domain-specific language[21] (DSL) embedded in Haskell , that means
that the language constructs are given as a library of ordinary Haskell functions.
Not all language constructs need to be part of the Spar core language. One of the
great benefits of an embedded language is the ability to use the host language to
create programs. For instance, it is possible to leverage any of Haskell’s high-order
functions to compactly describe functions and prove their sensitivity.

The full API of Spar is presented in Figure B.4. Type Rel is indexed by a type-
level natural number. Unlike our calculus, Spar only considers natural numbers as
distances. This limitation mainly arises from Haskell’s type-system not being pow-
erful enough to represent real numbers, and their operations, at the type level. Prim-
itives number and (.+) correspond to the relational numbers and addition from our
calculus. Similarly, primitive (:⋆:), Nil, and (:>) correspond to relational pairs, and
relational vectors, respectively. As we mentioned in Section B.2, the construction
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of pairs (:⋆:) and vectors (:>) work similarly when tracking distances at the type-
level, i.e., da+db and da+dv, respectively. Primitive up encodes the sub-typing rule
from our calculus. The type synonym Sen directly refers to functions from a to b
with proven sensitivity k, where the proof comes from the explicit use of parametric
polymorphism. Finally, function run takes a function with proven sensitivity k and
obtains the underlying function so that it can be executed by the host language—we
defer the explanation about how to use it and its constraints until the next section.
In what follows, we will see some examples showing how Spar can support reason-
ing about the sensitivity of complex higher-order recursive functions. Extending
Spar with primitives such as laplace and exponential mechanism would allow us to
capture canonical differentially-private algorithms (e.g., histograms and cumulative
sensitive functions); we explore how Spar could be used under this setting.

B.4.1 Vectors

We start with an example where developers can write functions, and by doing so,
discover and provide a proof about their sensitivity. Obtaining proof is merely to
convince the type-checker. We focus on analyzing the sensitivity of the well-known
map function:

map :: (a→ b)→ [a]→ [b ]

which takes a function from a to b (a → b), a list of elements of type a ([a]) and
applies the function to each element to obtain a list of elements of type b ([b ]).
What is the sensitivity of the map function? To answer that question, we proceed to
implement map using Spar. We assume that the argument of the map function is of
sensitivity k, that is,

smap :: Sen k a b→ ...

(The ... denotes some irrelevant code to the point being made.) Since we need to
reason about how the output changes with respect to the input, we make smap to
take and return relational values.

smap :: Sen k a b→ Rel d (Vec m a)→ ...

What should it be the distance of the relational output? At this point, we can simply
write the function and put a type variable and wait for the type-system to complain.

smap :: Sen k a b→ Rel d (Vec m a)→ Rel x (Vec m b)
smap f Nil = Nil

smap f (x:>xs) = f x:>smap f xs

The type-system indeed complains and says

Could not deduce: ((k * da) + dv) ~ x arising
from a use of ‘:>’
from the context: (Vec m a ~ Vec (m1 + 1) a1,

(da + dv) ~ x)
...
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Observe that the type-system is helping us to figure out the shape of x, i.e., it should
be, at least, k*da+dvwherewe know that da+dv is equal (unifies) to x. With such in-
formation, we can propose that x increases its value to k*da+k*dv, which is equiv-
alent to k*(da+dv) or simply k*d.

smap :: Sen k a b→ Rel d (Vec m a)
→ Rel (k*d) (Vec m b)

With this type-signature smap type-checks! andwe can proceed to use the Sen type-
synonym to indicate that smap f has sensitivity k given that f has sensitivity k:

smap :: Sen k a b→ Sen k (Vec m a) (Vec m b)

As shown by this example, Spar leverages Haskell’s type-system to provide some
restricted support for sensitivity inference. To the best of our knowledge, sensitivity
inference has not been addressed in previous work, e.g., [33, 22, 29].

Similarly, we can show that summing elements of a vector or appending two
vectors are operations with sensitivity 1:

ssum :: Sen 1 (Vec m Int) Int
ssum Nil = lit 0
ssum (x:>xs) = x.+ssum xs

sappend :: Sen 1 (Vec m Int, Vec n Int) (Vec (m+n) Int)
sappend (Nil :⋆:ys) = up ys
sappend ((x:>xs):⋆:ys) = x:>sappend (xs:⋆:ys)

Observe that sappend utilizes the primitive up when pattern-matching on the
pair Nil:⋆:ys. If the primitive up were to be removed, the type-system would com-
plain:

* Could not deduce: d2 ~ d
from the context:

((Vec m Int, Vec n Int) ~ (a, b),
(d1 + d2) ~ d)

...

From the error message, the type-system is hinting to us that d2 should somehow
unify with d. To achieve that, we can use the primitive up to transform a relational
value with distance d2 into one with distance d2+d1, which is equal to d. As before,
the type-system aids programmers in proving sensitivity.

Spar can be used to prove the sensitivity of many list-related functions:

-- Left-fold
sfoldl :: Sen 1 (a, b) b→ Sen 1 (b, Vec m a) b

-- Right-fold
sfoldr :: Sen 1 (a, b) b→ Sen 1 (b, Vec m a) b

-- Concatenation



B.4. λSPAR AS A LIBRARY 85

sCurry
:: Sen k (a, b) c→ Rel d1 a→ Rel d2 b
→ Rel (k*(d1+d2)) c

sUncurry
:: (∀ d1 d2 . Rel d1 a→ Rel d2 b
→ Rel (k*(d1+d2)) c)

→ Sen k (a, b) c

Figure B.5: API for currying

sconcat :: Sen 1 (Vec m (Vec n Int)) (Vec (m*n) Int)
-- Zipping / unzipping

szip :: Sen 1 (Vec n a, Vec n b) (Vec n (a, b))
sunzip :: Sen 1 (Vec n (a, b)) (Vec n a, Vec n b)
szipWith :: Sen k (a, b) c

→ Sen k (Vec n a, Vec n b) (Vec n c)

From the type-signature of sfoldl, for instance, we can assert that left-folding of a
vector with a function of sensitivity 1 has also sensitivity 1.

B.4.2 Currying

The attentive reader might have noticed that sappend, and most of the functions
above are given in an uncurryfied form, i.e., they take all of their arguments in an n-
tuple. For instance, function sappend takes the two vectors to be concatenated in a
pair:

sappend :: Rel d (Vec m Int, Vec n Int)
→ Rel d (Vec (m+n) Int)

However, programmers can feelmore comfortablewriting currified versions of func-
tions:

sappend’ :: Rel d1 (Vec m Int)→ Rel d2 (Vec n Int)
→ Rel (d1+d2) (Vec (m+n) Int)

sappend’ Nil ys = up ys
sappend’ (x:>xs) ys = x:>sappend’ xs ys

While sappend’ type-checks, to use the Sen type-synonym, we need to uncurrify
it first.

Figure B.5 shows the type signatures of functions sCurry and sUncurry, which
are derived operations in our library, i.e., they are simply implemented using Spar
API and standard Haskell’s primitives. With function sUncurry, we can simply
uncurrify sappend’ for then using the type-synonym Sen:
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sappend” :: Sen 1 (Vec m Int, Vec n Int)
(Vec (m+n) Int)

sappend” = sUncurry sappend’

B.4.3 Sorting

To conclude this section, we show how to implement insertion sort and obtain a
proof about its sensitivity. However, doing that requires considering the conditional
swap, or cswp, operation introduced by Fuzz: “... it takes in a pair, and outputs the

same pair, swapped if necessary so that the first component is no larger than the second

one.” [33]. This primitive outsources from the program the ability to compare pairs’
elements.

Primitive cswp has the following type:

cswp :: Sen 1 (Int, Int) (Int, Int)

Similar to Fuzz, our calculus is not powerful enough to encode cswp and we need to
consider it as an add-on primitive to our API. The implementation of cswp requires
comparing elements of type Rel d Int to determine when flipping the pair. With
cswp in place, we can implement insert sort.

16 insert :: Rel da Int→ Rel dv (Vec n Int)
17 → Rel (da+dv) (Vec (n+1) Int)
18 insert x Nil = x:>Nil
19 insert x (y:>ys) =
20 case cswp (x:⋆:y) of
21 a1:⋆:a2→ a1:>insert a2 ys
22 sort :: Sen 1 (Vec n Int) (Vec n Int)
23 sort Nil = Nil

24 sort (x:>xs) = insert x (sort xs)

Lines 16–21 implements function insert, which adds an element to a sorted list.
Lines 20 shows that cswp takes the pair x:⋆:y, and the execution continues with the
ordered pair a1:⋆:a2. With function insert in place, we prove that insert sort has
sensitivity 1 as expected—see line 22.

B.4.4 Beyond sensitivity

Even though Spar was envisioned as an intermediate step towards creating a sys-
tem for differentially-private algorithms; in this section, we explore how a few ex-
tensions will allow Spar to be integrated into Haskell-based DP frameworks.

Finite sets are useful collection types that can be added to Spar’ API together
with canonical primitive operations (listed below). As presented in Fuzz, the dis-
tance between sets is determined by the Hamming metric.

bag :: Set a→ Rel n (Set a)
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union, intersect, difference :: Ord a⇒ Rel n (Set a, Set a)→ Rel n (Set a)
size :: Rel n (Set a)→ Rel n Int
splitBag :: (a→ Bool)→ Rel n (Set a)

→ Rel n (Set a, Set a)

Now, if there were a function implementing the Laplace mechanism where the
aggregation to be computed is as a Spar k-sensitive function, and the dataset is a
relational set Rel n (Set db); then, the noise to be added could be sampled from
a Laplace distribution with mean 0 and scale k ∗ n/ϵ; thus satisfying ϵ-DP. Such a
function would be typed as:

laplace :: ∀ k n db . ϵ→ Sen k (Set db) Int
→ Rel n (Set db)→ IO Double

With these extensions, wewould be able to create canonical differentially-private
algorithms such asm ∗ ϵ-DP histograms (see below), wherem is the number of par-
titions or buckets.

dp_hist :: ∀ n . [Bucket]→ ϵ
→ Rel n (Set Int)→ IO [(Bucket, Double)]

dp_hist [ ] _eps _set = return [ ]
dp_hist (c : cs) eps set =
case splitBag@n@Int (λz→ c ⩾ z) set of
cBucket:⋆:rest→

do countC← laplace@1 eps size cBucket
countRest← dp_hist cs eps rest
return ((c, countC) : countRest)

Even though there are some technical challenges in implementing the hypoth-
esized mechanism (outside this work’s scope), this example illustrates how Spar’s
proof of sensitivity and distance tracking could be utilized for deploying differentially-
private user-defined algorithms.

B.5 Implementation

In this section, we describe some of our design decisions and insights gained while
realizing our calculus in Haskell. We expect that these insights could help in imple-
menting Spar in other programming languages.

B.5.1 Equality for type-level natural numbers

To compute distances, Spar relies heavily on the abilities of the type-system to ma-

nipulate, either concretely or symbolically, type-level natural number expressions and

decide their equality. We utilize the Glasgow Haskell Compiler (GHC) and some plu-
gins extensions for injecting new axioms into GHC’s type equality relation while
not breaking type safety.
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To illustrate this point, we consider the propositional equality a :∼: bwhich as-
serts that type a is the same as type b. This equality constraint has the only con-
structor Refl :: a :∼: a. When the occurrences of Refl :: a :∼: b type-check, the
compiler has done its job unifying a with b.

isEqualInt :: Int :∼: Int
isEqualInt = Refl

However, when handling type-level natural numbers, we would like types 1+n and
n+1 to match—as we do in math. For instance, if we write the following code, it will
be rejected by GHC’s type-system.

-- It does not type-check!
isEqualPlus :: (1+n) :∼: (n+1)
isEqualPlus = Refl

We use the GHC plugin TypeLits.Normalize to extend the compiler with more
equality of type-level natural number expressions. This extension works by normal-
izing type-level natural numbers, variables, and arithmetic expressions (e.g., +,-, and
*) to (sort of) sum-of-products representation, and then performing syntactic equal-
ity. 1 Once this extension is activated, the following types are considered equal.

-- These examples type-check with TypeLits.Normalize
isEqualPlus :: (1+n) :∼: (n+1)
isEqualPlus = Refl
isEqualMult :: (n*k) :∼: (k*n)
isEqualMult = Refl

While an improvement, for some of our examples presented in Section B.4, GHC
needs to understand better the interplay between the associativity of type-level
operators like + and unification. For instance, we would like GHC to assert that
(n1+(n2+n3)) :∼: (a+b) under the hypotesis (n1+n2) :∼: (a+c)—refer as H1—and
(c+n3) :∼: b—refer as H2. The proof that such unification exists is as follows:

-- by associativity of +
(n1+(n2+n3)) :∼: (n1+n2)+n3
-- by hypothesis H1

(n1+(n2+n3)) :∼: (a+c)+n3
-- by associativity of +

(a+c)+n3 :∼: a+(c+n3)
-- by hypothesis H2

a+(c+n3) :∼: a+b

We want the compiler to do the proof for us. To achieve that, we utilize the Tho-
ralf plugin [31] to translate the unification constraints to queries to an external SMT

1https://hackage.haskell.org/package/ghc-typelits-natnormalise-0.7.6/docs/GHC-TypeLits-
Normalise.html

https://hackage.haskell.org/package/ghc-typelits-natnormalise-0.7.6/docs/GHC-TypeLits-Normalise.html
https://hackage.haskell.org/package/ghc-typelits-natnormalise-0.7.6/docs/GHC-TypeLits-Normalise.html
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-- Introduction of relational terms
data Rel d a where

-- Numbers
LInt :: Int→ Rel d Int
-- Pairs with evidence

Pair :: d∼(da+db)⇒ Rel da a→ Rel db b
→ Rel d (a, b)

... -- other cases
-- Elimination of relational terms

pattern d1:⋆:d2 = Pair d1 d2

Figure B.6: Deep embedded primitives

solver. In that manner, it becomes possible for GHC to prove the equality we de-
scribed above.

-- It type-checks with the Thoralf plugin
isEqual :: (n1+n2) :∼: (a+c) -- H1

→ (c+n3) :∼: b -- H2
→ (n1+(n2+n3)) :∼: (a+b) -- thesis

isEqual Refl Refl = Refl

The use SMT solvers is justified by its accesibility in Haskell, and the simplicity of
Spar’s generated constraints. However, we remark that SMT solvers are not funda-
mental to our approach, but a constraint solving procedure is needed instead since,
like other systems for differential privacy, Spar is quantitative in nature. In other
words, one could write a simple automated solving procedure removing the depen-
dency on solvers. Lastly, if Spar were implemented in a language with a more ex-
pressive type-system, e.g., like dependent types [17, 30] or liquid types [35, 38], we
would expect minor (if any) dependencies on external add-ons components to the
compiler.

B.5.2 Spar as an embedded DSL

Spar is a deep eDSL when it comes to implementing introduction and elimination
constructs from our calculus, but a shallow eDSLwhen it comes to operations among
relational values [1]. The deeply embedded part of our DSL does not perform any
actual computation; instead, they result in a data structure representing the rela-
tional values being constructed. Figure B.6 shows the implementation of Rel d a
for the introduction of relational numbers and pairs. What appears on the left-hand
side of ⇒ are type constraints. They can be seen as static demands for the types
involved on the right-hand side of it. Constructor Lit is parametric on the dis-
tance d. Constructor Pair introduces the same distance constraint as our calcu-
lus in Section B.2 (i.e., da+db∼d). When it comes to elimination rules, we utilize
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(.+) :: Rel d1 Int→ Rel d2 Int→ Rel (d1+d2) Int
(LInt n).+(LInt m) = LInt (n+m)

Figure B.7: Shallowed embedded operations

run :: (Rf a, Rf b)⇒ Sen k a b→ a→ b
run f = fromDist . f . toDist
class Rf a where
toDist :: a→ Rel 0 a
fromDist :: Rel 0 a→ a

instance Rf Int where
...

instance (Rf a, Rf b)⇒ Rf (a, b) where
...

instance (Rf a)⇒ Rf (Vec l a) where
...

Figure B.8: Executing functions with proven sensitivity

pattern-synonyms [32] which allows us to expose specific constructors and hide oth-
ers. For instance, the pattern-synonym (:⋆:) enables to construct and deconstruct
(i.e., pattern-matching) over pairs—thus enabling to convinietly write programs like
λ(d1:⋆:d2)→ d1.+d1.+d2. Importantly, we do not enable pattern-matching on re-
lational numbers. If we did, programmers could write functions that break Spar’s
guarantees:

isTen :: Rel d Int→ Rel 0 Int
isTen (Lit 10) = Lit 1
isTen = Lit 0

According to the type signature, this function returns a constant, i.e., a value at
distance 0. However, the function definition can return outputs at a distance 1.

Figure B.7 gives an example of a relational operation written in a shallow em-
bedded manner, where the semantics of .+ is given based on the host language se-
mantics of +. This design choice avoids Spar from introducing pattern-matching on
relational operations (like .+) and just focusing on supporting pattern-matching on
basic constructors (like pairs)—recall Figure B.6.

B.5.3 Executing functions

Figure B.8 shows the implementation of run—symbol . denotes function composi-
tion. To implement it, it is necessary to take a value of type a in the host semantics
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and reify it into Spar—see function toDist—, apply the function, and reflect the re-
sult back into the host language—see function fromDist.

The type class constraint Rf a limits the types which can be mapped into Spar.
Since the sensitivity for f :: Sen k a b has been proven to be k, functions toDist
and fromDist simply apply f with relational values at distance 0. The type classes
instances declare that integers (Int), pairs ((a, b)), and vectors (Vec n a) can be
reified to and reflected from Spar. To give a concrete example, we utilize function
smap from Section B.4 to run a function which duplicates the content of a vector.

duplicate :: Vec m Int→ Vec m Int
duplicate = run (smap f)
where f :: Sen 2 Int Int

f x = x.+x

>run duplicate (VCons 1 (VCons 2 (VCons 3 VNil)))
(VCons 2 (VCons 4 (VCons 6 VNil)))

Constructor VNil is used to produce empty vectors, i.e., those of length 0; VCons is
a function that inserts an element of type a in a vector of length n, yielding a new
vector of length n+1.

Developers should be careful using function run. This function forgets about
distances among relational values, and a such, it should never be used inside func-
tions computing on relational values. In other words, run is safe to be used only as
a top-level primitive—and there are standard ways to enforce that, e.g., by using Safe
Haskell [36].

B.6 Discussion

Non-termination Our use of logical relations in Section B.3 states that if two
computations over metrically related inputs do both terminate, then their outputs
are metrically related. Since our calculus has no fixed-point primitive of the kind
fix of type τ → τ ; our formal guarantees align with our formalization. Neverthe-
less, adding such primitive demands the use of the well-known mechanism of step-
indexed logical relations [4], which makes possible to prove the fundamental theo-
rem of logical relations even in the presence of fixpoints. We leave as future work
on how to extend our formalization to address abnormal termination—a good start-
ing point is to consider the mitigations techniques proposed in Fuzz [24].

Branching on relational values As shown in Section B.5.2, enabling branch-
ing on relational terms is problematic—a well-known limitation shared in many re-
lated work (e.g., [22, 29, 2]). We foresee a possible manner to overcome this limi-
tation by adopting the program continuity verification framework by Chaudhuri et
al. [12]. This framework characterizes how a small perturbation to the input vari-
ables of a given branch condition can cause the control to flow to exercise different
branches, which could lead to a syntactically divergent behavior. Conceptually, this
approach is based on a set of syntax-directed proof rules collecting constraints which
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are then off-loaded to an SMT-solver. In this light, since Spar is syntax-directed
(module primitive up) and also uses an SMT-solver in the background, we expect to
adopt such results in our setting. To prove k-Lipschitz continuity (equivalent to k-
sensitivity), however, Chaudhuri et al.’s work requires to collect constraints that as-
sert that each branch is k-Lipschitz continuous with respect to the inputs and out-
puts variables. One of the challenges we foreseen is to elegantly capture, at the type-
level, such constraints when using a case-statement and still being able to provide
Spar as a library.

Distance using real numbers Our implementation of λSpar only considers dis-
tances as natural numbers. This design decision is based on the limitations ofHaskell’s
type system. Dependently-typed languages—like Coq, Idris, and Agda—can easily
support (axiomatic 2 or constructive [23, 13]) encodings of real numbers at the type-
level in a natural way. To illustrate this point, we reformulate the type-signature of
lit from Figure B.4 in a type-dependent fashion:

lit : ∀ {A : Set} {d : R} Rel d A

where R is the type for representing real numbers and d is a term of that type.
Different from Spar, the type Rel is indexed by a term-level real number. There is a
series of work on formulating parametricity with dependent types [8, 9, 10]. In this
light, we expect the our soundness results also hold in such a setting—an interesting
direction for future work.

B.7 Related work

Sensitivity by Linear types Several works have studied techniques to reason
about program sensitivity by typing, most of which in the context of differential pri-
vacy. An early approach is the work by Reed and Pierce [33]. They designed an in-
dexed linear type system for differential privacy where types explicitly track sensi-
tivities thanks to types of the form !rA ⊸ B. In their work, this type can only be
assigned to terms representing functions from A to B which have sensitivity less
than r. Functions of these forms could be turned into differentially private programs
by adding noise carefully calibrated to r. The type system by Reed and Pierce [33]
was implemented in the language Fuzz which was also extended with a timed run-
time to avoid side channels with respect to the differential privacy guarantee [24].
Automated type inference for this type system was studied by D’Antoni et al. [14],
and its semantics foundation was studied by Azevedo de Amorim et al. [16]. Fuzz
was further extended in several directions: Eigner and Maffei [20] extended Fuzz to
reason about distributed data and differentially private security protocols. Gaboardi
et al. [22] extended Fuzz’s type checker by means of a simple form of dependent
types. Winograd-Cort et al. [43] extended Fuzz type checker and runtime system to
an adaptive framework. Zhang et al. [46] extended the ideas of Fuzz to a three-level
logic for reasoning about sensitivity for primitives that are not captured in Fuzz.

2Like in https://coq.inria.fr/library/Coq.Reals.Raxioms.html

https://coq.inria.fr/library/Coq.Reals.Raxioms.html
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Azevedo de Amorim et al. [15] add to Fuzz more general rules for reasoning about
the sensitivity of programs returning probability distributions.

Different from Fuzz’s line of work, our approach does not require the use of
linear types.

Other type-based approaches Near et al. [29] designed the language Duet to
support other notion of differential privacy. The Duet approach is based on the de-
sign of a two-layers language. The underlying layer is similar to Fuzz, and the other
layer is a linear type system without annotations for sensitivities. This second layer
does not impose constraints on the distance of elements, and it can hence support
approximate differential privacy and other relaxation of differential privacy. How-
ever, this approach limits the support that Duet can provide for higher order func-
tions. Toro et al. [37] further extended this approach by combining linear types
with contextual effects. The resulting system supports different notions of differen-
tial privacy and higher-order functions. However, the type system now has to track
both linear and contextual effect information. Concurrently to Spar’s development,
Abuah et al. [2] designed a type system (named Solo) useful for reasoning about
sensitivity without requiring linear types—a goal that aligns with ours. Their type
system is also embedded in Haskell and leverages polymorphism for some specific
parts of the implementation. While Solo’s and Spar’s approaches are comparable,
they differ on the following key aspects. Firstly, textscSolo’s formalism and sound-
ness proofs are based on a monomorphic calculus, even though parametric poly-
morphism is highlighted as essential to support higher-order functions. In contrast,
λSpar is polymorphic and is used to prove that sensitivity soundness can be deduced
from parametricity. Secondly, Solo attaches sensitivities to base types while Spar
attaches distances. By tracking distances instead of sensitivities, Spar returns the
notion of sensitivity to functions (as formally defined) instead of values. This differ-
entiating factor allows Spar’s users to reason about the sensitivity of their functions,
and the distance of their values in a—arguably—more intuitive and fundamental way.
Lastly, Thanks to the use of parametricity for characterizing sensitivity, Spar’s users
can type and implement recursive higher-order programs; more importantly, all the
formal guarantees (i.e., sensitivity-soundness) hold for these user-defined functions.
On the other hand, Solo adds recursive functions as primitives since the structure
of sensitive recursive types (such as lists) is not accessible to the programmers.

Relational type-systems Several works have also explored how to reason about
sensitivity using relational type systems. These approaches are quite different from
Fuzz’s and the one presented in this work. This line of work was pioneered by
Barthe et al. [7] and Zhang and Kifer [44] and further extended afterward, e.g. [6,
42, 41]. Relational type systems are not readily available and require specialized
implementations. Moreover, they are not easy to use, also for specialists.

Program analysis Other approaches to reason about program sensitivity were
based on program analysis. To reason about the continuity of programs, Chaudhuri
et al. [12] designed a program analysis tracking the usage of variables and giving
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an upper bound on the program’s sensitivity. Johnson et al. [25] proposed a static
analysis to track sensitivities of queries in a SQL-like system. Specifically, their
approach combines abstract interpretation ideas with the quantitative tracking of
sensitivities for basic operations like Count and Sum. Abuah et al. [3] designed a
dynamic sensitivity analysis which tracks sensitivity and metric information at the
values level. This dynamic analysis is used to guarantee differential privacy in an
adaptive setting, similar to the one explored in Adaptive Fuzz [43].

Parametricity Studies of parametricity and its variants abound in the literature.
It all started with the seminal paper by Reynolds [34], where the polymorphic se-
mantics of System F’s types is captured in a suitable model. Wadler then popular-
ized this result as a tool to deduce theorems for polymorphic function [39]. Our
main result to prove the sensitivity of functions can be seen as a theorem arising for
parametrically polymorphic functions on distances. Other security conditions, like
non-interference, have also been proven using parametricity [11, 5]. To be best of
our knowledge, we are the first ones to show that sensitivity proofs can be obtained
for free by parametricity. There exists a series of work on obtaining parametricity
results for dependent-typed languages [8, 9, 10]—which constitutes interesting re-
sults when realizing λSpar in languages like Agda, Coq, or Idris.

B.8 Conclusions

We have presented λSpar, a sound calculus that uses parametricity to prove the
sensitivity of functions by type-checking. The calculus is simple, and that is its
beauty. We also showed how to implement the calculus as the library Spar for
the programming language Haskell—where the total library consists of 360 lines
of code. We expect that Spar serves as a basis for providing a light-weight verifi-
cation tool to certify, for instance, the sensitivity of arbitrary functions in the ex-
ponential mechanism [19] for differential privacy: if the score function has type
Sen k (Vec n a, Range) Int, then we can be sure that its sensitivity is k regardless
of who wrote that function.



Appendix

B.A Spar’s complete syntax

i ∈ dvar j ∈ lvar x ∈ evar r ∈ R⩾0 n ∈ R

τ ∈ type ::= σ | τ × τ | τ⃗l | τ → τ | Rel d σ

σ ∈ type ::= R | σ × σ | σ⃗l

d ∈ dist ::= i | r | d+ d | d ∗ d
l ∈ length ::= j | 0 | l + 1

e ∈ expr ::= x | n | e+ e | (e, e) | fst e | snd e

| λx.e | e @ e | | [ ] | e :: e
| case e of {[ ].e}{(x :: xs).e}
| N e | e + e | (e, e)
| let (x, y) = e in e | [ ] | e :: e
| case e of {[ ].e}{(x :: xs).e}

v ∈ val ::= n | (v, v) | ⟨λx.e | γ⟩ | [ ] | v :: v

| N v | (v, v) | [ ] | v :: v

Γ ∈ tenv ::= ∅ | Γ, x : τ

Ψ ∈ dlenv ::= ∅ | (Ψd,Ψl)

Ψd ∈ denv ::= ∅ | Ψd, i

Ψl ∈ lenv ::= ∅ | Ψl, j

C ∈ cenv ::= ∅ | (Cd, Cl)
Cd ∈ cdenv ::= ∅ | d = d | Cd ∧ Cd
Cl ∈ clenv ::= ∅ | l = l | Cl ∧ Cl
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B.B Typing system

d.Var
i ∈ Ψ.d
Ψ ⊢ i

d.Real
r ∈ R⩾0

Ψ ⊢ r

d.Add & d.Prod
Ψ ⊢ d1 Ψ ⊢ d2 ⋆ ∈ {+, ∗}

Ψ ⊢ d1 ⋆ d2

(a) Typing rules for distance expressions

l.Var
j ∈ Ψ.l
Ψ ⊢ j

l.Zero

Ψ ⊢ 0

l.Succ
Ψ ⊢ l

Ψ ⊢ l + 1

(b) Typing rules for length expressions

st.Refl

Ψ; C |= τ ⊑ τ

st.Trans
Ψ; C |= τ1 ⊑ τ2 Ψ; C |= τ2 ⊑ τ3

Ψ; C |= τ1 ⊑ τ3

st.×
Ψ; C |= τ1 ⊑ τ3 Ψ; C |= τ2 ⊑ τ4

Ψ; C |= τ1 × τ2 ⊑ τ3 × τ4

st.Vec
Ψ; C |= l = l Ψ; C |= τ1 ⊑ τ2

Ψ; C |= τ⃗1l ⊑ τ⃗2l

st.→
Ψ; C |= τ3 ⊑ τ1 Ψ; C |= τ2 ⊑ τ4

Ψ; C |= τ1 → τ2 ⊑ τ3 → τ4

st.Rel
Ψ; C |= d1 ⩽̇ d2

Ψ; C |= Rel d1 σ ⊑ Rel d2 σ

(c) Sub-typing rules

Figure B.9: Typing rules for several components

Where determining if d1 is less or equal than d2 given the environment Ψ and con-
straints C is defined as:

Ψ; C |= d1 ⩽̇ d2 ⇐⇒ ∀ρ. Ψ ⊆ dom(ρ) ∧ ρ |= C ⇒ Jd1Kρ ⩽ Jd2Kρ

sat.Empty

ρ |= ∅

sat.Eq
JaKρ ≡ JbKρ
ρ |= a = b

sat.Conj
ρ |= C1 ρ |= C2

ρ |= C1 ∧ C2

Figure B.10: Satisfiability relation
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t.Var
x : τ ∈ Γ

Ψ; C; Γ ⊢ x : τ

t.Num

Ψ; C; Γ ⊢ n : R

t.Add
Ψ; C; Γ ⊢ e1 : R Ψ; C; Γ ⊢ e2 : R

Ψ; C; Γ ⊢ e1 + e2 : R

t.Pair
Ψ; C; Γ ⊢ e1 : τ1 Ψ; C; Γ ⊢ e2 : τ2

Ψ; C; Γ ⊢ (e1, e2) : τ1 × τ2

t.Fst & t.Snd
Ψ; C; Γ ⊢ e : τ1 × τ2

Ψ; C; Γ ⊢ fst e : τ1
Ψ; C; Γ ⊢ snd e : τ2

t.Lam
Ψ; C; Γ, x : τ1 ⊢ e : τ2

Ψ; C; Γ ⊢ λx.e : τ1 → τ2

t.App
Ψ; C; Γ ⊢ e1 : τ1 → τ2 Ψ; C; Γ ⊢ e2 : τ1

Ψ; C; Γ ⊢ e1 @ e2 : τ2

t.Nil
j /∈ Ψ.l

Ψ, j; C ∧ j = 0; Γ ⊢ [ ] : τ⃗j

t.Cons
Ψ; C; Γ ⊢ e1 : τ Ψ; C; Γ ⊢ e2 : τ⃗l j /∈ Ψ.l

Ψ, j; C ∧ j = (l + 1); Γ ⊢ e1 :: e2 : τ⃗j

t.Case
Ψ; C; Γ ⊢ e1 : τ⃗l Ψ; C ∧ l = 0; Γ ⊢ e2 : τ ′

Ψ, j; C ∧ l = (j + 1); Γ, x : τ, xs : τ⃗j ⊢ e3 : τ ′ j /∈ Ψ.l
Ψ; C; Γ ⊢ case e1 of {[ ].e2}{(x :: xs).e3} : τ ′

Figure B.11: Typing rules for non-relational terms

Figure B.11 presents the typing rules for non-relational terms. The typing rules
for these cases are just like those of the simply typed lambda calculus. As expected,
the rules do not interact with the environment of distance variables Ψd nor the set
of distance constraints Cd.
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t.Numr

Ψ; C; Γ ⊢ e : R vars(d) ⊆ Ψ.d
Ψ; C; Γ ⊢ N e : Rel d R

t.Addr

Ψ; C; Γ ⊢ e1 : Rel d1 R Ψ; C; Γ ⊢ e2 : Rel d2 R i /∈ Ψ.d
Ψ, i; C ∧ i = (d1 + d2); Γ ⊢ e1 + e2 : Rel i R

t.Pairr
Ψ; C; Γ ⊢ e1 : Rel d1 σ1 Ψ; C; Γ ⊢ e2 : Rel d2 σ2 i /∈ Ψ.d

Ψ, i; C ∧ i = (d1 + d2); Γ ⊢ (e1, e2) : Rel i (σ1 × σ2)

t.Letr
Ψ; C; Γ ⊢ e1 : Rel d (σ1 × σ2)

Ψ, i1, i2; C ∧ d = (i1 + i2); Γ, x : Rel i1 σ1, y : Rel i2 σ2 ⊢ e2 : τ
i1, i2 /∈ Ψ.d

Ψ; C; Γ ⊢ let (x, y) = e1 in e2 : τ

t.Nilr
j /∈ Ψ.l vars(d) ⊆ Ψ.d

Ψ, j; C ∧ j = 0; Γ ⊢ [ ] : Rel d σ⃗j

t.Consr
Ψ; C; Γ ⊢ e1 : Rel d1 σ Ψ; C; Γ ⊢ e2 : Rel d2 σ⃗l i /∈ Ψ.d j /∈ Ψ.l

Ψ, i, j; C ∧ j = (l + 1) ∧ i = (d1 + d2); Γ ⊢ e1 :: e2 : Rel i σ⃗j

t.Caser
Ψ; C; Γ ⊢ e1 : Rel d σ⃗l Ψ; C ∧ l = 0; Γ ⊢ e2 : τ

Ψ, i1, i2, j; C ∧ l = (j + 1) ∧ d = (i1 + i2); Γ, x : Rel i1 σ, xs : Rel i2 σ⃗j ⊢ e3 : τ
i1, i2 /∈ Ψ.d j /∈ Ψ.l

Ψ; C; Γ ⊢ case e1 of {[ ].e2}{(x :: xs).e3} : τ

t.⊑
Ψ; C; Γ ⊢ e : τ1 Ψ; C |= τ1 ⊑ τ2

Ψ; C; Γ ⊢ e : τ2

Figure B.12: Typing rules for relational terms
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B.C Semantics

B.C.1 Operational

e.Var

γ ⊢ x ⇓ γ(x)

e.Num

γ ⊢ n ⇓ n

e.Add
γ ⊢ e1 ⇓ v1 γ ⊢ e2 ⇓ v2

γ ⊢ e1 + e2 ⇓ v1 + v2

e.App
γ ⊢ e1 ⇓ ⟨λx.e3 | γ′⟩ γ ⊢ e2 ⇓ v2 γ′[x := v2] ⊢ e3 ⇓ v3

γ ⊢ e1 @ e2 ⇓ v3

e.Lam

γ ⊢ λx.e ⇓ ⟨λx.e | γ⟩

e.Pair & e.Pairr
γ ⊢ e1 ⇓ v1 γ ⊢ e2 ⇓ v2

γ ⊢ (e1, e2) ⇓ (v1, v2)
γ ⊢ (e1, e2) ⇓ (v2, v2)

e.Fst & e.Snd
γ ⊢ e ⇓ (v1, v2)

γ ⊢ fst e ⇓ v1
γ ⊢ snd e ⇓ v2

e.Letr
γ ⊢ e1 ⇓ (v1, v2) γ[x := v1][y := v2] ⊢ e2 ⇓ v

γ ⊢ let (x, y) = e1 in e2 ⇓ v

e.Nil & e.Nilr

γ ⊢ [ ] ⇓ [ ]
γ ⊢ [ ] ⇓ [ ]

e.Cons & e.Consr
γ ⊢ e1 ⇓ v1 γ ⊢ e2 ⇓ v2

γ ⊢ e1 :: e2 ⇓ v1 :: v2
γ ⊢ e1 :: e2 ⇓ v1 :: v2

e.Case-Nil
γ ⊢ e1 ⇓ [ ] γ ⊢ e2 ⇓ v2

γ ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v2

e.Case-Cons
γ ⊢ e1 ⇓ v1 :: vs1 γ[x := v1][xs := vs1] ⊢ e3 ⇓ v3

γ ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v3

e.Case-Nilr
γ ⊢ e1 ⇓ [ ] γ ⊢ e2 ⇓ v2

γ ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v2

e.Case-Consr
γ ⊢ e1 ⇓ v1 :: vs1 γ[x := v1][xs := vs1] ⊢ e3 ⇓ v3

γ ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v3

e.Numr

γ ⊢ e ⇓ v

γ ⊢ N e ⇓ N v

e.Addr

γ ⊢ e1 ⇓ N v1 γ ⊢ e2 ⇓ N v2

γ ⊢ e1 + e2 ⇓ N (v1 + v2)

Figure B.13: Evaluation rules
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Figure B.13 shows the big step operational semantics. When evaluated, relational
terms just reduce as if they were non-relational ones. The only non-standard, but
not surprising, evaluation rule is the one for destructing relational pairs (let (x, y) =
e1 in e2), where the substitution gets extended with the values resulting from eval-
uating the pair.

B.C.2 Distance and length interpretation

Given a general assignment ρ ∈ (dvar → R⩾0, lvar → N) we provide an interpre-
tation for dist and length expressions (Figure B.14). Accessing ρ’s components is
denoted as ρ.d and ρ.l.

J_Kρ.d ∈ dist→ (dvar→ R⩾0)→ R⩾0

JiKρ.d = ρ.d(i)
JrKρ.d = r

Jd1 ⋆ d2Kρ.d = Jd1Kρ.d ⋆ Jd2Kρ.d ⋆ ∈ {+, ∗}

(a) dist as non-negative real values

J_Kρ.l ∈ length→ (lvar→ N)→ N
JjKρ.l = ρ.l(j)
J0Kρ.l = 0

Jl + 1Kρ.l = JlKρ.l + 1

(b) length as natural numbers

Figure B.14: Distance and length interpretation

We use the general function J_Kρ to refer tho both interpretations at once. We’ll use
J_Kρ.d and J_Kρ.l only when it is necessary to disambiguate between the two.

B.D Logical relations

Our presentation here differs slightly from the definitions given on the paper; in
particular, the relational interpretation of functions (VJτ1 × τ2Kρ) and open terms
(VJτ1 × τ2Kρ) lacks quantification on typing context Γ, and substitutions γ1 and
γ2. Nonetheless, these instantiations are trivial in the proof and do not affect their
outcome.
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B.D.1 Definitions

−−Metric relations
DJRKρd = {(N r1,N r2) | |r1 − r2| ⩽ JdKρ.d}

DJσ1 × σ2K
ρ
d = {((v11, v21), (v12, v22)) | ∃d1, d2. ρ.d |= d = d1 + d2

∧ (v11, v12) ∈ DJσ1K
ρ
d1
∧ (v21, v22) ∈ DJσ2K

ρ
d2
}

DJσ⃗lK
ρ
d = case JlKρ.l of

0 −→ {([ ], [ ])}
l′ −→ {(v11 :: v21, v12 :: v22) | ∃d1, d2. ρ.d |= d = d1 + d2

∧ (v11, v12) ∈ DJσKρd1
∧ (v21, v22) ∈ DJσ⃗(l′−1)K

ρ
d2
}

−−Relational interpretation of values
VJRKρ = {(v1, v2) | v1 ≡ v2}

VJτ1 × τ2Kρ = {((v11, v21), (v12, v22)) | (v11, v12) ∈ VJτ1Kρ

∧ (v21, v22) ∈ VJτ2Kρ}
VJτ1 → τ2Kρ = {(⟨λx.e1 | γ1⟩, ⟨λx.e2 | γ2⟩) | ∀v1, v2. (v1, v2) ∈ VJτ1Kρ

⇒ (γ1 ⊢ λx.e1 @ v1, γ2 ⊢ λx.e2 @ v2) ∈ EJτ2KρΓ}
VJτ⃗lKρ = case JlKρ.l of

0 −→ {([ ], [ ])}
l′ −→ {(v11 :: v21, v12 :: v22) | (v11, v12) ∈ VJτKρ

∧ (v21, v22) ∈ VJτ⃗(l′−1)Kρ}
VJRel d σKρ = DJσKρd

−−Relational interpretation of terms
EJτKρΓ = {(γ1 ⊢ e1, γ2 ⊢ e2) | ∀v1, v2.γ1 ⊢ e1 ⇓ v1 ∧ γ2 ⊢ e2 ⇓ v2

⇒ (v1, v2) ∈ VJτKρ}

−−Relational interpretation of contexts
SJΓKρ = {(γ1, γ2) | dom(γ1) ≡ dom(γ2) ≡ dom(Γ)

∧ ∀(x : τ). x ∈ dom(Γ)⇒ (γ1(x), γ2(x)) ∈ VJτKρ}
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B.E Proof ofmetric preservation and accompanying

lemmas

Lemma B.3 (Exchange).

∀Ψ, C, G,G′, τ1, τ2, τ, x1, x2, e. Γ = G, x1 : τ1, x2 : τ2, G
′ (H1)

∧ ∆ = G, x2 : τ2, x1 : τ1, G
′ (H2)

∧ Ψ; C; Γ ⊢ e : τ (H3)
⇒ Ψ; C; ∆ ⊢ e : τ (C)

Proof. By induction on the typing derivations of e

• Case [t.Var]: Ψ; C; Γ ⊢ x : τ

Observe that Γ and ∆ associate the same variables with the same types, in
other words dom(Γ) ≡ dom(∆) and ∀x ∈ dom(Γ). Γ(x) ≡ ∆(x), then it
must be the case that

x : τ ∈ Γ⇒ x : τ ∈ ∆ (F1)

By (H3) and [t.Var] we know that x : τ ∈ Γ (F2), then by (F2) and (F1) we get
x : τ ∈ ∆ (F3). Finally, by [t.Var] and (F3) we obtain Ψ; C; ∆ ⊢ x : τ

• Case [t.Lam]: Ψ; C; Γ ⊢ λx.e′ : (τ ′1 → τ ′2)

Consider the IH in Ψ; C; Γ, x : τ ′1 ⊢ e′ : τ ′2:

∀G∗, G′∗, τ∗1 , τ
∗
2 , x

∗
1, x

∗
2. Γ, x : τ ′1 = G∗, x∗

1 : τ∗1 , x
∗
2 : τ∗2 , G

′∗ (P1)
∧ ∆, x : τ ′1 = G∗, x∗

2 : τ∗2 , x
∗
1 : τ∗1 , G

′∗ (P2)
⇒ Ψ; C; ∆, x : τ ′1 ⊢ e′ : τ ′2 (IH’)

Let G∗ = G, G′∗ = G′, x : τ ′1, τ∗1 = τ1, τ∗2 = τ2, x∗
1 = x1, and x∗

2 = x2; this
way (P1) and (P2) are proven by (H1) and (H2), respectively. Having proven
both premises we can conclude that:

Ψ; C; ∆, x : τ ′1 ⊢ e′ : τ ′2 (IH’)

Then, by (IH’) and [t.Lam] we obtain Ψ; C; ∆ ⊢ λx.e′ : (τ ′1 → τ ′2)

The rest of the cases are trivial.

Lemma B.4 (Weakening).

∀Ψ, C, τ, τ ′, e, y. Ψ; C; Γ ⊢ e : τ (H1)
∧ y /∈ Γ (H2)
⇒ Ψ; C; Γ, y : τ ′ ⊢ e : τ (C)
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Proof. By induction on the typing derivations of e

• Case [t.Var]: Ψ; C; Γ ⊢ x : τ

Consider the context ∆ = Γ, y : τ ′ such that Γ ⊆ ∆. By (H1) and [t.Var] we
know that x : τ ∈ Γ, then, by definition of (_ ∈ _) and (_ ⊆ _) it must be the
case that x : τ ∈ ∆ (F1).
With (F1) and [t.Var] we obtain Ψ; C; ∆ ⊢ x : τ which is equivalent to
Ψ; C; Γ, y : τ ′ ⊢ x : τ by definition of ∆.

• Case [t.Lam]: Ψ; C; Γ ⊢ λx.e′ : (τ1 → τ2)

By inductive hypothesis in Ψ; C; Γ, x : τ1 ⊢ e′ : τ2 we get:

Ψ; C; Γ, x : τ1, y : τ ′ ⊢ e′ : τ2 (IH’)

By (IH’) and exchange (Lemma B.3) we have that:

Ψ; C; Γ, y : τ ′, x : τ1 ⊢ e′ : τ2

then, by [t.Var] we obtain:

Ψ; C; Γ, y : τ ′ ⊢ λx.e′ : (τ1 → τ2)

The rest of the cases are trivial.

Lemma B.5. RelationDJ_Kρd is preserved under interpretation of distance terms. Con-

cretely, if (v1, v2) ∈ DJσKρd then (v1, v2) ∈ DJσK(∅,ρ.l)JdKρ.d

Proof. By structural induction on σ

• Case σ = R

Goal: ∀v1, v2, ρ, d. (v1, v2) ∈ DJRKρd ⇒ (v1, v2) ∈ DJRK(∅,ρ.l)JdKρ.d

(v1, v2) ∈ DJRKρd
≡⟨By cases in v1, v2⟩
(N n1,N n2) ∈ DJRKρd
≡⟨By def of DJ_Kρd at R⟩
|n1 − n2| ⩽ JdKρ.d (H)

Let JdKρ.d = r (F1) then (H) can be rewritten as |n1 − n2| ⩽ r (H’)
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Now, lets consider our objective

(v1, v2) ∈ DJRK(∅,ρ.l)JdKρ.d

≡⟨By (F1)⟩
(v1, v2) ∈ DJRK(∅,ρ.l)r

≡⟨By cases in v1, v2⟩
(N n1,N n2) ∈ DJRK(∅,ρ.l)r

≡⟨ By def of DJ_Kρd at R⟩
|n1 − n2| ⩽ JrK∅
≡⟨By def of JrKρ.d⟩
|n1 − n2| ⩽ r

Which is proven by (H’)

• Case σ = σ1 × σ2

Goal: ∀v1, v2, ρ, d. (v1, v2) ∈ DJσ1 × σ2K
ρ
d ⇒ (v1, v2) ∈ DJσ1 × σ2K

(∅,ρ.l)
JdKρ.d

(v1, v2) ∈ DJσ1 × σ2K
ρ
d

≡⟨By cases in v1, v2⟩
((v11, v21), (v12, v22)) ∈ DJσ1 × σ2K

ρ
d

≡⟨By def of DJ_Kρd at (_× _)⟩
∃d1, d2. ρ.d |= d = d1 + d2 (H1)

∧ (v11, v12) ∈ DJσ1K
ρ
d1

(H2)
∧ (v21, v22) ∈ DJσ2K

ρ
d2

(H3)

Consider the IHs in σ1 and σ2

∀v′11, v′12, ρ1, d′1. (v′11, v′12) ∈ DJσ1K
ρ1

d′
1
⇒ (v′11, v

′
12) ∈ DJσ1K

(∅,ρ1.l)
Jd′

1Kρ1.d
(IH1)

∀v′21, v′22, ρ2, d′2. (v′21, v′22) ∈ DJσ2K
ρ2

d′
2
⇒ (v′21, v

′
22) ∈ DJσ2K

(∅,ρ2.l)
Jd′

2Kρ2.d
(IH2)

Let v′11 = v11, v′12 = v12, ρ1 = ρ, and d′1 = d1; then by (H2) and (IH1) we get:

(v11, v12) ∈ DJσ1K
(∅,ρ.l)
Jd1Kρ.d

(IH1’)

Similarly, let v′21 = v21, v′22 = v22, ρ2 = ρ, and d′2 = d2; then, by (H3) and
(IH2) we get:

(v21, v22) ∈ DJσ2K
(∅,ρ.l)
Jd2Kρ.d

(IH2’)
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Take Jd1Kρ.d = r1 (F1) and Jd2Kρ.d = r2 (F2), then (IH1’) and (IH2’) can be
rewritten as:

(v11, v12) ∈ DJσ1K(∅,ρ.l)r1 ∧ (v21, v22) ∈ DJσ2K(∅,ρ.l)r2 (IH’)

Moreover, by (H1) we know that ρ.d |= d = d1 + d2, then by definition of
(_ |= _) it must be the case that JdKρ.d ≡ Jd1Kρ.d+ Jd2Kρ.d, which, by (F1) and
(F2), is equivalent to JdKρ.d ≡ r1 + r2 (F3).
Recall our objective

(v1, v2) ∈ DJσ1 × σ2K
(∅,ρ.l)
JdKρ.d

≡⟨By cases in v1, v2 together with (F3)⟩

((v11, v21), (v12, v22)) ∈ DJσ1 × σ2K
(∅,ρ.l)
(r1+r2)

≡⟨By def of DJ_Kρd at (_× _)⟩
∃d∗1, d∗2. ∅ |= r1 + r2 = d∗1 + d∗2 (G1)

∧ (v11, v12) ∈ DJσ1K
(∅,ρ.l)
d∗
1

(G2)

∧ (v21, v22) ∈ DJσ2K
(∅,ρ.l)
d∗
2

(G3)

Take d∗1 = r1 and d∗2 = r2, then (G1) is trivially proven by definition of
(_ |= _). Lastly, (G2) and (G3) are directly proven by (IH’).

Lemma B.6. If i /∈ FV(σ) and i /∈ vars(d) then (v1, v2) ∈ DJσKρd ≡ (v1, v2) ∈
DJσKρ\id . In other words:

∀σ, v1, v2, ρ, i, d. i /∈ FV(σ) (H1)
∧ i /∈ vars(d) (H2)

⇒ (v1, v2) ∈ DJσKρd ≡ (v1, v2) ∈ DJσKρ\id (C)

Proof. By structural induction on σ.

• Case σ = R
Let’s analyze the left-hand side of the equivalence:

(v1, v2) ∈ DJRKρd
≡⟨By cases in v1, v2⟩
(N n1,N n2) ∈ DJRKρd
≡⟨By def of DJ_Kρd at R⟩
|n1 − n2| ⩽ JdKρ.d

By (H2) we know that i /∈ vars(d), then JdKρ.d ≡ JdKρ.d\i (F1) by definition of
J_Kρ.d. Then
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|n1 − n2| ⩽ JdKρ.d
≡⟨By (F1)⟩
|n1 − n2| ⩽ JdKρ.d\i
≡⟨By def of DJ_Kρd at R and def of ρ⟩

(N n1,N n2) ∈ DJRKρ\id

≡⟨By cases in v1, v2 we got v1 = N n1, v2 = N n2⟩

(v1, v2) ∈ DJRKρ\id

• Case σ = σ1 × σ2

Our goal is

∀v1, v2, ρ, i, d. i /∈ FV(σ1 × σ2) (H1)
∧ i /∈ vars(d) (H2)

⇒ (v1, v2) ∈ DJσ1 × σ2K
ρ
d ≡ (v1, v2) ∈ DJσ1 × σ2K

ρ\i
d (C)

And the IH in σ1 and σ2 are of the form:

∀v′11, v′12, ρ1, i1, d′1. i1 /∈ FV(σ1) (P1.1)
∧ i1 /∈ vars(d′1) (P1.2)

⇒ (v′11, v
′
12) ∈ DJσ1K

ρ1

d′
1
≡ (v′11, v

′
12) ∈ DJσ1K

ρ1\i1
d′
1

(IH1)

∀v′21, v′22, ρ2, i2, d′2. i2 /∈ FV(σ2) (P2.1)
∧ i2 /∈ vars(d′2) (P2.2)

⇒ (v′21, v
′
22) ∈ DJσ2K

ρ2

d′
2
≡ (v′21, v

′
22) ∈ DJσ2K

ρ2\i2
d′
2

(IH2)

Now, to prove (C) we can decompose it in both directions of the equivalence
as follows:
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∀v1, v2, ρ, i, d. i /∈ FV(σ1 × σ2) (H1.1)
∧ i /∈ vars(d) (H1.2)
∧ (v1, v2) ∈ DJσ1 × σ2K

ρ
d (H1.3)

⇒ (v1, v2) ∈ DJσ1 × σ2K
ρ\i
d (C1)

∀v1, v2, ρ, i, d. i /∈ FV(σ1 × σ2) (H2.1)
∧ i /∈ vars(d) (H2.2)

∧ (v1, v2) ∈ DJσ1 × σ2K
ρ\i
d (H2.3)

⇒ (v1, v2) ∈ DJσ1 × σ2K
ρ
d (C2)

Let’s start by proving (C1). Expanding (H1.3) we have:

(v1, v2) ∈ DJσ1 × σ2K
ρ
d

≡⟨By cases in v1, v2⟩
((v11, v21), (v12, v22)) ∈ DJσ1 × σ2K

ρ
d

≡⟨By def of DJ_Kρd at (_× _)⟩
∃d1, d2. ρ.d |= d = d1 + d2 (H1.3.1)

∧ (v11, v12) ∈ DJσ1K
ρ
d1

(H1.3.2)
∧ (v21, v22) ∈ DJσ2K

ρ
d2

(H1.3.3)

Recall the IH in σ1 (IH1) and σ2 (IH2). Let v′11 = v11, v′12 = v12, v′21 = v21,
v′22 = v22, ρ1 = ρ2 = ρ, i1 = i2 = i, d′1 = d1, and d′2 = d2.
By (H1.1) we know that i /∈ FV(σ1 × σ2), then, it must be the case that
i /∈ FV(σ1) and i /∈ FV(σ2), proving (P1.1) and (P2.1), respectively. Moreover,
since i /∈ vars(d) (H1.2) and ρ.d |= d = d1 + d2 (H1.3.1) it must follow that
i /∈ vars(d1) and i /∈ vars(d2)1, proving (P1.2) and (P2.2). Lastly, since ρ.d |=
d = d1 + d2 and i /∈ vars(d)∪ vars(d1)∪ vars(d2), then ρ.d\i |= d = d1 + d2
(F1) by definition of (_ |= _).
Having fulfilled the preconditions (P1.1-2) and (P2.1-2) we conclude by (IH1)
and (IH2) that:

(v11, v12) ∈ DJσ1K
ρ
d1
≡ (v11, v12) ∈ DJσ1K

ρ\i
d1

(IH’1)

∧ (v21, v22) ∈ DJσ2K
ρ
d2
≡ (v21, v22) ∈ DJσ2K

ρ\i
d2

(IH’2)
1To be precise, LRs must be parametric on Ψ and the existentials on relational pairs (and vectors)

should be of the form ∃d1, d2. ρ.d |= d = d1 + d2 ∧ vars(d1) ∪ vars(d2) ⊆ Ψ.d. Then the lemma
should refer to variable freshness in terms of i /∈ Ψ.d instead of i /∈ FV(σ). Adapting these changes in
the definition over complicates the notation hence it is omitted.
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We have

∃d1, d2. ρ.d |= d = d1 + d2 ∧ (v11, v12) ∈ DJσ1K
ρ
d1
∧ (v21, v22) ∈ DJσ2K

ρ
d2

≡⟨By (F1), (IH’1), and (IH’2)⟩

∃d1, d2. ρ.d\i |= d = d1 + d2 ∧ (v11, v12) ∈ DJσ1K
ρ\i
d1
∧ (v21, v22) ∈ DJσ2K

ρ\i
d2

≡⟨By def of DJ_Kρd at (_× _)⟩

((v11, v21), (v12, v22)) ∈ DJσ1 × σ2K
ρ\i
d

≡⟨By cases in v1, v2 we got v1 = (v11, v21), v2 = (v12, v22)⟩

(v1, v2) ∈ DJσ1 × σ2K
ρ\i
d

Which is no less than our goal (C1). The proof of (C2) follows the same rea-
soning as that of (C1).

Lemma B.7. If i /∈ FV(τ) then (v1, v2) ∈ VJτKρ ≡ (v1, v2) ∈ VJτKρ\i. In other

words:

∀τ, v1, v2, ρ, i. i /∈ FV(τ) (H)
⇒ (v1, v2) ∈ VJτKρ ≡ (v1, v2) ∈ VJτKρ\i (C)

Proof. By structural induction on τ .

• Case τ = R

Let’s analyze the left-hand side of the equivalence:

(v1, v2) ∈ VJRKρ

≡⟨By def of VJ_Kρ at R⟩
v1 ≡ v2 (LH)

Similarly, we can inspect the right-hand side of the equivalence

(v1, v2) ∈ VJRKρ\i

≡⟨By def of VJ_Kρ at R⟩
v1 ≡ v2 (RH)

Then it is clear that (LH) ≡ (RH)
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• Case τ = τ1 × τ2

Our goal is

∀v1, v2, ρ, i. i /∈ FV(τ1 × τ2) (H)
⇒ (v1, v2) ∈ VJτ1 × τ2Kρ ≡ (v1, v2) ∈ VJτ1 × τ2Kρ\i (C)

And the IH in τ1 and τ2 are of the form:

∀v11, v12, ρ1, i1. i1 /∈ FV(τ1) (P1)
⇒ (v11, v12) ∈ VJτ1Kρ1 ≡ (v11, v12) ∈ VJτ1Kρ1\i1 (IH1)

∀v21, v22, ρ2, i2. i2 /∈ FV(τ2) (P2)
⇒ (v21, v22) ∈ VJτ2Kρ2 ≡ (v21, v22) ∈ VJτ2Kρ2\i2 (IH2)

Now, to prove (C) we can decompose it in both directions of the equivalence
as follows:

∀v1, v2, ρ, i. i /∈ FV(τ1 × τ2) (H1.1)
∧ (v1, v2) ∈ VJτ1 × τ2Kρ (H1.2)
⇒ (v1, v2) ∈ VJτ1 × τ2Kρ\i (C1)

∀v1, v2, ρ, i. i /∈ FV(τ1 × τ2) (H2.1)
∧ (v1, v2) ∈ VJτ1 × τ2Kρ\i (H2.2)
⇒ (v1, v2) ∈ VJτ1 × τ2Kρ (C2)

Let’s start by proving (C1). Expanding (H1.2) we have:

(v1, v2) ∈ VJτ1 × τ2Kρ

≡⟨By cases in v1, v2⟩
((v′11, v

′
21), (v

′
12, v

′
22)) ∈ VJτ1 × τ2Kρ

≡⟨By def of VJ_Kρ at (_× _)⟩
(v′11, v

′
12) ∈ VJτ1Kρ ∧ (v′21, v

′
22) ∈ VJτ2Kρ (H’1.2)

Recall the IH in τ1 (IH1) and τ2 (IH2). Let v11 = v′11, v12 = v′12, v21 = v′21,
v22 = v′22, ρ1 = ρ2 = ρ, and i1 = i2 = i.
By (H1.1) we know i /∈ FV(τ1 × τ2), then it must be the case that i /∈ FV(τ1)
(proving (P1)), and i /∈ FV(τ2) (proving (P2)). Having fulfilled the precondi-
tions (P1) and (P2) we can conclude form (IH1) and (IH2) that:
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(v′11, v
′
12) ∈ VJτ1Kρ ≡ (v′11, v

′
12) ∈ VJτ1Kρ\i (IH1’)

∧ (v′21, v
′
22) ∈ VJτ2Kρ ≡ (v′21, v

′
22) ∈ VJτ2Kρ\i (IH2’)

In (H’1.2) we have

(v′11, v
′
12) ∈ VJτ1Kρ ∧ (v′21, v

′
22) ∈ VJτ2Kρ

≡⟨By (IH’1) and (IH’2)⟩
(v′11, v

′
12) ∈ VJτ1Kρ\i ∧ (v′21, v

′
22) ∈ VJτ2Kρ\i

≡⟨By def of VJ_Kρ at (_× _)⟩
((v′11, v

′
21), (v

′
12, v

′
22)) ∈ VJτ1 × τ2Kρ\i

≡⟨By cases in v1, v2 we got v1 = (v′11, v
′
21), v2 = (v′12, v

′
22)⟩

(v1, v2) ∈ VJτ1 × τ2Kρ\i

Which is no less than our goal (C1). The proof of (C2) follows the same rea-
soning as that of (C1).

• Case τ = τ1 → τ2

Our goal is

∀v1, v2, ρ, i. i /∈ FV(τ1 → τ2) (H)
⇒ (v1, v2) ∈ VJτ1 → τ2Kρ ≡ (v1, v2) ∈ VJτ1 → τ2Kρ\i (C)

And the IH in τ1 and τ2 are of the form:

∀v11, v12, ρ1, i1. i1 /∈ FV(τ1) (P1)
⇒ (v11, v12) ∈ VJτ1Kρ1 ≡ (v11, v12) ∈ VJτ1Kρ1\i1 (IH1)

∀v21, v22, ρ2, i2. i2 /∈ FV(τ2) (P2)
⇒ (v21, v22) ∈ VJτ2Kρ2 ≡ (v21, v22) ∈ VJτ2Kρ2\i2 (IH2)

Now, to prove (C) we can decompose it in both directions of the equivalence
as follows:

∀v1, v2, ρ, i. i /∈ FV(τ1 → τ2) (H1.1)
∧ (v1, v2) ∈ VJτ1 → τ2Kρ (H1.2)
⇒ (v1, v2) ∈ VJτ1 → τ2Kρ\i (C1)

∀v1, v2, ρ, i. i /∈ FV(τ1 → τ2) (H2.1)
∧ (v1, v2) ∈ VJτ1 → τ2Kρ\i (H2.2)
⇒ (v1, v2) ∈ VJτ1 → τ2Kρ (C2)
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Let’s start by proving (C1). Expanding (H1.2) we have:

(v1, v2) ∈ VJτ1 → τ2Kρ

≡⟨By cases in v1, v2⟩
(⟨λx.e1 | γ1⟩, ⟨λx.e2 | γ2⟩) ∈ VJτ1 → τ2Kρ

≡⟨By def of VJ_Kρ at (_→ _)⟩
∀u11, u12. (u11, u12) ∈ VJτ1Kρ

⇒ (γ1 ⊢ λx.e1 @ u11, γ2 ⊢ λx.e2 @ u12) ∈ EJτ2KρΓ
≡⟨By def of EJ_KρΓ⟩
∀u11, u12, u

∗
11, u

∗
12. (u11, u12) ∈ VJτ1Kρ (A1.1)

∧ γ1 ⊢ λx.e1 @ u11 ⇓ u∗
11 (A1.2)

∧ γ2 ⊢ λx.e2 @ u12 ⇓ u∗
12 (A1.3)

⇒ (u∗
11, u

∗
12) ∈ VJτ2Kρ (H’1.2)

Similarly, we can inspect the goal (C1) as follows:

(v1, v2) ∈ VJτ1 → τ2Kρ\i

≡⟨By cases in v1, v2⟩
(⟨λx.e1 | γ1⟩, ⟨λx.e2 | γ2⟩) ∈ VJτ1 → τ2Kρ\i

≡⟨By def of VJ_Kρ at (_→ _)⟩
∀u21, u22. (u21, u22) ∈ VJτ1Kρ\i

⇒ (γ1 ⊢ λx.e1 @ u21, γ2 ⊢ λx.e2 @ u22) ∈ EJτ2Kρ\iΓ

≡⟨By def of EJ_KρΓ⟩
∀u21, u22, u

∗
21, u

∗
22. (u21, u22) ∈ VJτ1Kρ\i (H1.3)

∧ γ1 ⊢ λx.e1 @ u21 ⇓ u∗
21 (H1.4)

∧ γ2 ⊢ λx.e2 @ u22 ⇓ u∗
22 (H1.5)

⇒ (u∗
21, u

∗
22) ∈ VJτ2Kρ\i (C1’)

Let u11 = u21, u12 = u22, u∗
11 = u∗

21, and u∗
12 = u∗

22. Observe that we
can simplify (H’1.2) since (H1.4) and (H1.5) satisfy the conditions (A1.2), and
(A1.3), respectively. With this, our objective is of the form:
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∀u11, u12, u
∗
11, u

∗
12, ρ, i. i /∈ FV(τ1 → τ2) (H1.1)

∧ ((u11, u12) ∈ VJτ1Kρ ⇒ (u∗
11, u

∗
12) ∈ VJτ2Kρ) (H’1.2)

∧ (u11, u12) ∈ VJτ1Kρ\i (H1.3)
∧ γ1 ⊢ λx.e1 @ u11 ⇓ u∗

11 (H1.4)
∧ γ2 ⊢ λx.e2 @ u12 ⇓ u∗

12 (H1.5)
⇒ (u∗

11, u
∗
12) ∈ VJτ2Kρ\i (C1’)

Now, recall the IH in τ1 (IH1) and τ2 (IH2). Let i1 = i2 = i, ρ1 = ρ2 = ρ,
v11 = u11, v12 = u12, v21 = u∗

11, and v22 = u∗
12. By (H1.1) we know that

i /∈ FV(τ1 → τ2), then it must be the case that i /∈ FV(τ1) (proving (P1)), and
i /∈ FV(τ2) (proving (P2)). Then, from (IH1) and (IH2) we conclude:

(u11, u12) ∈ VJτ1Kρ ≡ (u11, u12) ∈ VJτ1Kρ\i (IH1’)
∧ (u∗

11, u
∗
12) ∈ VJτ2Kρ ≡ (u∗

11, u
∗
12) ∈ VJτ2Kρ\i (IH2’)

By (H1.3) and (IH’1) we get (u11, u12) ∈ VJτ1Kρ which can be applied to
(H’1.2) to obtain (u∗

11, u
∗
12) ∈ VJτ2Kρ, then, by (IH’2) we get (u∗

11, u
∗
12) ∈

VJτ2Kρ\i which is exactly our goal (C1’).
Proving (C2) follows the same reasoning as (C1).

• Case τ = Rel d σ is proven by Lemma B.6

Lemma B.8. If (v1, v2) ∈ VJτKρ, i /∈ FV(τ) then (v1, v2) ∈ VJτKρ\i.

Proof. Follows from Lemma B.7

B.E.1 Fundamental lemma of logical relations

Lemma B.9. Let a well typed expression Ψ; C; Γ ⊢ e : τ be given. For any ρ for

which Ψ ⊆ dom(ρ) and ρ |= C; suppose γ1, γ2 are two substitutions for Γ such that

(γ1, γ2) ∈ SJΓKρ, then we have (γ1 ⊢ e, γ2 ⊢ e) ∈ EJτKρΓ. In other words:

∀ Ψ, C,Γ, e, τ, ρ, γ1, γ2. Ψ; C; Γ ⊢ e : τ (H1)
∧ Ψ ⊆ dom(ρ) ∧ ρ |= C (H2)
∧ (γ1, γ2) ∈ SJΓKρ (H3)
⇒ (γ1 ⊢ e, γ2 ⊢ e) ∈ EJτKρΓ (C)

Proof. By induction on the typing derivations of e
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• Case [t.Var]: Ψ; C; Γ ⊢ x : τ

Goal : ∀ρ, γ1, γ2. (γ1 ⊢ x, γ2 ⊢ x) ∈ EJτKρΓ
≡ ∀ρ, γ1, γ2, v1, v2.

γ1 ⊢ x ⇓ v1 ∧ (H4)
γ2 ⊢ x ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJτKρ (C’)

By e.Var we know γ1 ⊢ x ⇓ γ1(x), and γ2 ⊢ x ⇓ γ2(x). Let v1 = γ1(x)
and v2 = γ2(x); then we need to show that (γ1(x), γ2(x)) ∈ VJτK which is
proven by (H3) and definition of SJ_Kρ.

• Case [t.Num] : Ψ; C; Γ ⊢ n : R

Goal : ∀ρ, γ1, γ2. (γ1 ⊢ n, γ2 ⊢ n) ∈ EJRKρΓ
≡ ∀ρ, γ1, γ2, v1, v2.

γ1 ⊢ n ⇓ v1 ∧ (H4)
γ2 ⊢ n ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJRKρ (C’)

By e.Num we have v1 ≡ v2 ≡ n, which satisfies the definition of VJ_Kρ at R

• Case [t.Add]: Ψ; C; Γ ⊢ (e1 + e2) : R

Goal : ∀ρ, γ1, γ2. (γ1 ⊢ (e1 + e2), γ2 ⊢ (e1 + e2)) ∈ EJRKρΓ
≡ ∀ρ, γ1, γ2, v1, v2.

γ1 ⊢ (e1 + e2) ⇓ v1 ∧ (H4)
γ2 ⊢ (e1 + e2) ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJRKρ (C’)

Consider the IH on both sub-expressions
Ψ; C; Γ ⊢ e1 : R

∀ρ1, γ11, γ12.Ψ ⊆ dom(ρ1) ∧ ρ1 |= C ∧ (γ11, γ12) ∈ SJΓKρ1

xz““‘ ⇒ (γ11 ⊢ e1, γ12 ⊢ e1) ∈ EJRKρ1

Γ

≡ ∀ρ1, γ11, γ12, v11, v12.
Ψ ⊆ dom(ρ1) ∧ ρ1 |= C (P1.1)
∧ (γ11, γ12) ∈ SJΓKρ1 (P1.2)
∧ γ11 ⊢ e1 ⇓ v11 (P1.3)
∧ γ12 ⊢ e1 ⇓ v12 (P1.4)
⇒ (v11, v12) ∈ VJRKρ1 (IH1.1)
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Ψ; C; Γ ⊢ e2 : R

∀ρ2, γ21, γ22.Ψ ⊆ dom(ρ2) ∧ ρ2 |= C ∧ (γ21, γ22) ∈ SJΓKρ2

⇒ (γ21 ⊢ e2, γ22 ⊢ e2) ∈ EJRKρ2

Γ

≡ ∀ρ2, γ21, γ22, v21, v22.
Ψ ⊆ dom(ρ2) ∧ ρ2 |= C (P2.1)
∧ (γ21, γ22) ∈ SJΓKρ2 (P2.2)
∧ γ21 ⊢ e2 ⇓ v21 (P2.3)
∧ γ22 ⊢ e2 ⇓ v22 (P2.4)
⇒ (v21, v22) ∈ VJRKρ2 (IH2.1)

Let ρ1 = ρ2 = ρ (F1), then we can prove (P1.1) and (P2.1) by (H2).

Let γ11 = γ21 = γ1 (F1.1) and γ12 = γ22 = γ2 (F2.1). Then, by (H3), (F1),
(F1.1), and (F2.1) we can prove (P1.2) and (P2.2), respectively.

By (H4), (H5), and cases on the evaluation relation (_ ⇓ _):

γ1 ⊢ (e1 + e2) ⇓ v1

⇒ γ1 ⊢ e1 ⇓ v′11 ∧ γ1 ⊢ e2 ⇓ v′21 ∧ v1 = v′11 + v′21 (F1.2)
γ2 ⊢ (e1 + e2) ⇓ v2

⇒ γ2 ⊢ e1 ⇓ v′12 ∧ γ2 ⊢ e2 ⇓ v′22 ∧ v2 = v′12 + v′22 (F2.2)

Let v11 = v′11 (F1.3) and v12 = v′12 (F1.4), then (P1.3) and (P1.4) are proven by
(F1.1-4) and F(2.1-2). Similarly, making v21 = v′21 (F1.3) and v22 = v′22 (F2.4),
we can prove (P2.3) and (P2.4) by (F1.1-2) and F(2.1-4).

Having fulfilled the preconditions for (IH1.1) and (IH2.1) we can conclude that
(v11, v12) ∈ VJRKρ and (v21, v22) ∈ VJRKρ, which, by definition of VJ_Kρ at
R, implies that v11 ≡ v12 (F1.5) and v21 ≡ v22 (F2.5).

Recall our objective (C’)

(v1, v2) ∈ VJRKρ

≡⟨By (F1.2-4) and (F2.2-4)⟩
((v11 + v21), (v12 + v22)) ∈ VJRKρ

≡⟨By def of VJ_Kρ at R⟩
(v11 + v21) ≡ (v12 + v22)

≡⟨By (F1.5) and (F2.5)⟩
(v11 + v21) ≡ (v11 + v21)

Thus proving (C’) and consequently (C).



B.E. PROOF OF METRIC PRESERVATION AND ACCOMPANYING LEMMAS 115

• Case [t.Pair]: Ψ; C; Γ ⊢ (e1, e2) : (τ1 × τ2)

Goal : ∀ρ, γ1, γ2. (γ1 ⊢ (e1, e2), γ2 ⊢ (e1, e2)) ∈ EJτ1 × τ2K
ρ
Γ

≡ ∀ρ, γ1, γ2, v1, v2.
γ1 ⊢ (e1, e2) ⇓ v1 ∧ (H4)
γ2 ⊢ (e1, e2) ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJτ1 × τ2Kρ (C’)

Similar to the previous case, we consider the IH on both sub-expressions
Ψ; C; Γ ⊢ e1 : τ1

∀ρ1, γ11, γ12.Ψ ⊆ dom(ρ1) ∧ ρ1 |= C ∧ (γ11, γ12) ∈ SJΓKρ1

⇒ (γ11 ⊢ e1, γ12 ⊢ e1) ∈ EJτ1Kρ1

Γ

≡ ∀ρ1, γ11, γ12, v11, v12.
Ψ ⊆ dom(ρ1) ∧ ρ1 |= C (P1.1)
∧ (γ11, γ12) ∈ SJΓKρ1 (P1.2)
∧ γ11 ⊢ e1 ⇓ v11 (P1.3)
∧ γ12 ⊢ e1 ⇓ v12 (P1.4)
⇒ (v11, v12) ∈ VJτ1Kρ1 (IH1.1)

Ψ; C; Γ ⊢ e2 : τ2

∀ρ2, γ21, γ22.Ψ ⊆ dom(ρ2) ∧ ρ2 |= C ∧ (γ21, γ22) ∈ SJΓKρ2

⇒ (γ21 ⊢ e2, γ22 ⊢ e2) ∈ EJτ2Kρ2

Γ

≡ ∀ρ2, γ21, γ22, v21, v22.
Ψ ⊆ dom(ρ2) ∧ ρ2 |= C (P2.1)
∧ (γ21, γ22) ∈ SJΓKρ2 (P2.2)
∧ γ21 ⊢ e2 ⇓ v21 (P2.3)
∧ γ22 ⊢ e2 ⇓ v22 (P2.4)
⇒ (v21, v22) ∈ VJτ2Kρ2 (IH2.1)

We take ρ1 = ρ2 = ρ (F1) and prove (P1.1) and (P2.1) by (H2).
With γ11 = γ21 = γ1 (F1.1), γ12 = γ22 = γ2 (F2.1), (H3), and (F1), we can
prove (P1.2) and (P2.2).
By (H4), (H5), and cases on the evaluation relation (_ ⇓ _):

γ1 ⊢ (e1, e2) ⇓ v1

⇒ γ1 ⊢ e1 ⇓ v′11 ∧ γ1 ⊢ e2 ⇓ v′21 ∧ v1 = (v′11, v
′
21) (F1.2)

γ2 ⊢ (e1, e2) ⇓ v2

⇒ γ2 ⊢ e1 ⇓ v′12 ∧ γ2 ⊢ e2 ⇓ v′22 ∧ v2 = (v′12, v
′
22) (F2.2)
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Let v11 = v′11 (F1.3) and v12 = v′12 (F1.4), then (P1.3) and (P1.4) are proven by
(F1.1-4) and F(2.1-2). Similarly, making v21 = v′21 (F1.3) and v22 = v′22 (F2.4),
we can prove (P2.3) and (P2.4) by (F1.1-2) and F(2.1-4).
Having fulfilled the preconditions for (IH1.1) and (IH2.1) we can conclude that
(v11, v12) ∈ VJτ1Kρ (F1.5) and (v21, v22) ∈ VJτ2Kρ (F2.5).
Recall our objective (C’)

(v1, v2) ∈ VJτ1 × τ2Kρ

≡⟨By (F1.2-4) and (F2.2-4)⟩
((v11, v21), (v12, v22)) ∈ VJτ1 × τ2Kρ

≡⟨By def of VJ_Kρ at (_× _)⟩
(v11, v12) ∈ VJτ1Kρ ∧ (v21, v22) ∈ VJτ2Kρ

Which are proven by (F1.5) and (F2.5).

• Case [t.Fst]: Ψ; C; Γ ⊢ fst e′ : τ1

Goal : ∀ρ, γ1, γ2. (γ1 ⊢ fst e′, γ2 ⊢ fst e′) ∈ EJτ1KρΓ
≡ ∀ρ, γ1, γ2, v1, v2.

γ1 ⊢ fst e′ ⇓ v1 ∧ (H4)
γ2 ⊢ fst e′ ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJτ1Kρ (C’)

Consider the IH on Ψ; C; Γ ⊢ e′ : τ1 × τ2

∀ρ′, γ′
1, γ

′
2.Ψ ⊆ dom(ρ′) ∧ ρ′ |= C ∧ (γ′

1, γ
′
2) ∈ SJΓKρ

′

⇒ (γ′
1 ⊢ e′, γ′

2 ⊢ e′) ∈ EJτ1 × τ2K
ρ′

Γ

≡ ∀ρ′, γ′
1, γ

′
2, v

′
1, v

′
2.

Ψ ⊆ dom(ρ′) ∧ ρ′ |= C (P1)

∧ (γ′
1, γ

′
2) ∈ SJΓKρ

′
(P2)

∧ γ′
1 ⊢ e′ ⇓ v′1 (P3)

∧ γ′
2 ⊢ e′ ⇓ v′2 (P4)

⇒ (v′1, v
′
2) ∈ VJτ1 × τ2Kρ

′
(IH)

With ρ′ = ρ, γ′
1 = γ1, and γ′

2 = γ2, preconditions (P1) and (P2) are proven by
(H2) and (H3), respectively.
By (H4), (H5), and cases on the evaluation relation (_ ⇓ _):

γ1 ⊢ fst e′ ⇓ v1 ⇒ γ1 ⊢ e′ ⇓ (v∗1 , x) ∧ v1 = v∗1 (F1)
γ2 ⊢ fst e′ ⇓ v2 ⇒ γ2 ⊢ e′ ⇓ (v∗2 , y) ∧ v2 = v∗2 (F2)
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With v′1 = (v∗1 , x) (F3) and v′2 = (v∗2 , y) (F4) preconditions (P3) and (P4) are
proven by (F1-4). Having (P1-4) fulfilled we have:

(v′1, v
′
2) ∈ VJτ1 × τ2Kρ

≡⟨By (F3) and (F3)⟩
((v∗1 , x), (v

∗
2 , y)) ∈ VJτ1 × τ2Kρ

≡⟨By def of VJ_Kρ at (_× _)⟩
(v∗1 , v

∗
2) ∈ VJτ1Kρ ∧ (x, y) ∈ VJτ2Kρ

≡⟨By simplification and (F1), (F2)⟩
(v1, v2) ∈ VJτ1Kρ

Which is exactly our goal (C’).

• Case [t.Snd]: Ψ; C; Γ ⊢ snd e′ : τ2

Similarly as the case of t.Fst

• Case [t.Lam]: Ψ; C; Γ ⊢ λx.e′ : τ1 → τ2

Goal : ∀ρ, γ1, γ2. (γ1 ⊢ λx.e′, γ2 ⊢ λx.e′) ∈ EJτ1 → τ2K
ρ
Γ

≡ ∀ρ, γ1, γ2, v1, v2.
γ1 ⊢ λx.e′ ⇓ v1 ∧ (H4)
γ2 ⊢ λx.e′ ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJτ1 → τ2Kρ (C’)

By (H4), (H5), and cases on the evaluation relation (_ ⇓ _):

γ1 ⊢ λx.e′ ⇓ v1 ⇒ v1 = ⟨λx.e′ | γ1⟩ (F1)
γ2 ⊢ λx.e′ ⇓ v2 ⇒ v2 = ⟨λx.e′ | γ2⟩ (F2)

Then, we can rewrite our objective (C’) as follows:

(v1, v2) ∈ VJτ1 → τ2Kρ

≡⟨By (F1), (F2)⟩
(⟨λx.e′ | γ1⟩, ⟨λx.e′ | γ2⟩) ∈ VJτ1 → τ2Kρ

≡⟨By def of VJ_Kρ at (_→ _)⟩
∀v′1, v′2. (v′1, v′2) ∈ VJτ1Kρ ⇒ (γ1 ⊢ λx.e′ @ v′1, γ2 ⊢ λx.e′ @ v′2) ∈ EJτ2K

ρ
Γ

≡⟨By def of EJ_Kρ⟩
∀v′1, v′2, v13, v23. (v′1, v′2) ∈ VJτ1Kρ (H6)
∧ γ1 ⊢ λx.e′ @ v′1 ⇓ v13 (H7)
∧ γ2 ⊢ λx.e′ @ v′2 ⇓ v23 (H8)
⇒ (v13, v23) ∈ VJτ2Kρ (C”)
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By (H7), (H8), (F1), (F2), and cases on (_ ⇓ _) we know that:

γ1 ⊢ λx.e′ @ v′1 ⇓ v13 ⇒ γ1 ⊢ λx.e′ ⇓ ⟨λx.e′ | γ1⟩ ∧ γ1 ⊢ v′1 ⇓ v′1

∧ γ1[x := v′1] ⊢ e′ ⇓ v13 (F3)
γ2 ⊢ λx.e′ @ v′2 ⇓ v23 ⇒ γ2 ⊢ λx.e′ ⇓ ⟨λx.e′ | γ2⟩ ∧ γ2 ⊢ v′2 ⇓ v′2

∧ γ2[x := v′2] ⊢ e′ ⇓ v23 (F4)

Now consider the IH on Ψ; C; Γ, x : τ1 ⊢ e′ : τ2

∀ρ′, γ′
1, γ

′
2.

Ψ ⊆ dom(ρ′) ∧ ρ′ |= C (P1)

∧ (γ′
1, γ

′
2) ∈ SJΓ, x : τ1Kρ

′
(P2)

⇒ (γ′
1 ⊢ e′, γ′

2 ⊢ e′) ∈ EJτ2Kρ
′

Γ,x:τ1
(IH)

Let ρ′ = ρ such that (P1) is proven by (H2).

Take γ′
1 = γ1[x := v′1] and γ′

2 = γ2[x := v′2]. Since (γ1, γ2) ∈ SJΓKρ (by
(H3)), and (v′1, v′2) ∈ VJτ1Kρ (by (H6)), then it follows that (γ′

1, γ
′
2) ∈ SJΓ, x :

τ1Kρ (by definition of SJ_Kρ), which proves (P2). Then we can apply (IH) and
obtain:

(γ1[x := v′1] ⊢ e′, γ2[x := v′2] ⊢ e′) ∈ EJτ2KρΓ,x:τ1
≡⟨By def of EJ_Kρ⟩
∀v∗1 , v∗2 . γ1[x := v′1] ⊢ e′ ⇓ v∗1 ∧ γ2[x := v′2] ⊢ e′ ⇓ v∗2

⇒ (v∗1 , v
∗
2) ∈ VJτ2Kρ (IH’)

If we take v∗1 = v13 and v∗2 = v23, then, by (F3) and (F4) we know that
γ1[x := v′1] ⊢ e′ ⇓ v∗1 and γ2[x := v′2] ⊢ e′ ⇓ v∗2 allowing us to conclude (by
(IH’)) that (v∗1 , v∗2) ∈ VJτ2Kρ, which can be rewritten as (v13, v23) ∈ VJτ2Kρ
proving (C”)—consequently (C’) and (C) hold.

• Case [t.App]: Ψ; C; Γ ⊢ e1 @ e2 : τ2

Goal : ∀ρ, γ1, γ2. (γ1 ⊢ e1 @ e2, γ2 ⊢ e1 @ e2) ∈ EJτ2KρΓ
≡ ∀ρ, γ1, γ2, v1, v2.

γ1 ⊢ e1 @ e2 ⇓ v1 ∧ (H4)
γ2 ⊢ e1 @ e2 ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJτ2Kρ (C’)

Consider the IH on both sub-expressions
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Ψ; C; Γ ⊢ e1 : τ1 → τ2

∀ρ1, γ11, γ12.Ψ ⊆ dom(ρ1) ∧ ρ1 |= C ∧ (γ11, γ12) ∈ SJΓKρ1

⇒ (γ11 ⊢ e1, γ12 ⊢ e1) ∈ EJτ1 → τ2K
ρ1

Γ

≡ ∀ρ1, γ11, γ12, v11, v12.
Ψ ⊆ dom(ρ1) ∧ ρ1 |= C (P1.1)
∧ (γ11, γ12) ∈ SJΓKρ1 (P1.2)
∧ γ11 ⊢ e1 ⇓ v11 (P1.3)
∧ γ12 ⊢ e1 ⇓ v12 (P1.4)
⇒ (v11, v12) ∈ VJτ1 → τ2Kρ1 (IH1.1)

Ψ; C; Γ ⊢ e2 : τ1

∀ρ2, γ21, γ22.Ψ ⊆ dom(ρ2) ∧ ρ2 |= C ∧ (γ21, γ22) ∈ SJΓKρ2

⇒ (γ21 ⊢ e2, γ22 ⊢ e2) ∈ EJτ1Kρ2

Γ

≡ ∀ρ2, γ21, γ22, v21, v22.
Ψ ⊆ dom(ρ2) ∧ ρ2 |= C (P2.1)
∧ (γ21, γ22) ∈ SJΓKρ2 (P2.2)
∧ γ21 ⊢ e2 ⇓ v21 (P2.3)
∧ γ22 ⊢ e2 ⇓ v22 (P2.4)
⇒ (v21, v22) ∈ VJτ1Kρ2 (IH2.1)

Let ρ1 = ρ2 = ρ (F1), then we can prove (P1.1) and (P2.1) by (H2).

With γ11 = γ21 = γ1 (F1.1), γ12 = γ22 = γ2 (F2.1), (H3), and (F1), we can
prove (P1.2) and (P2.2).

By (H4), (H5), and cases on the evaluation relation (_ ⇓ _):

γ1 ⊢ e1 @ e2 ⇓ v1

⇒ γ1 ⊢ e1 ⇓ ⟨λx.e11 | γ′
1⟩ ∧ γ1 ⊢ e2 ⇓ v′21 ∧ γ′

1[x := v′21] ⊢ e′11 ⇓ v1
(F1.2)

γ2 ⊢ e1 @ e2 ⇓ v2

⇒ γ2 ⊢ e1 ⇓ ⟨λx.e12 | γ′
2⟩ ∧ γ2 ⊢ e2 ⇓ v′22 ∧ γ′

2[x := v′22] ⊢ e′21 ⇓ v2
(F2.2)

Let v11 = ⟨λx.e11 | γ′
1⟩ (F1.3) and v12 = ⟨λx.e12 | γ′

2⟩ (F1.4), then (P1.3) and
(P1.4) are proven by (F1.1-4) and F(2.1-2). Similarly, making v21 = v′21 (F1.3)
and v22 = v′22 (F2.4), we can prove (P2.3) and (P2.4) by (F1.1-2) and F(2.1-4).

Having fulfilled the preconditions for (IH1.1) and (IH2.1) we can conclude:
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(v21, v22) ∈ VJτ1Kρ

≡⟨By (F2.3), (F2.4)⟩
(v′21, v

′
22) ∈ VJτ1Kρ (IH2.2)

(v11, v12) ∈ VJτ1 → τ2Kρ

≡⟨By (F1.3), (F1.4)⟩
(⟨λx.e11 | γ′

1⟩, ⟨λx.e12 | γ′
2⟩) ∈ VJτ1 → τ2Kρ

≡⟨By def of VJ_Kρ at (_→ _)⟩
∀v′1, v′2. (v′1, v′2) ∈ VJτ1Kρ ⇒ (γ′

1 ⊢ e11 @ v′1, γ
′
2 ⊢ e12 @ v′2) ∈ EJτ2K

ρ
Γ

≡⟨By def of EJ_Kρ⟩
∀v′1, v′2, v13, v23.

(v′1, v
′
2) ∈ VJτ1Kρ (P1.2.1)

∧ γ′
1 ⊢ e11 @ v′1 ⇓ v13 (P1.2.2)

∧ γ′
2 ⊢ e12 @ v′2 ⇓ v23 (P1.2.3)
⇒ (v13, v23) ∈ VJτ2Kρ (IH1.2)

Take v′1 = v′21, v′2 = v′22, v13 = v1, and v23 = v2; then (P1.2.1) is proven by
(IH2.2), (P1.2.2) is proven by the fact that γ′

1[x := v′21] ⊢ e′11 ⇓ v1 (F1.2) and
similarly, (P1.2.3) is proven by γ′

2[x := v′22] ⊢ e′21 ⇓ v2 (F2.2). Having proven
(P1.2.1-3) we can conclude that (v13, v23) ∈ VJτ2Kρ which is equivalent to
(v1, v2) ∈ VJτ2Kρ—corresponding to our objective (C’).

• Case [t.Nil]: Ψ, j; C ∧ j = 0; Γ ⊢ [ ] : τ⃗j

Goal : ∀ρ, γ1, γ2. (γ1 ⊢ [ ], γ2 ⊢ [ ]) ∈ EJτ⃗jKρΓ
≡ ∀ρ, γ1, γ2, v1, v2.

γ1 ⊢ [ ] ⇓ v1 ∧ (H4)
γ2 ⊢ [ ] ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJτ⃗jKρ (C’)

By e.Nil and cases on the evaluation relation (_ ⇓ _) we know γ1 ⊢ [ ] ⇓ [ ],
and γ2 ⊢ [ ] ⇓ [ ]. Let v1 = v2 = [ ], then we need to show that ([ ], [ ]) ∈
VJτ⃗jKρ. By (H2) we know that ρ |= C ∧ j = 0, then JjKρ.l = 0 (by definition
of (_ |= _) and J_Kρ.l). With this, we can prove that ([ ], [ ]) ∈ VJτ⃗0Kρ by
definition of VJ_Kρ at τ⃗0.

• Case [t.Cons]: Ψ, j; C ∧ j = (l + 1); Γ ⊢ e1 :: e2 : τ⃗j
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Goal : ∀ρ, γ1, γ2. (γ1 ⊢ e1 :: e2, γ2 ⊢ e1 :: e2) ∈ EJτ⃗jKρΓ
≡ ∀ρ, γ1, γ2, v1, v2.

γ1 ⊢ e1 :: e2 ⇓ v1 ∧ (H4)
γ2 ⊢ e1 :: e2 ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJτ⃗jKρ (C’)

Similar to the case of pairs, we consider the IH on both sub-expressions
Ψ; C; Γ ⊢ e1 : τ

∀ρ1, γ11, γ12.Ψ ⊆ dom(ρ1) ∧ ρ1 |= C ∧ (γ11, γ12) ∈ SJΓKρ1

⇒ (γ11 ⊢ e1, γ12 ⊢ e1) ∈ EJτKρ1

Γ

≡ ∀ρ1, γ11, γ12, v11, v12.
Ψ ⊆ dom(ρ1) ∧ ρ1 |= C (P1.1)
∧ (γ11, γ12) ∈ SJΓKρ1 (P1.2)
∧ γ11 ⊢ e1 ⇓ v11 (P1.3)
∧ γ12 ⊢ e1 ⇓ v12 (P1.4)
⇒ (v11, v12) ∈ VJτKρ1 (IH1.1)

Ψ; C; Γ ⊢ e2 : τ⃗l

∀ρ2, γ21, γ22.Ψ ⊆ dom(ρ2) ∧ ρ2 |= C ∧ (γ21, γ22) ∈ SJΓKρ2

⇒ (γ21 ⊢ e2, γ22 ⊢ e2) ∈ EJτ⃗lKρ2

Γ

≡ ∀ρ2, γ21, γ22, v21, v22.
Ψ ⊆ dom(ρ2) ∧ ρ2 |= C (P2.1)
∧ (γ21, γ22) ∈ SJΓKρ2 (P2.2)
∧ γ21 ⊢ e2 ⇓ v21 (P2.3)
∧ γ22 ⊢ e2 ⇓ v22 (P2.4)
⇒ (v21, v22) ∈ VJτ⃗lKρ2 (IH2.1)

We take ρ1 = ρ2 = ρ (F1) and prove (P1.1) and (P2.1) by (H2).
With γ11 = γ21 = γ1 (F1.1), γ12 = γ22 = γ2 (F2.1), (H3), and (F1), we can
prove (P1.2) and (P2.2).
By (H4), (H5), and cases on the evaluation relation (_ ⇓ _):

γ1 ⊢ e1 :: e2 ⇓ v1

⇒ γ1 ⊢ e1 ⇓ v′11 ∧ γ1 ⊢ e2 ⇓ v′21 ∧ v1 = v′11 :: v′21 (F1.2)
γ2 ⊢ e1 :: e2 ⇓ v2

⇒ γ2 ⊢ e1 ⇓ v′12 ∧ γ2 ⊢ e2 ⇓ v′22 ∧ v2 = v′12 :: v′22 (F2.2)
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Let v11 = v′11 (F1.3) and v12 = v′12 (F1.4), then (P1.3) and (P1.4) are proven by
(F1.1-4) and F(2.1-2). Similarly, making v21 = v′21 (F1.3) and v22 = v′22 (F2.4),
we can prove (P2.3) and (P2.4) by (F1.1-2) and F(2.1-4).

Having fulfilled the preconditions for (IH1.1) and (IH2.1) we can conclude that
(v11, v12) ∈ VJτKρ (F1.5) and (v21, v22) ∈ VJτ⃗lKρ (F2.5).

By (H2) we know that ρ |= C ∧ j = (l + 1), then, by definition of (_ |= _)
and JjKρ, we know that JjKρ ≡ JlKρ + 1. Let JlKρ = m (with m ∈ N), then
JjKρ ≡ m+ 1 (F2).

Recall our objective (C’)

(v1, v2) ∈ VJτ⃗jKρ

≡⟨By (F1.2-4) and (F2.2-4)⟩
(v11 :: v21, v12 :: v22) ∈ VJτ⃗jKρ

≡⟨By def of VJ_Kρ at (τ⃗l) with JjKρ ̸= 0⟩
(v11, v12) ∈ VJτKρ ∧ (v21, v22) ∈ VJτ⃗(JjKρ−1)Kρ

≡⟨By (F2) and subtraction⟩
(v11, v12) ∈ VJτKρ ∧ (v21, v22) ∈ VJτ⃗mKρ

We can prove (v11, v12) ∈ VJτKρ directly by (F1.5). To prove (v21, v22) ∈
VJτ⃗mKρ we use (F2.5), the assignment JlKρ = m, and the fact that for any two
values (u1, u2) ∈ VJτ⃗lKρ then it must be the case that (u1, u2) ∈ VJτ⃗JlKρK

ρ—
this can be proven similarly to Lemma B.5.

• Case [t.Case]: Ψ; C; Γ ⊢ case e1 of {[ ].e2}{(x :: xs).e3} : τ

Goal : ∀ρ, γ1, γ2.
(γ1 ⊢ case e1 of {[ ].e2}{(x :: xs).e3}
, γ1 ⊢ case e1 of {[ ].e2}{(x :: xs).e3}) ∈ EJτKρΓ

≡ ∀ρ, γ1, γ2, v1, v2.
γ1 ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v1 ∧ (H4)
γ2 ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJτKρ (C’)

By cases on the typing derivation of Ψ; C; Γ ⊢ e1 : τ⃗ ′l we obtain:

– Case [t.Nil]:
e1 : Ψ′, j′; C′ ∧ j′ = 0; Γ ⊢ [ ] : τ⃗ ′j′
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In this case we have

Ψ ≡ Ψ′, j′ (D1)
C ≡ C′ ∧ j′ = 0 (D2)
l ≡ j′ (D3)

e1 ≡ [ ] (D4)

By (H4), (H5), (D4), and cases on the evaluation relation (_ ⇓ _) we have:

γ1 ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v1

⇒ γ1 ⊢ e1 ⇓ [ ] ∧ γ1 ⊢ e2 ⇓ v1 (F1)
γ2 ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v2

⇒ γ2 ⊢ e1 ⇓ [ ] ∧ γ2 ⊢ e2 ⇓ v2 (F2)

Now, lets consider the IH on e2:
Ψ; C ∧ l = 0; Γ ⊢ e2 : τ

∀ρ2, γ21, γ22.
Ψ ⊆ dom(ρ2) ∧ ρ2 |= C ∧ l = 0

∧ (γ21, γ22) ∈ SJΓKρ2

⇒ (γ21 ⊢ e2, γ22 ⊢ e2) ∈ EJτKρ2

Γ

≡ ∀ρ2, γ21, γ22, v21, v22.
Ψ ⊆ dom(ρ2) ∧ ρ2 |= C ∧ l = 0 (P2.1)
∧ (γ21, γ22) ∈ SJΓKρ2 (P2.2)
∧ γ21 ⊢ e2 ⇓ v21 (P2.3)
∧ γ22 ⊢ e2 ⇓ v22 (P2.4)
⇒ (v21, v22) ∈ VJτKρ2 (IH2.1)

Let ρ2 = ρ (F3), γ21 = γ1 ∧ γ22 = γ2 (F4); then (P2.1) is proven by
(H2) given that l ≡ j′ (D3). Similarly, premise (P2.2) is proven by (F1-4)
together with (H3).
Let v21 = v1 and v22 = v2, then we can prove (P2.3) and (P2.4) by (F1)
and (F2), respectively. Having proven all the premises (P2.1-4) we obtain
(v1, v2) ∈ VJτKρ, that is no less than our objective (C’).

– Case [t.Cons]:
e1 : Ψ′, j′; C′ ∧ j′ = (l′ + 1); Γ ⊢ e′1 :: es′1 : τ⃗ ′j′

In this case we have

Ψ ≡ Ψ′, j′ (D1)
C ≡ C′ ∧ j′ = (l′ + 1) (D2)
l ≡ j′ (D3)

e1 ≡ e′1 :: es′1 (D4)
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By (H4), (H5), (D4), and cases on the evaluation relation (_ ⇓ _) we have:

γ1 ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v1

⇒ γ1 ⊢ e1 ⇓ v′11 :: vs′21

∧ γ1[x := v′11][xs := vs′21] ⊢ e3 ⇓ v1 (F1)
γ2 ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v2

⇒ γ2 ⊢ e1 ⇓ v′12 :: vs′22

∧ γ2[x := v′12][xs := vs′22] ⊢ e3 ⇓ v2 (F2)

Lets consider the IH on e1:

∀ρ1, γ11, γ12.(Ψ′, j′) ⊆ dom(ρ1) ∧ ρ1 |= C′ ∧ j′ = (l′ + 1)

∧ (γ11, γ12) ∈ SJΓKρ1

⇒ (γ11 ⊢ e1, γ12 ⊢ e1) ∈ EJτ⃗ ′j′Kρ1

Γ

≡ ∀ρ1, γ11, γ12, v11, v12.
(Ψ′, j′) ⊆ dom(ρ1) ∧ ρ1 |= C′ ∧ j′ = (l′ + 1) (P1.1)
∧ (γ11, γ12) ∈ SJΓKρ1 (P1.2)
∧ γ11 ⊢ e1 ⇓ v11 (P1.3)
∧ γ12 ⊢ e1 ⇓ v12 (P1.4)
⇒ (v11, v12) ∈ VJτ⃗ ′j′Kρ1 (IH1.1)

Let ρ1 = ρ (F1.1), γ11 = γ1 ∧ γ12 = γ2 (F1.2); then (P1.1) is proven by
(H2), (D1), and (D2). Similarly, premise (P1.2) is proven by (F1.1-2), (D1),
(D2), together with (H3).
If we take v11 = v′11 :: vs′21 (F1.3) and v12 = v′12 :: vs′22 (F1.4) we can
prove (P1.3) and (P1.4) by (F1) and (F2). Having proven all the premises
(P1.1-4) we obtain:

(v′11 :: vs′21, v
′
12 :: vs′22) ∈ VJτ⃗ ′j′Kρ

≡⟨By def of VJ_Kρ at τ⃗l with JlKρ.l ̸= 0⟩

(v′11, v
′
12) ∈ VJτ ′Kρ ∧ (vs′21, vs

′
22) ∈ VJτ⃗ ′(Jj′Kρ.l−1)Kρ

≡⟨By (D2), (D3) and ρ |= C′ ∧ j′ = (l′ + 1)⟩

(v′11, v
′
12) ∈ VJτ ′Kρ ∧ (vs′21, vs

′
22) ∈ VJτ⃗ ′(Jl′Kρ.l+1−1)Kρ

≡⟨By simplification⟩

(v′11, v
′
12) ∈ VJτ ′Kρ ∧ (vs′21, vs

′
22) ∈ VJτ⃗ ′Jl′Kρ.lK

ρ (IH1.2)

Now, lets consider the IH on e3:
Ψ, j; C ∧ l = (j + 1); Γ, x : τ ′, xs : τ⃗ ′j ⊢ e3 : τ with j /∈ Ψ.l
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∀ρ3, γ31, γ32.
(Ψ, j) ⊆ dom(ρ3) ∧ ρ3 |= C ∧ l = (j + 1)

∧ (γ31, γ32) ∈ SJΓ, x : τ ′, xs : τ⃗ ′jKρ3

⇒ (γ31 ⊢ e3, γ32 ⊢ e3) ∈ EJτKρ3

(Γ,x:τ ′,xs:τ⃗ ′
j)

≡ ∀ρ3, γ31, γ32, v31, v32.
(Ψ, j) ⊆ dom(ρ3) ∧ ρ3 |= C ∧ l = (j + 1) (P3.1)
∧ (γ31, γ32) ∈ SJΓ, x : τ ′, xs : τ⃗ ′jKρ3 (P3.2)
∧ γ31 ⊢ e3 ⇓ v31 (P3.3)
∧ γ32 ⊢ e3 ⇓ v32 (P3.4)
⇒ (v31, v32) ∈ VJτKρ3 (IH3.1)

Let ρ3 = ρ[j := Jl′Kρ.l] (F3.1)
γ31 = γ1[x := v′11][xs := vs′21] (F3.2)
γ32 = γ2[x := v′12][xs := vs′22] (F3.3)

We can prove (Ψ, j) ⊆ dom(ρ[j := Jl′Kρ.l]) by (H2) and definition of
(_ ⊆ _). Now, to see that ρ3 |= C ∧ l = (j + 1) we need to unfold the
definition of (_ |= _) as follows:

ρ3 |= C ∧ l = (j + 1)

≡⟨By (F3)⟩
ρ[j := Jl′Kρ.l] |= C ∧ l = (j + 1)

≡⟨By (D2)⟩
ρ[j := Jl′Kρ.l] |= C′ ∧ j′ = (l′ + 1) ∧ l = (j + 1)

≡⟨By (D3)⟩
ρ[j := Jl′Kρ.l] |= C′ ∧ j′ = (l′ + 1) ∧ j′ = (j + 1)

≡⟨By def of (_ |= _)⟩
ρ[j := Jl′Kρ.l] |= C′ (P3.1.1)
∧ ρ[j := Jl′Kρ.l] |= j′ = (l′ + 1) (P3.1.2)
∧ ρ[j := Jl′Kρ.l] |= j′ = (j + 1) (P3.1.3)

Given that ρ |= C′ ∧ j′ = (l′ + 1) (by (H2) and (D2)) then it must be
the case that ρ[j := Jl′Kρ.l] |= C′ ∧ j′ = (l′ + 1), proving (P3.1.1) and
(P.3.1.2). From the latter, we have that:
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Jj′Kρ[j:=Jl′Kρ.l] ≡ Jl′ + 1Kρ[j:=Jl′Kρ.l]

≡⟨By def of J_Kρ⟩
Jj′Kρ[j:=Jl′Kρ.l] ≡ Jl′Kρ[j:=Jl′Kρ.l] + 1

≡⟨Since j /∈ vars(l′) because j /∈ Ψ.l⟩
Jj′Kρ[j:=Jl′Kρ.l] ≡ Jl′Kρ.l + 1 (F3.4)

To prove (P3.1.3) consider the definition of (_ |= _)

ρ[j := Jl′Kρ.l] |= j′ = (j + 1)

≡⟨By def of (_ |= _)⟩
Jj′Kρ[j:=Jl′Kρ.l] ≡ Jj + 1Kρ[j:=Jl′Kρ.l]

≡⟨By def of J_Kρ⟩
Jj′Kρ[j:=Jl′Kρ.l] ≡ JjKρ[j:=Jl′Kρ.l] + 1

≡⟨By def of J_Kρ⟩
Jj′Kρ[j:=Jl′Kρ.l] ≡ Jl′Kρ.l + 1

which is proven by (F3.4). With these we have proven all the conditions
in (P3.1).

To prove (γ31, γ32) ∈ SJΓ, x : τ ′, xs : τ⃗ ′jKρ3 (P3.2) we need to see that:

(γ31(x), γ32(x)) ∈ VJτ ′Kρ3 ∧ (γ31(xs), γ32(xs)) ∈ VJτ⃗ ′jKρ3

≡⟨By (F3.1-3)⟩

(v′11, v
′
12) ∈ VJτ ′Kρ[j:=Jl′Kρ.l] ∧ (vs′21, vs

′
22) ∈ VJτ⃗ ′jKρ[j:=Jl′Kρ.l]

≡⟨By Lemma B.8 knowing that j /∈ Ψ.l⇒ j /∈ FV(τ ′)⟩

(v′11, v
′
12) ∈ VJτ ′Kρ ∧ (vs′21, vs

′
22) ∈ VJτ⃗ ′jKρ[j:=Jl′Kρ.l]

≡⟨By interpreting j and knowing that j /∈ FV(τ ′)⟩

(v′11, v
′
12) ∈ VJτ ′Kρ ∧ (vs′21, vs

′
22) ∈ VJτ⃗ ′Jl′Kρ.lK

ρ

which holds directly by (IH1.2).

Lastly, we can prove (P3.3) and (P3.4) by (F1) and (F2) with v31 = v1
(F3.5) and v32 = v2 (F3.6). Having proven all premises (P3.1-4) from
(IH3.1) we obtain:
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(v31, v32) ∈ VJτKρ3

≡⟨By (F3.5-6)⟩
(v1, v2) ∈ VJτKρ3

≡⟨By Lemma B.8 knowing that j /∈ Ψ.l⇒ j /∈ FV(τ)⟩
(v1, v2) ∈ VJτKρ3\j

≡⟨By def of ρ3 and (_\_)⟩
(v1, v2) ∈ VJτKρ

Which is precisely our goal (C’).

• Case [t.Numr]: Ψ; C; Γ ⊢ N e′ : Rel d R

Goal : ∀ρ, γ1, γ2. (γ1 ⊢ N e′, γ2 ⊢ N e′) ∈ EJRel d RKρΓ
≡ ∀ρ, γ1, γ2, v1, v2.

γ1 ⊢ N e′ ⇓ v1 ∧ (H4)
γ2 ⊢ N e′ ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJRel d RKρ (C’)

Consider the IH on Ψ; C; Γ ⊢ e′ : R

∀ρ′, γ′
1, γ

′
2.Ψ ⊆ dom(ρ′) ∧ ρ′ |= C ∧ (γ′

1, γ
′
2) ∈ SJΓKρ

′

⇒ (γ′
1 ⊢ e′, γ′

2 ⊢ e′) ∈ EJRKρ
′

Γ

≡ ∀ρ′, γ′
1, γ

′
2, v

′
1, v

′
2.

Ψ ⊆ dom(ρ′) ∧ ρ′ |= C (P1)

∧ (γ′
1, γ

′
2) ∈ SJΓKρ

′
(P2)

∧ γ′
1 ⊢ e′ ⇓ v′1 (P3)

∧ γ′
2 ⊢ e′ ⇓ v′2 (P4)

⇒ (v′1, v
′
2) ∈ VJRKρ

′
(IH)

Let ρ′ = ρ, γ′
1 = γ1, and γ′

2 = γ2, then (P1) and (P2) are proven by (H2) and
(H3), respectively.
By (H4), (H5), and cases on the evaluation relation (_ ⇓ _):

γ1 ⊢ N e′ ⇓ v1 ⇒ γ1 ⊢ e′ ⇓ v∗1 ∧ v1 = N v∗1 (F1)
γ2 ⊢ N e′ ⇓ v2 ⇒ γ2 ⊢ e′ ⇓ v∗2 ∧ v2 = N v∗2 (F2)

Let v′1 = v∗1 (F3) and v′2 = v∗2 (F4) so that (P3) and (P4) are proven by (F1-
4). All preconditions for (IH) are fulfilled, then (v′1, v

′
2) ∈ VJRKρ; which, by

definition of VJ_Kρ at R, implies that v′1 ≡ v′2 (F5).
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Now, recall our objective (C’):

(v1, v2) ∈ VJRel d RKρ

≡⟨By (F1-4)⟩
(N v′1,N v′2) ∈ VJRel d RKρ

≡⟨By def of VJ_Kρ at Rel d R⟩
(N v′1,N v′2) ∈ DJRKρd
≡⟨By def of DJ_Kρd at R⟩
|v′1 − v′2| ⩽ JdKρ.d
≡⟨By (F5)⟩
0 ⩽ JdKρ.d (C”)

For any distance expression d and assignment ρ.d, the interpretation JdKρ.d ∈
R⩾0, then it must be the case that 0 ⩽ JdKρ.d.

• Case [t.Add]r: Ψ, i; C ∧ i = (d1 + d2); Γ ⊢ e1 + e2 : Rel i R

Goal : ∀ρ, γ1, γ2. (γ1 ⊢ (e1 + e2), γ2 ⊢ (e1 + e2)) ∈ EJRel d RKρΓ
≡ ∀ρ, γ1, γ2, v1, v2.

γ1 ⊢ (e1 + e2) ⇓ v1 ∧ (H4)
γ2 ⊢ (e1 + e2) ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJRel d RKρ (C’)

Consider the IH on both sub-expressions

Ψ; C; Γ ⊢ e1 : Rel d1 R

∀ρ1, γ11, γ12.Ψ ⊆ dom(ρ1) ∧ ρ1 |= C ∧ (γ11, γ12) ∈ SJΓKρ1

⇒ (γ11 ⊢ e1, γ12 ⊢ e1) ∈ EJRel d1 RKρ1

Γ

≡ ∀ρ1, γ11, γ12, v11, v12.
Ψ ⊆ dom(ρ1) ∧ ρ1 |= C (P1.1)
∧ (γ11, γ12) ∈ SJΓKρ1 (P1.2)
∧ γ11 ⊢ e1 ⇓ v11 (P1.3)
∧ γ12 ⊢ e1 ⇓ v12 (P1.4)
⇒ (v11, v12) ∈ VJRel d1 RKρ1 (IH1.1)
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Ψ; C; Γ ⊢ e2 : Rel d2 R

∀ρ2, γ21, γ22.Ψ ⊆ dom(ρ2) ∧ ρ2 |= C ∧ (γ21, γ22) ∈ SJΓKρ2

⇒ (γ21 ⊢ e2, γ22 ⊢ e2) ∈ EJRel d2 RKρ2

Γ

≡ ∀ρ2, γ21, γ22, v21, v22.
Ψ ⊆ dom(ρ2) ∧ ρ2 |= C (P2.1)
∧ (γ21, γ22) ∈ SJΓKρ2 (P2.2)
∧ γ21 ⊢ e2 ⇓ v21 (P2.3)
∧ γ22 ⊢ e2 ⇓ v22 (P2.4)
⇒ (v21, v22) ∈ VJRel d2 RKρ2 (IH2.1)

Let ρ1 = ρ2 = ρ (F1), then we can prove (P1.1) and (P2.1) by (H2) since:

(Ψ, i) ⊆ dom(ρ)⇒ Ψ ⊆ dom(ρ)

ρ |= C, i = (d1 + d2)⇒ ρ |= C

Let γ11 = γ21 = γ1 (F1.1) and γ12 = γ22 = γ2 (F2.1). Then, by (H3), (F1),
(F1.1), and (F2.1) we can prove (P1.2) and (P2.2), respectively.

By (H4), (H5), and cases on the evaluation relation (_ ⇓ _):

γ1 ⊢ e1 + e2 ⇓ v1

⇒ γ1 ⊢ e1 ⇓ N v′11 ∧ γ1 ⊢ e2 ⇓ N v′21 ∧ v1 = N (v′11 + v′21) (F1.2)
γ2 ⊢ e1 + e2 ⇓ v2

⇒ γ2 ⊢ e1 ⇓ N v′12 ∧ γ2 ⊢ e2 ⇓ N v′22 ∧ v2 = N (v′12 + v′22) (F2.2)

Let v11 = N v′11 (F1.3) and v12 = N v′12 (F1.4), then (P1.3) and (P1.4) are proven
by (F1.1-4) and F(2.1-2). Similarly, making v21 = N v′21 (F1.3) and v22 = N v′22
(F2.4), we can prove (P2.3) and (P2.4) by (F1.1-2) and F(2.1-4).

Having fulfilled the preconditions for (IH1.1) and (IH2.1) we get:

(v11, v12) ∈ VJRel d1 RKρ ∧ (v21, v22) ∈ VJRel d2 RKρ

≡⟨By (F1.3-4), (F2.3-4)⟩
(N v′11,N v′12) ∈ VJRel d1 RKρ ∧ (N v′21,N v′22) ∈ VJRel d2 RKρ

≡⟨By def of VJ_Kρ at Rel d R⟩
(N v′11,N v′12) ∈ DJRKρd1

∧ (N v′21,N v′22) ∈ DJRKρd2

≡⟨By def of DJ_Kρd at R⟩
|v′11 − v′12| ⩽ Jd1Kρ.d ∧ |v′21 − v′22| ⩽ Jd2Kρ.d (F2)
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Recall our objective (C’):

(v1, v2) ∈ VJRel i RKρ

≡⟨By (F1.2), (F2.2)⟩
(N (v′11 + v′21),N (v′12 + v′22)) ∈ VJRel i RKρ

≡⟨By def of VJ_Kρ at Rel d R⟩
(N (v′11 + v′21),N (v′12 + v′22)) ∈ DJRKρi
≡⟨By def of DJ_Kρi at R⟩
|(v′11 + v′21)− (v′12 + v′22)| ⩽ JiKρ.d
≡⟨Since ρ |= C, i = (d1 + d2)⟩
|(v′11 + v′21)− (v′12 + v′22)| ⩽ Jd1 + d2Kρ.d
≡⟨By def of J_Kρ.d⟩
|(v′11 + v′21)− (v′12 + v′22)| ⩽ Jd1Kρ.d + Jd2Kρ.d (C”)

By triangle inequality and (F2)

|(v′11 − v′12) + (v′21 − v′22)| ⩽ |v′11 − v′12|+ |v′21 − v′22| ⩽ Jd1Kρ.d + Jd2Kρ.d

Since |(v′11 − v′12) + (v′21 − v′22)| ≡ |(v′11 + v′21)− (v′12 + v′22)| then

|(v′11 + v′21)− (v′12 + v′22)| ⩽ |v′11 − v′12|+ |v′21 − v′22| ⩽ Jd1Kρ.d + Jd2Kρ.d
≡⟨By transitivity⟩
|(v′11 + v′21)− (v′12 + v′22)| ⩽ Jd1Kρ.d + Jd2Kρ.d

Proving (C”) and consequently (C’) and (C).

• Case [t.Pairr]: Ψ, i; C ∧ i = (d1 + d2); Γ ⊢ (e1, e2) : Rel i (σ1 × σ2)

Goal : ∀ρ, γ1, γ2. (γ1 ⊢ (e1, e2), γ2 ⊢ (e1, e2)) ∈ EJRel i (σ1 × σ2)K
ρ
Γ

≡ ∀ρ, γ1, γ2, v1, v2.
γ1 ⊢ (e1, e2) ⇓ v1 ∧ (H4)
γ2 ⊢ (e1, e2) ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJRel i (σ1 × σ2)Kρ (C’)

Consider the IH on both sub-expressions
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Ψ; C; Γ ⊢ e1 : Rel d1 σ1

∀ρ1, γ11, γ12.Ψ ⊆ dom(ρ1) ∧ ρ1 |= C ∧ (γ11, γ12) ∈ SJΓKρ1

⇒ (γ11 ⊢ e1, γ12 ⊢ e1) ∈ EJRel d1 σ1K
ρ1

Γ

≡ ∀ρ1, γ11, γ12, v11, v12.
Ψ ⊆ dom(ρ1) ∧ ρ1 |= C (P1.1)
∧ (γ11, γ12) ∈ SJΓKρ1 (P1.2)
∧ γ11 ⊢ e1 ⇓ v11 (P1.3)
∧ γ12 ⊢ e1 ⇓ v12 (P1.4)
⇒ (v11, v12) ∈ VJRel d1 σ1Kρ1 (IH1.1)

Ψ; C; Γ ⊢ e2 : Rel d2 σ2

∀ρ2, γ21, γ22.Ψ ⊆ dom(ρ2) ∧ ρ2 |= C ∧ (γ21, γ22) ∈ SJΓKρ2

⇒ (γ21 ⊢ e2, γ22 ⊢ e2) ∈ EJRel d2 σ2K
ρ2

Γ

≡ ∀ρ2, γ21, γ22, v21, v22.
Ψ ⊆ dom(ρ2) ∧ ρ2 |= C (P2.1)
∧ (γ21, γ22) ∈ SJΓKρ2 (P2.2)
∧ γ21 ⊢ e2 ⇓ v21 (P2.3)
∧ γ22 ⊢ e2 ⇓ v22 (P2.4)
⇒ (v21, v22) ∈ VJRel d2 σ2Kρ2 (IH2.1)

Let ρ1 = ρ2 = ρ (F1), then we can prove (P1.1) and (P2.1) by (H2):

(Ψ, i) ⊆ dom(ρ)⇒ Ψ ⊆ dom(ρ) (F2)
ρ |= C, i = (d1 + d2)⇒ ρ |= C (F3)

Let γ11 = γ21 = γ1 (F1.1) and γ12 = γ22 = γ2 (F2.1). Then, by (H3), (F1),
(F1.1), and (F2.1) we can prove (P1.2) and (P2.2), respectively.
By (H4), (H5), and cases on the evaluation relation (_ ⇓ _):

γ1 ⊢ (e1, e2) ⇓ v1

⇒ v1 = (v′11, v
′
21) ∧ γ1 ⊢ e1 ⇓ v′11 ∧ γ1 ⊢ e2 ⇓ v′21 (F1.2)

γ2 ⊢ (e1, e2) ⇓ v2

⇒ v2 = (v′12, v
′
22) ∧ γ2 ⊢ e1 ⇓ v′12 ∧ γ2 ⊢ e2 ⇓ v′22 (F2.2)

Let v11 = v′11 (F1.3) and v12 = v′12 (F1.4), then (P1.3) and (P1.4) are proven by
(F1.1-4) and F(2.1-2). Similarly, making v21 = v′21 (F1.3) and v22 = v′22 (F2.4),
we can prove (P2.3) and (P2.4) by (F1.1-2) and F(2.1-4).
Having fulfilled the preconditions for (IH1.1) and (IH2.1) we have:
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(v11, v12) ∈ VJRel d1 σ1Kρ ∧ (v21, v22) ∈ VJRel d2 σ2Kρ

≡⟨By def of VJ_Kρ at Rel d σ⟩
(v11, v12) ∈ DJσ1K

ρ
d1
∧ (v21, v22) ∈ DJσ2K

ρ
d2

(F4)

Recall our objective (C’)

(v1, v2) ∈ VJRel i (σ1 × σ2)Kρ

≡⟨By F(1.2-4) and F(2.2-4)⟩
((v11, v21), (v12, v22)) ∈ VJRel i (σ1 × σ2)Kρ

≡⟨By def of VJ_Kρ at Rel i (σ1 × σ2)⟩
((v11, v21), (v12, v22)) ∈ DJσ1 × σ2K

ρ
i

∃d′1, d′2. ρ.d |= i = d′1 + d′2

∧ (v11, v12) ∈ DJσ1K
ρ
d′
1
∧ (v21, v22) ∈ DJσ2K

ρ
d′
2

(C”)

By (H2) we know that ρ |= C, i = (d1 + d2) then ρ |= i = (d1 + d2), in
particular, ρ.d |= i = (d1 + d2) (F5). Choosing d′1 = d1 and d′2 = d2 we can
prove (C”) by (F4) and (F5).

• Case [t.Letr]: Ψ; C; Γ ⊢ let (x, y) = e1 in e2 : τ

Goal : ∀ρ, γ1, γ2.
(γ1 ⊢ let (x, y) = e1 in e2, γ2 ⊢ let (x, y) = e1 in e2) ∈ EJτKρΓ

≡ ∀ρ, γ1, γ2, v1, v2.
γ1 ⊢ let (x, y) = e1 in e2 ⇓ v1 ∧ (H4)
γ2 ⊢ let (x, y) = e1 in e2 ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJτKρ (C’)

Consider the IH on e1

Ψ; C; Γ ⊢ e1 : Rel d (σ1 × σ2)

∀ρ1, γ11, γ12.Ψ ⊆ dom(ρ1) ∧ ρ1 |= C ∧ (γ11, γ12) ∈ SJΓKρ1

⇒ (γ11 ⊢ e1, γ12 ⊢ e1) ∈ EJRel d (σ1 × σ2)K
ρ1

Γ

≡ ∀ρ1, γ11, γ12, v11, v12.
Ψ ⊆ dom(ρ1) ∧ ρ1 |= C (P1.1)
∧ (γ11, γ12) ∈ SJΓKρ1 (P1.2)
∧ γ11 ⊢ e1 ⇓ v11 (P1.3)
∧ γ12 ⊢ e1 ⇓ v12 (P1.4)
⇒ (v11, v12) ∈ VJRel d (σ1 × σ2)Kρ1 (IH1.1)
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Let ρ1 = ρ (F1.1), γ11 = γ1 ∧ γ12 = γ2 (F1.2); then (P1.1) is proven by (H2)
while (P1.2) is proven by (F1.1-2) together with (H3).

By (H4), (H5) and cases on the evaluation relation (_ ⇓ _) we have:

γ1 ⊢ let (x, y) = e1 in e2 ⇓ v1

⇒ γ1 ⊢ e1 ⇓ (v′11, v
′
21) ∧ γ1[x := v′11][y := v′21] ⊢ e2 ⇓ v1 (F1.2)

γ2 ⊢ let (x, y) = e1 in e2 ⇓ v2

⇒ γ2 ⊢ e1 ⇓ (v′12, v
′
22) ∧ γ2[x := v′12][y := v′22] ⊢ e2 ⇓ v2 (F2.2)

If we take v11 = (v′11, v
′
21) ∧ v12 = (v′12, v

′
22) (F1.3) we can prove (P1.3) and

(P1.4) by (F1.2-3) and (F2.2). Having proven all the premises (P1.1-4) we obtain

(v11, v12) ∈ VJRel d (σ1 × σ2)Kρ

≡⟨By F(1.3)⟩
((v′11, v

′
21), (v

′
12, v

′
22)) ∈ VJRel d (σ1 × σ2)Kρ

≡⟨By def of VJ_Kρ at Rel d σ⟩
((v′11, v

′
21), (v

′
12, v

′
22)) ∈ DJσ1 × σ2K

ρ
d

≡⟨By def of DJ_Kρd at (σ1 × σ2)⟩
∃d′1.d′2. ρ.d |= d = (d′1 + d′2)

∧ (v′11, v
′
12) ∈ DJσ1K

ρ
d′
1
∧ (v′21, v

′
22) ∈ DJσ2K

ρ
d′
2

≡⟨By Lemma B.5 with Jd′1Kρ.d = r1 and Jd′2Kρ.d = r2⟩
∃r1.r2. ∅ |= d = (r1 + r2)

∧ (v′11, v
′
12) ∈ DJσ1K(∅,ρ.l)r1 ∧ (v′21, v

′
22) ∈ DJσ2K(∅,ρ.l)r2 (IH1.2)

Now lets consider the IH on e2:

Ψ, i1, i2; C ∧ d = (i1 + i2); Γ, x : Rel i1 σ1, y : Rel i2 σ2 ⊢ e2 : τ with
i1, i2 /∈ Ψ.d

∀ρ2, γ21, γ22.
(Ψ, i1, i2) ⊆ dom(ρ2) ∧ ρ2 |= C, d = (i1 + i2)

∧ (γ21, γ22) ∈ SJΓ, x : Rel i1 σ1, y : Rel i2 σ2Kρ2

⇒ (γ21 ⊢ e2, γ22 ⊢ e2) ∈ EJτKρ2

(Γ,x:Rel i1 σ1,y:Rel i2 σ2)

≡ ∀ρ2, γ21, γ22, v21, v22.
(Ψ, i1, i2) ⊆ dom(ρ2) ∧ ρ2 |= C, d = (i1 + i2) (P2.1)
∧ (γ21, γ22) ∈ SJΓ, x : Rel i1 σ1, y : Rel i2 σ2Kρ2 (P2.2)
∧ γ21 ⊢ e2 ⇓ v21 (P2.3)
∧ γ22 ⊢ e2 ⇓ v22 (P2.4)
⇒ (v21, v22) ∈ VJτKρ2 (IH2.1)
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Let ρ2 = ρ[i1 := r1][i2 := r2] with r1, r2 from (IH1.2) (F2.1)
γ21 = γ1[x := v′11][y := v′21] (F2.2)
γ22 = γ2[x := v′12][y := v′22] (F2.3)

We can prove (P2.1) by (H2), definition of (_ ⊆ _), (_ |= _) and (F2.1). Since
(γ1, γ2) ∈ SJΓKρ, to prove (γ21, γ22) ∈ SJΓ, x : Rel i1 σ1, y : Rel i2 σ2Kρ2

(P2.2) we need to see that

(γ21(x), γ22(x)) ∈ VJRel i1 σ1Kρ2 ∧ (γ21(y), γ22(y)) ∈ VJRel i2 σ2Kρ2

≡⟨By (F2.2-3)⟩
(v′11, v

′
12) ∈ VJRel i1 σ1Kρ2 ∧ (v′21, v

′
22) ∈ VJRel i2 σ2Kρ2

≡⟨By def of VJ_Kρ at Rel d σ⟩
(v′11, v

′
12) ∈ DJσ1K

ρ2

i1
∧ (v′21, v

′
22) ∈ DJσ2K

ρ2

i2

≡⟨By Lemma B.5 knowing that Ji1Kρ.d = r1 and Ji2Kρ.d = r2 (F2.1)⟩
(v′11, v

′
12) ∈ DJσ1K(∅,ρ.l)r1 ∧ (v′21, v

′
22) ∈ DJσ2K(∅,ρ.l)r2

which holds by (IH1.2).

Lastly, we can prove (P2.3) and (P2.4) by (F1.2) and (F2.2) with v21 = v1 (F2.4)
and v22 = v2 (F2.5). Having proven all premises (P2.1-4) from (IH2.1) we
obtain

(v21, v22) ∈ VJτKρ2 (IH2.2)

Since i1, i2 /∈ Ψ.d it must be the case that i1, i2 /∈ FV(τ). By Lemma B.8 we
can safely remove the substitutions for i1 and i2 from ρ2, this is:

(v21, v22) ∈ VJτKρ2

≡⟨By Lemma B.8⟩
(v21, v22) ∈ VJτKρ2\{i1,i2}

≡⟨By def of ρ2 and (_\_)⟩
(v21, v22) ∈ VJτKρ

≡⟨By (F2.4-5)⟩
(v1, v2) ∈ VJτKρ

Which is precisely our (C’) goal.
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• Case [t.Nilr]: Ψ, j; C ∧ j = 0; Γ ⊢ [ ] : Rel d σ⃗j

Goal : ∀ρ, γ1, γ2. (γ1 ⊢ [ ], γ2 ⊢ [ ]) ∈ EJRel d σ⃗jK
ρ
Γ

≡ ∀ρ, γ1, γ2, v1, v2.
γ1 ⊢ [ ] ⇓ v1 ∧ (H4)
γ2 ⊢ [ ] ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJRel d σ⃗jKρ (C’)

By e.Nilr and cases on the evaluation relation (_ ⇓ _) we know γ1 ⊢ [ ] ⇓ [ ],
and γ2 ⊢ [ ] ⇓ [ ]. Let v1 = v2 = [ ], then we need to show that ([ ], [ ]) ∈
VJRel d σ⃗jKρ, which, by definition of VJ_Kρ at Rel d σ is equivalent to show
that ([ ], [ ]) ∈ DJσ⃗jK

ρ
d. By (H2) we know that ρ |= C ∧ j = 0, then JjKρ.l = 0

(by definition of (_ |= _) and J_Kρ.l). With this, we can prove that ([ ], [ ]) ∈
DJσ⃗0K

ρ
d by definition of DJ_Kρd at σ⃗0.

• Case [t.Consr]:

Ψ, i, j; C ∧ j = (l + 1) ∧ i = (d1 + d2); Γ ⊢ e1 :: e2 : Rel i σ⃗j

Goal : ∀ρ, γ1, γ2. (γ1 ⊢ e1 :: e2, γ2 ⊢ e1 :: e2) ∈ EJRel i σ⃗jK
ρ
Γ

≡ ∀ρ, γ1, γ2, v1, v2.
γ1 ⊢ e1 :: e2 ⇓ v1 ∧ (H4)
γ2 ⊢ e1 :: e2 ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJRel i σ⃗jKρ (C’)

Consider the IH on both sub-expressions

Ψ; C; Γ ⊢ e1 : Rel d1 σ

∀ρ1, γ11, γ12.Ψ ⊆ dom(ρ1) ∧ ρ1 |= C ∧ (γ11, γ12) ∈ SJΓKρ1

⇒ (γ11 ⊢ e1, γ12 ⊢ e1) ∈ EJRel d1 σKρ1

Γ

≡ ∀ρ1, γ11, γ12, v11, v12.
Ψ ⊆ dom(ρ1) ∧ ρ1 |= C (P1.1)
∧ (γ11, γ12) ∈ SJΓKρ1 (P1.2)
∧ γ11 ⊢ e1 ⇓ v11 (P1.3)
∧ γ12 ⊢ e1 ⇓ v12 (P1.4)
⇒ (v11, v12) ∈ VJRel d1 σKρ1 (IH1.1)
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Ψ; C; Γ ⊢ e2 : Rel d2 σ⃗l

∀ρ2, γ21, γ22.Ψ ⊆ dom(ρ2) ∧ ρ2 |= C ∧ (γ21, γ22) ∈ SJΓKρ2

⇒ (γ21 ⊢ e2, γ22 ⊢ e2) ∈ EJRel d2 σ⃗lK
ρ2

Γ

≡ ∀ρ2, γ21, γ22, v21, v22.
Ψ ⊆ dom(ρ2) ∧ ρ2 |= C (P2.1)
∧ (γ21, γ22) ∈ SJΓKρ2 (P2.2)
∧ γ21 ⊢ e2 ⇓ v21 (P2.3)
∧ γ22 ⊢ e2 ⇓ v22 (P2.4)
⇒ (v21, v22) ∈ VJRel d2 σ⃗lKρ2 (IH2.1)

Let ρ1 = ρ2 = ρ (F1), then we can prove (P1.1) and (P2.1) by (H2):

(Ψ, i) ⊆ dom(ρ)⇒ Ψ ⊆ dom(ρ) (F2)
ρ |= C, i = (d1 + d2)⇒ ρ |= C (F3)

Let γ11 = γ21 = γ1 (F1.1) and γ12 = γ22 = γ2 (F2.1). Then, by (H3), (F1),
(F1.1), and (F2.1) we can prove (P1.2) and (P2.2), respectively.

By (H4), (H5), and cases on the evaluation relation (_ ⇓ _):

γ1 ⊢ e1 :: e2 ⇓ v1

⇒ v1 = v′11 :: v
′
21 ∧ γ1 ⊢ e1 ⇓ v′11 ∧ γ1 ⊢ e2 ⇓ v′21 (F1.2)

γ2 ⊢ e1 :: e2 ⇓ v2

⇒ v2 = v′12 :: v
′
22 ∧ γ2 ⊢ e1 ⇓ v′12 ∧ γ2 ⊢ e2 ⇓ v′22 (F2.2)

Let v11 = v′11 (F1.3) and v12 = v′12 (F1.4), then (P1.3) and (P1.4) are proven by
(F1.1-4) and F(2.1-2). Similarly, making v21 = v′21 (F1.3) and v22 = v′22 (F2.4),
we can prove (P2.3) and (P2.4) by (F1.1-2) and F(2.1-4).

Having fulfilled the preconditions for (IH1.1) and (IH2.1) we have:

(v11, v12) ∈ VJRel d1 σKρ ∧ (v21, v22) ∈ VJRel d2 σ⃗lKρ

≡⟨By def of VJ_Kρ at Rel d σ⟩
(v11, v12) ∈ DJσKρd1

∧ (v21, v22) ∈ DJσ⃗lK
ρ
d2

(F4)

By (H2) we know that ρ |= C ∧ j = (l+1) ∧ i = (d1+d2), then, by definition
of (_ |= _) and JjKρ.l, we know that JjKρ.l ≡ JlKρ.l + 1. Let JlKρ.l = m (with
m ∈ N), then JjKρ.l ≡ m+ 1 (F5).
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Now, recall our objective (C’)

(v1, v2) ∈ VJRel i σ⃗jKρ

≡⟨By F(1.2-4) and F(2.2-4)⟩
(v11 :: v21, v12 :: v22) ∈ VJRel i σ⃗jKρ

≡⟨By def of VJ_Kρ at Rel d σ⟩
(v11 :: v21, v12 :: v22) ∈ DJσ⃗jK

ρ
i

≡⟨By def of DJ_Kρi at σ⃗l with JlKρ.l ̸= 0⟩
∃d′1, d′2. ρ.d |= i = d′1 + d′2

∧ (v11, v12) ∈ DJσKρd′
1
∧ (v21, v22) ∈ DJσ⃗(JjKρ.l−1)K

ρ
d′
2

≡⟨By (F5) and subtraction⟩
∃d′1, d′2. ρ.d |= i = d′1 + d′2

∧ (v11, v12) ∈ DJσKρd′
1
∧ (v21, v22) ∈ DJσ⃗mKρd′

2
(C”)

By (H2) we know that ρ |= C ∧ j = (l + 1) ∧ i = (d1 + d2) then ρ.d |=
i = (d1 + d2) (F5). Choosing d′1 = d1 and d′2 = d2 we can prove (v11, v12) ∈
DJσKρd′

1
directly by (F4).

To prove (v21, v22) ∈ DJσ⃗mKρd′
2
we use (F4)’s second conjunct, the assignment

JlKρ.l = m, and the fact that for any two values (u1, u2) ∈ DJσ⃗lK
ρ
d it must be

the case that (u1, u2) ∈ DJσ⃗JlKρ.lK
ρ
d.

• Case [t.Caser]: Ψ; C; Γ ⊢ case e1 of {[ ].e2}{(x :: xs).e3} : τ

Goal : ∀ρ, γ1, γ2.
(γ1 ⊢ case e1 of {[ ].e2}{(x :: xs).e3}
, γ1 ⊢ case e1 of {[ ].e2}{(x :: xs).e3}) ∈ EJτKρΓ

≡ ∀ρ, γ1, γ2, v1, v2.
γ1 ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v1 ∧ (H4)
γ2 ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v2 (H5)
⇒ (v1, v2) ∈ VJτKρ (C’)

By cases on the typing derivation of Ψ; C; Γ ⊢ e1 : Rel d σ⃗l we obtain:

– Case [t.Nilr]:
e1 : Ψ′, j′; C′ ∧ j′ = 0; Γ ⊢ [ ] : Rel d σ⃗j′
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In this case we have
Ψ ≡ Ψ′, j′ (D1)
C ≡ C′ ∧ j′ = 0 (D2)
l ≡ j′ (D3)

e1 ≡ [ ] (D4)

By (H4), (H5), (D4), and cases on the evaluation relation (_ ⇓ _) we have:
γ1 ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v1

⇒ γ1 ⊢ e1 ⇓ [ ] ∧ γ1 ⊢ e2 ⇓ v1 (F1)
γ2 ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v2

⇒ γ2 ⊢ e1 ⇓ [ ] ∧ γ2 ⊢ e2 ⇓ v2 (F2)

Now, lets consider the IH on e2:
Ψ; C ∧ l = 0; Γ ⊢ e2 : τ

∀ρ2, γ21, γ22.
Ψ ⊆ dom(ρ2) ∧ ρ2 |= C ∧ l = 0

∧ (γ21, γ22) ∈ SJΓKρ2

⇒ (γ21 ⊢ e2, γ22 ⊢ e2) ∈ EJτKρ2

Γ

≡ ∀ρ2, γ21, γ22, v21, v22.
Ψ ⊆ dom(ρ2) ∧ ρ2 |= C ∧ l = 0 (P2.1)
∧ (γ21, γ22) ∈ SJΓKρ2 (P2.2)
∧ γ21 ⊢ e2 ⇓ v21 (P2.3)
∧ γ22 ⊢ e2 ⇓ v22 (P2.4)
⇒ (v21, v22) ∈ VJτKρ2 (IH2.1)

Let ρ2 = ρ (F3), γ21 = γ1 ∧ γ22 = γ2 (F4); then (P2.1) is proven by
(H2) given that l ≡ j′ (D3). Similarly, premise (P2.2) is proven by (F1-4)
together with (H3).
Let v21 = v1 and v22 = v2, then we can prove (P2.3) and (P2.4) by (F1)
and (F2), respectively. Having proven all the premises (P2.1-4) we obtain
(v1, v2) ∈ VJτKρ, that is no less than our objective (C’).

– Case [t.Consr]:
e1 : Ψ′, j′, i; C′ ∧ j′ = (l′+1) ∧ i = (d1+d2); Γ ⊢ e′1 :: es

′
1 : Rel i σ⃗j′

In this case we have
Ψ ≡ Ψ′, j′, i (D1)
C ≡ C′ ∧ j′ = (l′ + 1) ∧ i = (d1 + d2) (D2)
l ≡ j′ (D3)

e1 ≡ e′1 :: es
′
1 (D4)

d ≡ i (D5)
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By (H4), (H5), (D4), and cases on the evaluation relation (_ ⇓ _) we have:

γ1 ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v1

⇒ γ1 ⊢ e1 ⇓ v′11 :: vs
′
21

∧ γ1[x := v′11][xs := vs′21] ⊢ e3 ⇓ v1 (F1)
γ2 ⊢ case e1 of {[ ].e2}{(x :: xs).e3} ⇓ v2

⇒ γ2 ⊢ e1 ⇓ v′12 :: vs
′
22

∧ γ2[x := v′12][xs := vs′22] ⊢ e3 ⇓ v2 (F2)

Lets consider the IH on e1:

∀ρ1, γ11, γ12.(Ψ′, j′, i) ⊆ dom(ρ1)

∧ ρ1 |= C′ ∧ j′ = (l′ + 1) ∧ i = (d1 + d2)

∧ (γ11, γ12) ∈ SJΓKρ1

⇒ (γ11 ⊢ e1, γ12 ⊢ e1) ∈ EJRel i σ⃗j′K
ρ1

Γ

≡ ∀ρ1, γ11, γ12, v11, v12.
(Ψ′, j′, i) ⊆ dom(ρ1) (P1.1.1)
∧ ρ1 |= C′ ∧ j′ = (l′ + 1) ∧ i = (d1 + d2) (P1.1.2)
∧ (γ11, γ12) ∈ SJΓKρ1 (P1.2)
∧ γ11 ⊢ e1 ⇓ v11 (P1.3)
∧ γ12 ⊢ e1 ⇓ v12 (P1.4)
⇒ (v11, v12) ∈ VJRel i σ⃗j′Kρ1 (IH1.1)

Let ρ1 = ρ (F1.1), γ11 = γ1 ∧ γ12 = γ2 (F1.2); then (P1.1.1-2) are proven
by (H2), (D1), and (D2). Similarly, premise (P1.2) is proven by (F1.1-2),
(D1), (D2), together with (H3).

If we take v11 = v′11 :: vs′21 (F1.3) and v12 = v′12 :: vs′22 (F1.4) we can
prove (P1.3) and (P1.4) by (F1) and (F2). Having proven all the premises
(P1.1-4) we obtain:
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(v′11 :: vs
′
21, v

′
12 :: vs

′
22) ∈ VJRel i σ⃗j′Kρ

≡⟨By def of VJ_Kρ at Rel d σ⟩
(v′11 :: vs

′
21, v

′
12 :: vs

′
22) ∈ DJσ⃗j′K

ρ
i

≡⟨By def of DJ_Kρd at σ⃗l with JlKρ.l ̸= 0⟩
∃d′1, d′2. ρ.d |= i = d′1 + d′2

∧ (v′11, v
′
12) ∈ DJσKρd′

1
∧ (vs′21, vs

′
22) ∈ DJσ⃗(Jj′Kρ.l−1)K

ρ
d′
2

≡⟨By ρ |= C considering (D2), (D3)⟩
∃d′1, d′2. ρ.d |= i = d′1 + d′2

∧ (v′11, v
′
12) ∈ DJσKρd′

1
∧ (vs′21, vs

′
22) ∈ DJσ⃗(Jl′Kρ.l+1−1)K

ρ
d′
2

≡⟨By simplification⟩
∃d′1, d′2. ρ.d |= i = d′1 + d′2

∧ (v′11, v
′
12) ∈ DJσKρd′

1
∧ (vs′21, vs

′
22) ∈ DJσ⃗Jl′Kρ.lK

ρ
d′
2

≡⟨By Lemma B.5 with Jd′1Kρ.d = r2 and Jd′2Kρ.d = r2⟩
∃r1, r2. ∅ |= JiKρ.d = r1 + r2

∧ (v′11, v
′
12) ∈ DJσK(∅,ρ.l)r1

∧ (vs′21, vs
′
22) ∈ DJσ⃗Jl′Kρ.lK

(∅,ρ.l)
r2 (IH1.2)

Now, lets consider the IH on e3:

Ψ, i1, i2, j; C ∧ l = (j + 1) ∧ d = (i1 + i2); Γ, x : Rel i1 σ, xs :
Rel i2 σ⃗j ⊢ e3 : τ with i1, i2 /∈ Ψ.d and j /∈ Ψ.l

∀ρ3, γ31, γ32.
(Ψ, i1, i2, j) ⊆ dom(ρ3) ∧ ρ3 |= C ∧ l = (j + 1) ∧ d = (i1 + i2)

∧ (γ31, γ32) ∈ SJΓ, x : Rel i1 σ, xs : Rel i2 σ⃗jKρ3

⇒ (γ31 ⊢ e3, γ32 ⊢ e3) ∈ EJτKρ3

(Γ,x:Rel i1 σ,xs:Rel i2 σ⃗j)

≡ ∀ρ3, γ31, γ32, v31, v32.
(Ψ, i1, i2, j) ⊆ dom(ρ3) (P3.1)
∧ ρ3 |= C ∧ l = (j + 1) ∧ d = (i1 + i2) (P3.2)
∧ (γ31, γ32) ∈ SJΓ, x : Rel i1 σ, xs : Rel i2 σ⃗jKρ3 (P3.3)
∧ γ31 ⊢ e3 ⇓ v31 (P3.4)
∧ γ32 ⊢ e3 ⇓ v32 (P3.5)
⇒ (v31, v32) ∈ VJτKρ3 (IH3.1)
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Let ρ3 = ρ[i1 := r1][i2 := r2][j := Jl′Kρ.l] (F3.1)
γ31 = γ1[x := v′11][xs := vs′21] (F3.2)
γ32 = γ2[x := v′12][xs := vs′22] (F3.3)

We can prove (P3.1) by (H2) together with the definition of (_ ⊆ _).
Now, to see that (P3.2) holds we need to unfold the definition of (_ |= _)
as follows:

ρ3 |= C ∧ l = (j + 1) ∧ d = (i1 + i2)

≡⟨By (D2), (D3), and (D5)⟩
ρ3 |= C′ ∧ j′ = (l′ + 1) ∧ l = (j + 1) ∧ i = (i1 + i2)

≡⟨By (F3.1)⟩
ρ[i1 := r1][i2 := r2][j := Jl′Kρ.l] |=
C′ ∧ j′ = (l′ + 1) ∧ l = (j + 1) ∧ i = (i1 + i2)

≡⟨By def of (_ |= _)⟩
ρ[i1 := r1][i2 := r2][j := Jl′Kρ.l] |= C′ (P3.2.1)
∧ ρ[i1 := r1][i2 := r2][j := Jl′Kρ.l] |= j′ = (l′ + 1) (P3.2.2)
∧ ρ[i1 := r1][i2 := r2][j := Jl′Kρ.l] |= j′ = (j + 1) (P3.2.3)
∧ ρ[i1 := r1][i2 := r2][j := Jl′Kρ.l] |= i = (i1 + i2) (P3.2.4)

Given that ρ |= C′ ∧ j′ = (l′ +1) (by (H2) and (D2)) then it must be the
case that ρ[i1 := r1][i2 := r2][j := Jl′Kρ.l] |= C′ ∧ j′ = (l′+1), proving
(P3.2.1) and (P.3.2.2). From the latter, we have that:

Jj′Kρ[i1:=r1][i2:=r2][j:=Jl′Kρ.l]

≡ Jl′ + 1Kρ[i1:=r1][i2:=r2][j:=Jl′Kρ.l]

≡⟨By def of J_Kρ⟩
Jj′Kρ[i1:=r1][i2:=r2][j:=Jl′Kρ.l]

≡ Jl′Kρ[i1:=r1][i2:=r2][j:=Jl′Kρ.l] + 1

≡⟨Since i2, i2, j /∈ vars(l′)⟩
Jj′Kρ[i1:=r1][i2:=r2][j:=Jl′Kρ.l] ≡ Jl′Kρ.l + 1 (F3.4)
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To prove (P3.2.3) consider the definition of (_ |= _)

ρ[i1 := r1][i2 := r2][j := Jl′Kρ.l] |= j′ = (j + 1)

≡⟨By def of (_ |= _)⟩
Jj′Kρ[i1:=r1][i2:=r2][j:=Jl′Kρ.l]

≡ Jj + 1Kρ[i1:=r1][i2:=r2][j:=Jl′Kρ.l]

≡⟨By def of J_Kρ⟩
Jj′Kρ[i1:=r1][i2:=r2][j:=Jl′Kρ.l]

≡ JjKρ[i1:=r1][i2:=r2][j:=Jl′Kρ.l] + 1

≡⟨By def of J_Kρ⟩
Jj′Kρ[i1:=r1][i2:=r2][j:=Jl′Kρ.l] ≡ Jl′Kρ.l + 1

which is proven by (F3.4).

Lastly, we need satisfy (P3.2.4) this is

ρ[i1 := r1][i2 := r2][j := Jl′Kρ.l] |= i = (i1 + i2)

≡⟨By def of (_ |= _)⟩
JiKρ[i1:=r1][i2:=r2][j:=Jl′Kρ.l] ≡ Ji1 + i2Kρ[i1:=r1][i2:=r2][j:=Jl′Kρ.l]

≡⟨By removing free variables on both sides⟩
JiKρ ≡ Ji1 + i2Kρ[i1:=r1][i2:=r2]

≡⟨By def of J_Kρ⟩
JiKρ ≡ r1 + r2

≡⟨Since i is a distance variable⟩
JiKρ.d ≡ r1 + r2

which is proven by ∅ |= JiKρ.d = r1+r2 from (IH1.2). With this we have
completed all conditions to prove (P3.2).
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To prove (P3.3) we need to see that:

(γ31(x), γ32(x)) ∈ VJRel i1 σKρ3 ∧
(γ31(xs), γ32(xs)) ∈ VJRel i2 σ⃗jKρ3

≡⟨By (F3.1-3)⟩

(v′11, v
′
12) ∈ VJRel i1 σKρ[i1:=r1][i2:=r2][j:=Jl′Kρ.l] ∧

(vs′21, vs
′
22) ∈ VJRel i2 σ⃗jKρ[i1:=r1][i2:=r2][j:=Jl′Kρ.l]

≡⟨By removing free variables (Lemma B.8) and expanding ρ⟩
(v′11, v

′
12) ∈ VJRel i1 σK(ρ.d[i1:=r1],ρ.l) ∧

(vs′21, vs
′
22) ∈ VJRel i2 σ⃗jK(ρ.d[i2:=r2],ρ.l[j:=Jl′Kρ.l])

≡⟨By interpreting j and knowing that j /∈ FV(σ)⟩
(v′11, v

′
12) ∈ VJRel i1 σK(ρ.d[i1:=r1],ρ.l) ∧

(vs′21, vs
′
22) ∈ VJRel i2 σ⃗Jl′Kρ.lK

(ρ.d[i2:=r2],ρ.l)

≡⟨By def of VJ_Kρ at Rel d σ⟩

(v′11, v
′
12) ∈ DJσK(ρ.d[i1:=r1],ρ.l)

i1
∧

(vs′21, vs
′
22) ∈ DJσ⃗Jl′Kρ.lK

(ρ.d[i2:=r2],ρ.l)
i2

≡⟨By Lemma B.5⟩
(v′11, v

′
12) ∈ DJσK(∅,ρ.l)r1 ∧ (vs′21, vs

′
22) ∈ DJσ⃗Jl′Kρ.lK

(∅,ρ.l)
r2

which holds directly by (IH1.2).
Lastly, we can prove (P3.4) and (P3.5) by (F1) and (F2) with v31 = v1
(F3.5) and v32 = v2 (F3.6). Having proven all premises (P3.1-4) from
(IH3.1) we obtain:

(v31, v32) ∈ VJτKρ3

≡⟨By (F3.5-6)⟩
(v1, v2) ∈ VJτKρ3

≡⟨By Lemma B.8 knowing that i1, i2 /∈ Ψ.d and j /∈ Ψ.l⟩
(v1, v2) ∈ VJτKρ3\{i1,i2,j}

≡⟨By def of ρ3 and (_\_)⟩
(v1, v2) ∈ VJτKρ

Which is precisely our goal (C’).
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