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Online Classification of Transient EMGQG Patterns for
the Control of the Wrist and Hand 1n a
Transradial Prosthesis

Daniele D’ Accolti
Max Ortiz-Catalan

Abstract—Decoding human motor intentions by processing
electrophysiological signals is a crucial, yet unsolved, challenge
for the development of effective upper limb prostheses. Pattern
recognition of continuous myoelectric (EMG) signals represents
the state-of-art for multi-DoF prosthesis control. However, this
approach relies on the unreliable assumption that repeatable
muscular contractions produce repeatable patterns of steady-state
EMGs. Here, we propose an approach for decoding wrist and hand
movements by processing the signals associated with the onset of
contraction (transient EMG). Specifically, we extend the concept of
a transient EMG controller for the control of both wrist and hand,
and tested it online. We assessed it with one transradial amputee
and 15 non-amputees via the Target Achievement Control test.
Non-amputees successfully completed 95% of the trials with a me-
dian completion time of 17 seconds, showing a significant learning
trend (p < 0.001). The transradial amputee completed about the
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80% of the trials with a median completion time of 26 seconds.
Although the performance proved comparable with earlier studies,
the long completion times suggest that the current controller is
not yet clinically viable. However, taken collectively, our outcomes
reinforce earlier hypothesis that the transient EMG could represent
a viable alternative to steady-state pattern recognition approaches.

Index Terms—Electromyography, human activity recognition,
pattern recognition, prosthetic hand, virtual reality.

I. INTRODUCTION

NTERPRETING the neurophysiological signals underlying
I voluntary motor control for driving limb prostheses repre-
sents a crucial, yet unsolved, challenge in applied neuroscience
and rehabilitation engineering. Individuals with a below-elbow
(transradial) amputation maintain part of the original muscu-
lature that served the digits and wrist. This allows for elec-
tromyography (EMG) recorded from extrinsic muscles in the
forearm to be used as inputs to control a multi-degree of freedom
(DoF) hand prosthesis, in a biomimetic manner [1]. While
recent surgical techniques like Targeted Muscle Reinnervation
(TMR) [2] and Regenerative Peripheral Nerve Interface (RPNI)
[3] along with neuromusculoskeletal interfaces [4] or wireless
Implantable MyoElectric Sensor (IMES) [5] implantation have
shown the potential to restore accessibility to neural paths dis-
rupted by the amputation, the use of EMG signals recorded
from the skin surface remains today the most clinically viable
approach for controlling transradial hand prostheses [6].

The most widespread controller available is substantially the
two-state amplitude modulation EMG controller [7], in which
a single pair of agonist/antagonist muscles directly controls the
opening and closing of the hand (also termed direct control).
This however cannot differentiate between different muscular
patterns pertaining to different intended hand movements, and
thus must be arranged in a sequential scheme, using special
switching signals/inputs, to be used to control multiple grasps
or DoFs of a dexterous prosthesis [8]. For example, following
this approach to control a below-elbow prosthesis that includes
a 1-DoF wrist and a 1-DoF hand, the user controls each DoF,
one at a time, switching sequentially from one to the other.

EMG pattern recognition represents a viable alternative to
direct control, as first proposed by Finley and Wirta in the
late sixties [9]. It is based on the premise that amputees can
voluntarily activate repeatable and distinct muscular contrac-
tions for each class of motion and the associated EMG patterns
can be identified to send different commands to the prosthesis.
Particularly relevant is the so called continuous classification
pioneered by Englehart and colleagues [10]. In the latter, a
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set of statistical features emphasizing relevant structures in the
EMG, during constant, somewhat steady-state contractions, is
extracted from a continuous stream of signals using a sliding
window, at a certain rate [11]. The features are then fed into
a classification algorithm able to differentiate between patterns
and produce anew decision (output of the classifier) at every time
step, in a continuous fashion. Although such kind of classifier
represents the state of the art [12], [13], its applicability in
realistic settings, i.e., with different arm postures, grasps and
force levels, remains to be solved [14], [15], [16].

Remarkably, the assumption that repeatable muscular con-
tractions produce repeatable patterns of steady-state EMGs is
unreliable and only statistically correct. The steady-state EMG
has indeed a very little temporal structure (it approximates a
random signal) due to the active modification of recruitment
and of the firing patterns needed to sustain the contraction [17],
[18]. On the contrary, the EMG associated with the onset of
the myoelectric activity (i.e., the transient EMG) shows a more
deterministic structure, likely due to the orderly recruitment of
the Motor Units [19], [18]. In their study on prosthetic control,
Hudgins and colleagues first observed that the transient EMG
was shown to be descriptive of the intended movement [20].

Fascinated by these observations, and explicitly relying on
the preplanned nature of grasping [21], in our recent study, we
proposed an approach for decoding the intended grasp from the
forearm EMG by processing the signals associated with the
onset of muscular contraction [22]. We demonstrated that the
muscle contraction associated with the initial enclosing phase
of the grasp, contains indeed predictive information about the
intended (and preplanned) grasp, which can be used in real-time
to control a multi-grasp hand [23], [24]. In this work, we sought
to further assess the potential of the transient approach by
increasing the number of DoFs under control and porting the
control strategy into an embedded controller. In particular, we
implemented an online algorithm able to decode two DoFs in the
wrist (flexion/extension, pronation/supination), and four grasp
types in the hand (power, lateral, tri-digit, open), using only
the portions of data associated to the onset of the muscular
contraction. We claim that the inclusion of the wrist DoFs and the
online assessment are two fundamental steps for assessing the
viability of the proposed controller in a clinical implementation.
Indeed, the inconsistency between offline and online perfor-
mance [25], [26], [27], [28] and the relevance of the wrist district
on prosthetic functionality [29] are well-known topics in the
state-of-the-art.

We assessed this with 15 able-bodied participants and one
transradial amputee while executing the TAC (Target Achieve-
ment Control) test to control a virtual hand on a computer screen,
representative of an upper limb prosthesis which included a
2-DoF wrist and a multi-grasp hand [30], [31]. Non-amputee
participants successfully completed almost all trials of the TAC
test (completion rate > 95%) with a median completion time
of 17 s and with a significant learning trend (p < 0.001). The
transradial amputee completed ~80% of trials with a median
completion time of 26 s. While these outcomes indicate that
the proposed transient controller could potentially control a
multi-DoF wrist-hand prosthesis, the long completion times in
executing the TAC suggest that further assessments are neces-
sary to fully evaluate its clinical viability. As an example, given
that a learning effect was observed along with TAC test trials,
the evaluation of participants performance within a multiday
experimental protocol is desirable.
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Fig. 1. Experimental setup. Eight pairs of surface electrodes were placed
around the participants’ forearms, while a custom embedded system acquired
the signals and implemented the transient EMG controller. Raw signals as well
as the outputs of the controller were sent wirelessly to a laptop via Bluetooth
communication. The laptop ran the BioPatRec toolbox [31], used both for
training the algorithm and running the virtual environment for the TAC test.
The latter was displayed on a supplementary screen to the participant.

II. MATERIALS AND METHODS

A. PFarticipants and Experimental Protocol

One unilateral transradial amputee (male, age 56 years, 26
years after right arm amputation, 13 cm residual limb length)
myoelectric hand user, and 15 non-amputees (aged 24—-34, four
females) with no known history of neuromuscular disorders,
participated in the study. Informed consent in accordance with
the Declaration of Helsinki was obtained before conducting the
experiments from each participant. The study was approved by
the local ethical committee of the Scuola Superiore Sant’ Anna,
Pisa, Italy (request no. 02/2017). The methods were carried out
in accordance with the approved guidelines. The experimental
setup consisted of a laptop computer running the TAC test [30], a
custom embedded system [32] implementing the proposed tran-
sient EMG controller [22], eight surface differential electrodes,
and a stand-alone monitor (Fig. 1). The surface electrodes were
placed around the participants forearm in a cuff fashion, starting
just distally to the elbow joint. The reference electrode was
placed either on the olecranon or the elbow medial epicondyle,
depending on the participant preference. EMG signals were
acquired via the embedded system over Bluetooth wireless link
witha 500 Hz sampling rate, and filtered via a 20 Hz second order
Butterworth high-pass filter, a 250 Hz third order Butterworth
low-pass filter, and a 50 Hz notch filter. Then, the embedded
system extracted the mean absolute value (MAV) from windows
of data of 100 ms with 50 ms overlap, and lastly executed the
proposed classification scheme.

The participants were asked to perform the TAC test, i.e., to
control the movements of a virtual hand shown on the PC screen
to reach a target posture, by contracting their forearm muscles,
while comfortably sitting (Fig. 1 and video clip in the supple-
mentary materials) [30]. Building on our prior work where limb
position was found not to significantly affect the performance
of the transient EMG classifier [22], here we used only one limb
position. This allowed to significantly reduce the number of trials
and the overall test duration. More in detail, the test included 16
target postures involving combinations of four movements of the
hand (power grasp, lateral grasp, tri-digit grasp, hand opening)
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and four movements of the wrist (flexion, extension, pronation,
supination). Each target posture involved two movements of the
wrist and one grasp (e.g., wrist pronation, wrist flexion, and
power grasp), and was presented three times. Thus, such TAC
test assessed the capability of an 8-class classifier to achieve a
combination of three random movements of hand and wrist for
a total of 48 trials (4 hand movements X 4 wrist movements
x 3 repetitions). The excursion of each movement was set to
40° in each target. The participants were given 45 s to reach the
target posture (as in Simon et al. [30]); a trial was considered
successful if the position of each of the controlled movements
was at most +5° away from the target, and maintained there for
2 s (dwell time, included in the 45 s). Vice-versa the trial was
stopped and considered failed. The speed of the virtual hand was
proportional to the EMG signals and ranged from 0 to 100 °/s
(details below).

The proportional speed control of the virtual hand and wrist
required some calibration. Before the TAC, for each movement
under test, the maximum voluntary contraction (MVC) and a cal-
ibration/training dataset were collected. The latter included 20
repetitions for each of the eight movements. The averaged mean
absolute value (aMAV) from all EMG channels was displayed
as a biofeedback signal during the training. More in detail, the
aMAV was displayed as a percentage of intensity between rest
(0%) and the MV C (100%) of that specific movement. This aided
the participants in producing similar (in amplitude) contractions
among repetitions. The training procedure was managed using
the BioPatRec toolbox for Matlab (R2017b, The Mathworks,
Natick, MA, USA) [31].

During both the training and the test phases, performed during
the same experimental session, participants were asked to siton a
chair with the elbow flexed at 90° on a soft cushion. Participants
were instructed to contract their muscles at a moderate, non-
fatiguing level (i.e., roughly around 40% of the MVC), and were
allowed to rest when needed. Prior to testing, the participants
familiarized with the TAC environment and controlled the virtual
hand for at least 10 minutes. If the participant was not satisfied
with his/her acquired control skills, the relative training signals
were re-acquired.

B. Embedded Implementation of a Transient EMG Controller

In general, a transient EMG controller includes three main
components: the onset detection algorithm (ODA), the classifier,
and the proportional controller (Fig. 2). The ODA is responsible
for detecting the onset of the muscle contractions, 7, from rest.
The classifier, fed with a window of signals starting from #¢ and
lasting Wr, (i.e., 200 ms in the current study), is responsible for
associating the EMG pattern to one of N possible movements.
Finally, the proportional controller is responsible for modulating
a certain parameter of the movement under control (e.g., speed)
based on the input signals. The following three paragraphs
describe in detail how these components were implemented in
the embedded system [32].

1) Onset Detection Algorithm: The ODA was based on a
subject-specific threshold detector, calibrated offline using the
derivative of the aMAV (daMAV). Specifically, the ODA relied
on the daMAV to detect the beginning of an incipient muscular
contraction. The calibration procedure started by defining 800
candidate-thresholds as equidistant values between a noise base-
line (defined empirically as six times the standard deviation of
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Fig. 2. Transient EMG controller components. The Mean Absolute Value
(MAV) is extracted from the EMG signals and fed to the Onset Detection
Algorithm (ODA). Once the ODA identifies an onset (at ts), the MAVs for a
window (WL) are fed to a classifier; thereafter, the average of the (steady-state)
MAV signals from eight electrodes is computed and used to proportionally
modulate the output speed of the virtual hand/wrist movements.

the daMAV during rest) and the median of the peaks of all rep-
etitions of a particular movement. Then, the movement-specific
threshold was calculated as the mean of all candidate-thresholds
that yielded the correct number of repetitions within the train-
ing set. Finally, the minimum value across movement-specific
thresholds was used as the actual ODA threshold.

In this architecture, the output of the ODA signaled to the
classifier the beginning of an incipient muscle contraction.

2) Classifier: We implemented a state of the art Error-
Correcting Output-Codes classifier [33] with a one-versus-all
coding matrix [34], comprising eight binary support vector
machines (SVM) using a linear kernel. Unlike conventional
continuous classification schemes, our classifier was fed with
time series of EMG windows starting at tg and lasting for
200 ms (i.e., Wr,) (Fig. 2), building on our previous study [22].
The classifier was fed with vectors that contained the temporal
evolution of the signals, rather than only instantaneous patterns
(i.e., composed of single values for each feature for each EMG
window) as in conventional schemes [35]. In particular, it con-
tained for each of the eight EMG channels, the MAV extracted
from three consecutive windows (i.e., MAV (;—50), MAV (1—100),
MAV (1=150)), for a total of 24 elements. In this way, the classifier
provided an output (one out of eight classes) 200 ms after the
identification of a muscle onset, whenever this was identified
by the ODA. It should be noted, however, that the classification
does not affect the MAV computation resolution (i.e., windows
of 100 ms with 50 ms overlap), which affects the ODA and the
proportional controller (described below). A finite state machine
was implemented to maintain the output class as the active one
(Fig. 3), and thus to control a specific movement (e.g., wrist
flexion or cylindrical grasp), as long as aMAV > Rt (rest
threshold). Vice-versa, the finite state machine set the output
class as a null class, not associated with any movement in the
virtual prosthesis. Rt was identified akin to the selection of ts for
the ODA using the training dataset. The output of the classifier
fed the proportional controller, responsible for modulating the
speed of the movement in the virtual prosthesis, associated with
the active class.

3) Proportional Controller: The proportional controller is
responsible for modulating a certain parameter of the movement
under control (e.g., speed) based on the input signals. In this
work, it linearly modulated the speed of the virtual hand/wrist
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Fig. 3.
(aMAV) or on the output of the Onset Detector.

movements depending on the contraction level of the participant,
between zero and 100 °/s, as follows:

T MAV (i

RT
#C’h Z MAV (i, k:

Propout (k)

*100 (1)

where k indicates the kth movement and the MAV(i) the MAV
of the ith channel. The output was normalized between MVC
(i,k) (i.e., the MVC of the ith channel of the kth movement),
corresponding to 100% contraction (or speed), and R, corre-
sponding to 0% contraction (or speed).

C. Performance Metrics

From each trial of the TAC, we conducted a two-fold analysis
by extracting both the accuracy of the online classification, as
well as task-related metrics more closely describing the overall
usability of the system. The definition of the accuracy of the
classification was borrowed from the literature and adapted
to the case of transient classification: it was computed as the
ratio between the number of correct output movements over the
total number of predicted movements [36]. More in detail, we
considered as correct output any movement that reduced the
distance between the target zone and the virtual hand driven by
participants.

As for the task-related metrics we assessed those proposed by
Simon et al. [30]: completion time (CT), completion rate (CR)
and path efficiency (PE). The CT was the time from start to suc-
cessful completion of a trial (including the dwell time); the CR
was the percentage of successfully completed trials; the PE was
the ratio between the shortest path for reaching the target divided
by the total distance travelled by the virtual hand [30]. The short-
est path was computed considering only sequential movements
(i.e., single DoF activations). Moreover, as the shortest path was
identified considering the nominal length of 40°, without the +5°
tolerance, it turned possible to achieve PE values greater than
100 %. In addition, in order to evaluate the control responsive-
ness, we assessed the time to the first correct class (TC) required
to reach the first correct classification. Similarly, we also calcu-
lated the number of initial misclassification (IM) before the first
correct classification. Similarly, we also calculated the number
of misclassifications before (MB) the first correct one.

To verify if CT or PE showed a monotonic learning trend
across trials data were analyzed by Spearman’s rank correlation.
A p-value lower than 0.5 was considered statistically significant.
In the latter analysis, a CT of 45 seconds and a PE of 0% were
assigned to failed trials.

S;: Classify

SVM on W
window

S,: Move

1 DoF
control

Finite state machine regulating the transient EMG controller. Every 50 ms, the state of the system (circles) is updated based on the average of the MAVs

III. RESULTS

The overall test lasted between one and two hours, for
each participant, mainly based on how many movements were
required for retraining during the familiarization phase and on
the performance during the TAC (in fact poor performance
implied longer durations of each trial). Regarding non-amputee
participants, no difference was observed between males and
females.

Participants exhibited different behaviors in modulating the
movements of the virtual hand. Although some of them preferred
using a constant speed (the maximum allowed), eventually cor-
recting overshoots, others modulated the velocity while reaching
the target. Anecdotally, participants tended to reach the target
posture by firstly operating the DoFs they felt easier to control,
leaving the more difficult ones at the end.

Overall, the non-amputee participants achieved a remarkable
online accuracy [82.1% median (7.2% IQR)] (Fig. 4(b)) and
successfully completed almost all trials [CR: 95.8% (14.1%)]
(Fig. 5) in a relatively short time [CT: 17.0 s (6.0 s)], and with a
PE of 60% (17.7%). The amputee participant also demonstrated
good classification accuracy [65.9% (18.0%)] (Fig. 4(b)) and
controllability [CR: 81.2%, CT: 24.3 s (15.6 s), PE: 35.6%
(16.8)]. While non-amputee participants successfully completed
~60% of the trials within 20 s, the amputee participant did the
same within 30 s (Fig. 5). The non-amputee participants selected
the desired class almost at the first attempt [IM: 0 (0)] and with
good responsiveness [TC: 0.9 s (0.75 s)]. Similarly, the amputee
participant reported an IM of O (1) and a TC of 0.9 s (1.4 s).

Misclassifications proved equally distributed along the trial
time for all participants (Fig. 4(a)). The Spearman’s rank cor-
relation coefficient revealed a learning trend with significative
monotonic relation between the trial number and the median CT
of non-amputee participants (p*> = 0.35, p < 0.001) (Fig. 4(c)).
Although weaker, the learning relation was significant between
the trial number and the median PE as well (p2 =0.19, p < 0.01)
(Fig. 4(c)). No significant trends were observed in the amputee
participant, in neither the CT nor the PE across trials.

IV. DIScuUssION

We implemented a transient EMG controller on a custom
hardware embedded system and assessed its viability in
controlling wrist and hand movements via the TAC test. In
line with our previous work [22], we decided to use the SVM
classifier to guarantee real-time implementation on a low-power
portable platform, thus allowing future testing in unsupervised
environments (i.e., at amputees’ home). Indeed, while we know
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Aggregated results. (a) Online accuracy as a function of time during the trial. (b) Box plot of the online accuracy for non-amputee participants (median

from each participant — grey circles) and the amputee (all trials — grey circles). (c) Median completion time (blue dots) of non-amputee participants as a function of
trial number. The median completion time significantly decreased with the trial number (Spearman’s rank correlation). The grey area represents the interquartile
range of each trial. The blue curve is a cubic spline interpolation of the median completion time. (d) Median path efficiency (blue dots) of non-amputee participants
as a function of trial number. The grey area, the correlation test and the blue curve are defined analogously to the median completion time figure.
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indicates the percentage of trials completed in a certain amount of time. The
black line and grey area represent the median performance and the interquartile
range of the non-amputee group, respectively. The red dashed line represents
the performance of the amputee.

that artificial neural networks could outperform the current im-
plementation in terms of accuracy, they come at a higher compu-
tational cost in terms of both memory footprint and calculations.
This implies the use of a more power demanding processor.
Consequently, we opted for an SVM classifier to optimize the
trade-off between the complexity and clinical relevance.
Concerning the control logic, although sequential movements,
prima facie, could be considered as an unnatural control strategy,
wrist and hand movements are in fact almost independent during
normal reach-to-grasp, i.e., they occur sequentially [37]. More in
detail, while humans are probably used to simultaneously open
the hand and rotate the wrist in reaching an object, prosthetic
users arguably start the reaching phase with a prosthesis ade-
quately opened in order to simplify the grasp planning. Building
on this evidence, and on the importance of the wrist in natural
grasping [29], [38], we deemed interesting to extend the concept
of a transient EMG controller for the control of both wrist
and hand, and tested it online. These two new experimental
conditions allowed us to extend the assessment of the proposed
transient EMG controller to a more realistic and complex sce-
nario (i.e., more similar to the home use of a prosthesis). Hence,
ensuring sufficient accuracy during the online classification of
eight classes of movement (rather than four in offline settings
[22]) represented the scientific challenge of this work.
Regarding the training dataset collection, while we acknowl-
edge that often movements performed at different force levels
are acquired [39], [40], here we instructed the participant to use
a “moderate, non-fatiguing” force supported by the real-time
biofeedback. Arguably, following the idea that the transient

could anticipate the EMG signal part used for the proportional
stage (i.e., the steady-state), we considered as uselessly fatiguing
the possibility to acquire different force levels. We based this
consideration on the outcomes of our previous work [22], which
showed how the proposed transient EMG controller anticipates
the steady-state phase of the EMG signal. Although our study
included more movements than important prior works (8 vs. 6)
[30], [41], we achieved almost comparable results in terms of
CT and CR, and also observed a learning effect in non-amputee
participants in the CT and PE over time (Fig. 4(c), (b)). Specifi-
cally, while the non-amputee participants included in our study
reached similar performance to those reported in the work from
Lv and colleagues [CT: 17.0 s (6.0 s) vs 209 s £+ 3.4 s; CR:
95.8% (14.1%) vs 82.1% =+ 8.2%] [41], our amputee showed a
comparable CT and a slightly lower CR compared to the group of
five amputees from the work of Simon and colleagues [CT: 24.3 s
vs 20.1 £4.0s; CR: 81.2% vs 92.1% =+ 7.6%] [30]. In addition,
the low values of IM and TC (that also included the participant
reaction time) showed promising usability of the control system
for both non-amputees [IM: 0 (0), TC: 0.9 s (0.75 s)] and the
amputee [IM: 0 (1), TC: 0.9 s (1.4 s)] participants. Consequently,
taken collectively, our outcomes reinforce earlier findings sug-
gesting that the transient EMG controller could represent a viable
alternative to more conventional pattern recognition approaches.

Yet, we argue that the achieved CT, as well as in the previous
studies, proved far too long for considering the present setup,
at least including eight hand and wrist movements, a clinically
viable one. Nonetheless, the observed learning effect in non-
amputee participants suggests that a multiday protocol could
show more clinically viable performance.

The transient EMG controller exhibited a lower online ac-
curacy compared to earlier studies in which the performance
was assessed offline [82.1% (7.2%) vs 94.4% =+ 2.8% [27] vs
96% + 4% [41] vs 97.5% (2.6%) [42]]. Even in the case of
the amputee, the online accuracy proved lower when compared
to the offline performance reported by Simon and colleagues
(65.9% vs 94.1% + 3.1%), which performed the TAC test
using basically the same online protocol [30]. Nonetheless, as
mentioned above, although the complexity of our classification
problem was greater than in Simon’s study (8 classes vs. 6),
we achieved comparable performance in terms of CT and CR.
This apparent incongruency (i.e., worse accuracy but similar
online metrics) may be explained in two ways. First, although
we borrowed the definition of accuracy from the literature, we
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had to adapt it for our transient classifier scheme, which unlike
continuous classifiers provides an output only at the beginning of
a contraction (and not at each window). Hence, in our definition
the numerator and denominator are much lower figures than in
a conventional continuous classifier, causing a lower statistical
significance of the actual result when compared to the latter.
In simple words, the comparison between accuracies should
be carefully interpreted. Second, and not less importantly, our
results corroborate the hypothesis that classification accuracy
does not necessarily correlate with functional performance [25],
[26], [27], [28], and invite studies in this area to always verify the
online performance with the human in-the-loop. While we know
that other works used TAC test for assessing the performance of
continuous control strategies [12], [25], we mostly focused on
Simon and colleagues work [30] because it was, at the moment
of writing, the most comparable study with respect to the online
performance of our amputee participant. For example, similarly
to us, Catalan and colleagues assessed a sequential (and simulta-
neous) control strategy using a 3-DoFs TAC test obtaining better
functional outcomes [30 s of timeout, considering the sequential
controller — CR: 79.1 % (25.5 %) vs 92.0 s (16.0 s)]. However,
they administered simpler tasks assessing a 6-class problem and
used a considerably lower virtual hand maximum speed (i.e.,
40 °/s vs the 100 °/s used here) [27].

In Simon and colleagues’ work [30], the starting posture of the
hand differed in every trial while the target posture was always
the rest condition; here, as in Ortiz-Catalan and colleagues’ study
[27], we did the opposite. We argue that starting from a rest
posture and reaching different target postures better mimics the
use of an actual prosthesis. However, this may have decreased
the interpretability of the virtual environment as it displayed a
different target at each trial. Notably, a few participants actually
claimed that when the controlled hand was close to the target
it was difficult to understand which DoFs were or were not
within the target zone, perhaps graphical updates in the TAC
test interface can be beneficial. This last observation, as already
claimed by Wurth and colleagues [43], makes the TAC test more
difficult than other commonly used Fitt’s law style assessment
procedures (based on visual cues simpler than a virtual hand).
Consequently, comparing functional outcomes across assess-
ment methodologies is inappropriate.

For the group of non-amputees, while the majority of the trials
(60%) were completed within 20 s, an additional 25 s proved
necessary to reach a 95% CR (Fig. 5). This trend probably infers
that each participant experienced greater difficulty in controlling
specific movements, leading so to a prolonged trial when such
movements were included in the target postures. A deeper
analysis of this aspect did not retrieve generalizable difficult
movements thus suggesting that they were participant-specific.

Some non-amputee participants and particularly the amputee
controlled the speed of the virtual hand in an on/off fashion,
sometimes producing a bouncing trajectory around the target
posture, and as such a lower path efficiency (Fig. 4). This behav-
ior could be due to three different factors. First, the modulation
of the virtual hand speed was a more difficult task, as compared
to operating it at full speed, and the TAC test did not provide a
direct endorsement for it. Hence, some of the participants simply
adopted the simpler strategy of correcting eventual overshoot
errors rather than finely modulating the speed. This could likely
be caused by the choice of the maximum speed, chosen to match
with Simon et al.’s study for a direct and fair comparison, which
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perhaps proved excessive. Retrospectively, it is not surprising
that other investigators actually chose a lower maximum speed
to execute similar tests (i.e., 40 °/s) [27], [44]. Second, the output
of the proportional control was computed giving equal weight
to each of the eight EMG channels (1). In turn, if one channel
had very low dynamics, and this was likely the case for the
amputee, it could easily provide a very high contribution to
the output, hence resulting in limited controllability. A potential
solution could be to exclude the channels with low/lower EMG
activity from the computation of the proportional output, yet
keeping them for the classification. Third, the EMG envelope
often showed an overshoot at the end of the transient phase, likely
due to muscular recruitment mechanisms [45], [46], [47]. Such
overshoot, mostly filtered out by a post-processing algorithm
in continuous pattern recognition controllers [48], was the first
input to the proportional controller and made it difficult to
produce slow movements immediately after the muscular onset.

Although it allowed to uncover some practical aspects of
the transient EMG controller/classifier, this study exhibited a
few limitations that are worth discussing. First, it is known
that multiple time-domain features improve the accuracy of the
classification and that optimal feature sets do exist for continuous
classifiers [35]. Nevertheless, building on our previous study
[22], we used only the MAYV, considering that the MAV of the
raw EMG is known to be comparable to the output of commercial
dry surface EMG electrodes (that are used in actual prostheses).
This allowed us to assess the transient EMG controller with
more realistic data. Second, our system/protocol allowed any
movement (related either to the hand or the wrist district) to
be executed at any time, with no pre-defined order. While
this per se represented an asset, as it more closely resembled
natural conditions, it also allowed the participants to execute
the movements opportunistically, i.e., controlling the closing of
the hand before properly orientating the wrist. This, however,
is not physiologic as in natural reach-to-grasp movements the
orientation of the wrist typically anticipates the closure of the
digits; hence the results present this bias. Third, the presence
of a single amputee impeded us to draw any conclusion about
an amputee population. Ultimately, the training session proved
quite long and sometimes tedious for the participants. As a
consequence of this, and of the poor results achieved with the
group of non-amputees (in terms of CT), we decided to enroll a
single participant with amputation. Since we did not anticipate
significant experimental differences, we avoided recruiting and
exposing multiple amputees to a potentially tedious/lengthy test.
As suggested by Bunderson and Kuiken [49], a better expe-
rience/engagement could have been attained by providing the
participants with a more accurate representation of the features
space, such as the real-time bio-feedback.

Wrapping up, although the online performance proved com-
parable with other similar sequential controllers [27], [30],
the completion times achieved with the current experimental
protocol cannot be acceptable for a clinically viable system yet.
We argue that any upper limb amputee, especially if unilateral,
would not accept to take tens of seconds to properly orientate
his/her prosthesis to grasp an object. Until the technology would
not prove performance comparable to the sound limb, or at least
restore lost functions which are not possible in other ways,
such technology would likely be dropped [50]. In this case,
compensatory movements with the more proximal segments
would allow the person to achieve the same goal, not having to
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wear a slow (and perhaps expensive and heavy) prosthesis at all.
However, while current single session outcomes suggest that an
8-classes sequential control over three movements of the wrist
and the hand (wrist flexion/extension, pronation/supination,
hand grasps) is not yet a viable option (3 DoFs tasks are
completely mostly in 20 seconds), the observed learning trend
suggested that the online performance could probably improve
by letting the participants training across multiple sessions,
eventually across days [51], [52]. Moreover, arguably, having
simultaneous control of the two DoFs of the wrist in sequence
with (followed by) the control of the grasp (as assessed by
Amsuess and colleagues [53]), could reduce the completion
times and represents a good trade-off between classifier com-
plexity and control dexterity. This is in agreement with Smith
and colleagues’ basic study on simultaneous EMG control [54].
They argued that in a 2 DoF reaching task (i.e., in a virtual
Fitts’ Law task) simultaneous control is typically used in the first
phase for grossly reaching the target, whereas sequential control
is preferred at later stages for precise, small adjustments [54].
In our controller, we did not consider simultaneous wrist move-
ments as they would have implied a considerably longer training
procedure to the participants (i.e., 80 additional repetitions, for
the training dataset) [12], [27], [43]. In fact, in the current
methodology, the classification with the highest confidence level
among the outputs of the eight binary one-versus-all SVM was
selected as the intended movement. The selected scheme makes
it impossible to perform simultaneous movements and imposes
that any additional movement combination would require a
dedicated set of repetitions to train the algorithm. However,
although out of the scope of this study, the possibility to decode
simultaneous wrist movements without increasing the dimen-
sion of the training set exists. For example, analogously to the
work of Catalan and colleagues [27], the outputs of the single
one-versus-all SVM could be combined into a simultaneous
movement if the two DoFs of the wrist were both selected.
Eventually, in order to ensure the reliability of the classification,
an adequate confidence threshold should be set [55].

Taking these considerations collectively, desirable future in-
vestigations may comprise the design of an experimental pro-
tocol including testing on multiple days in order to assess the
control stability longitudinally and fully evaluate the learning
capability associated with the transient controller. Additionally,
in order to include simultaneous movements but at the same time
avoid the initial tedious/lengthy training session, a scheme with
growing difficulty could be considered. More in detail, similarly
to that proposed by Perry and colleagues [56], participants could
start using a subset of movements (e.g., open/close and wrist
pronation/supination) and add new ones gradually, in a multiday
scenario, once that good controllability has been achieved.
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