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Energy efficient navigation constitutes an important challenge in electric vehicles, due 
to their limited battery capacity. We employ a Bayesian approach to model the energy 
consumption at road segments for efficient navigation. In order to learn the model 
parameters, we develop an online learning framework and investigate several exploration 
strategies such as Thompson Sampling and Upper Confidence Bound. We then extend our 
online learning framework to the multi-agent setting, where multiple vehicles adaptively 
navigate and learn the parameters of the energy model. We analyze Thompson Sampling 
and establish rigorous regret bounds on its performance in the single-agent and multi-
agent settings, through an analysis of the algorithm under batched feedback. Finally, we 
demonstrate the performance of our methods via experiments on several real-world city 
road networks.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Today, electric vehicles experience a fast-growing role in many different transport systems. However, the applicability of 
electric vehicles is often constrained by the limited capacity of their batteries. Due to the historically high cost of batteries, 
the range of electric vehicles has generally been much shorter than that of conventional vehicles. This has led to the fear 
of being stranded when the battery is depleted, an effect known as “range anxiety”. Such concerns could be alleviated by 
improving the navigation algorithms and route planning methods for these systems. Therefore, in this paper we aim at 
developing principled methods for energy efficient navigation of electric vehicles.

Several works employ variants of shortest path algorithms for the purpose of finding the routes that minimize the 
energy consumption. Some of them (e.g., [2,3]) focus on computational efficiency in searching for feasible paths where the 
constraints induced by limited battery capacity are satisfied. Both [2] and [3] use energy consumption as edge weights for 
the shortest path problem. They also consider recuperation of energy modeled as negative edge weights, since they identify 
that negative cycles cannot occur due to the law of conservation of energy. In [3], a consistent heuristic function for energy 
consumption is used with a modified version of A*-search [4] to capture battery constraints at query-time. In [5], instead 
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of using fixed scalar energy consumption edge weights, the authors use piecewise linear functions to represent the energy 
demand, as well as lower and upper limits on battery capacity.

This task has also been developed beyond the shortest path problems in the context of the well-known vehicle routing 
problem (VRP). In [6], VRP is applied to electrified commercial vehicles in a two-stage approach (i.e., an electric vehicle 
routing problem, EVRP), where the first stage consists of finding the paths between customers with the lowest energy 
consumption and at the second stage the EVRP including optional public charging station nodes is solved. The same authors 
later extend their methods in [7], using Bayesian methods to learn the energy consumption of individual road segments 
while solving the EVRP.

The aforementioned methods either assume that the necessary information for computing the optimal path is available, 
or do not provide enough exploration to acquire it. Thereby, we focus on developing an online framework to learn (explore) 
the parameters of the energy model adaptively alongside solving the navigation (optimization) problem instances. We adopt 
a Bayesian approach to model the energy consumption for each road segment. The goal is to learn the parameters of such 
an energy model to be used for efficient navigation. Therefore, we develop an online learning framework to investigate and 
analyze several exploration strategies for learning the unknown parameters.

Thompson Sampling (TS) [8], also called posterior sampling and probability matching, is a model-based exploration method 
for an optimal trade-off between exploration and exploitation. Several experimental [9–11] and theoretical studies [12–15]
have shown the effectiveness of Thompson Sampling in different settings. [11] develops an online framework to explore the 
parameters of a decision model via Thompson Sampling in the application of interactive troubleshooting. In [16], Thompson 
Sampling is used for combinatorial semi-bandit problems, including the shortest path problem with Bernoulli-distributed 
edge costs, and distribution-dependent regret bounds are derived.

Upper Confidence Bound (UCB) [17] is another approach widely used for exploration-exploitation trade-off. A variant of 
UCB for combinatorial semi-bandits is introduced and analyzed in [18]. A Bayesian version of the Upper Confidence Bound 
method is introduced in [19] and later analyzed in terms of regret bounds in [20]. An alternative Bayesian approach is 
proposed in [21], which the authors call the Upper Credible Limit algorithm.

In this work, beyond the novel online learning framework for energy efficient navigation, we further extend our methods 
to the batched feedback and multi-agent settings. In the former, feedback from the environment is delayed and received in 
batches, while in the latter, multiple vehicles adaptively navigate and learn the parameters of the energy model. We then 
extensively analyze the proposed methods and evaluate them on several synthetic navigation tasks, as well as on real-world 
settings using SUMO-simulated traffic data from three different cities: Luxembourg [22], Monaco [23] and Turin [24].

1.1. Related work

The general problem considered in this paper is finding paths of minimum expected cost through graphs with unknown 
edge weight distributions. This problem has been studied using the framework of stochastic multi-armed bandits for at 
least a decade, where [25] and [26] are prominent examples of early work addressing the problem. The authors of [25]
introduce a stochastic combinatorial bandit framework, where it is assumed that the weight of each edge in a traveled path 
is revealed afterwards (i.e., semi-bandit feedback). They propose a method called Learning with Linear Rewards based on the 
celebrated principle of optimism in the face of uncertainty, where paths are selected using an exploration bonus added 
to the estimated mean of each edge. Other works, also based on the utilizing this principle for combinatorial bandits and 
online shortest path problems, are [18] and [27].

Semi-bandit feedback is a natural assumption in our setting, since it is straightforward to record the actual energy 
consumed by a vehicle for each edge traversed. However, there are several methods for stochastic combinatorial bandits 
that do not need, nor utilize, this assumption. An example of such a method is [26], in which the authors leverage path 
interdependencies using barycentric spanners. Other examples include any algorithm for the linear stochastic bandit model 
(see e.g., [28,29]), of which combinatorial bandits with linear rewards is a special case.

Thompson Sampling has been analyzed and evaluated with promising results for combinatorial bandit problems in gen-
eral (e.g., [30,31,16]), and the online shortest path problem is a commonly suggested application. The authors of [32] propose 
a framework for analyzing the Bayesian regret of Thompson Sampling, and apply it to several different problem settings. 
Their technique for converting regret bounds of UCB algorithms into bounds for Thompson Sampling is utilized in our work 
to derive bounds for batched feedback and multi-agent problem settings.

Bandit problems with delayed or batched feedback have been of intense interest to the research community, due to the 
wide applicability in real-world settings. Thompson Sampling has been empirically shown to achieve good results when 
reward observations are delayed [10]. The authors of [33] propose a black box algorithm which may convert any stochastic 
bandit algorithm into an algorithm handling delayed feedback. The converted algorithms retain the regret bounds of the 
original algorithms, except for an additive term which is constant in the horizon and linear in the maximum delay. In 
[34], a lower regret bound for the two-armed bandit problem with batched feedback is derived, again exhibiting a linear 
dependence with respect to the batch size.

We take inspiration from the frequentist analysis of batched linear contextual UCB presented in [35] and extended to 
the generalized linear setting in [36], utilizing a similar technique in our analysis to decompose the Bayesian regret over the 
batches. Another extension of [35] is [37], which presents a greedy LASSO-based algorithm for a high-dimensional batched 
linear contextual bandit setting, where the dimension of the context is assumed to be much higher than the time horizon. 
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To provide an upper bound for the frequentist regret, they assume that the context is stochastic with enough variance to 
induce sufficient exploration. This assumption does not hold for the non-contextual setting studied in our work.

Finally, regarding incremental learning of energy consumption in graphs, the authors of [7] use a Bayesian approach, sim-
ilar to the one in this work, to learn the edge-specific distributions of electric vehicle energy consumption in a road network. 
They utilize the posterior distributions to formulate and solve an EVRP for commercial vehicles, where the paths between 
customers, charging stations and depots are selected using learned parameters and information from the environment. Since 
exploration is not the focus of their work, their method of calculating the shortest paths most closely corresponds to the 
greedy baseline used for the experiments in this work.

1.2. Our contributions

First and foremost, we propose a novel online learning framework for energy efficient navigation of electric vehicles, 
in a setting where the vehicle energy consumption of road segments is assumed to be stochastic and the corresponding 
distributions are unknown a priori. We utilize a physical model of vehicle energy consumption to assign the edge-specific 
parameters of prior distributions for Bayesian bandit algorithms, such as Thompson Sampling and BayesUCB, in order to in-
telligently guide necessary exploration towards reasonable paths. The multi-armed bandit problem can be seen as a resource 
allocation problem, and as such, bandit algorithms are most useful where there is a limited number of agents available for 
data collection.

While travel time in a road network is both stochastic and a common edge weight in shortest path problems, there is 
an abundance of travel time data available from various sources, e.g., from cellular devices. For vehicle energy consumption, 
however, there are factors limiting the number of agents. As energy consumption depends heavily on the specific vehicle 
type used, internal vehicle sensors are required for data collection. Furthermore, energy consumption also depends on 
the characteristics of the road traveled, like slopes, curvature, bumps, etc. Hence, it is a problem setting highly suited for 
Bayesian bandit algorithms.

While several works on Bayesian combinatorial bandit algorithms have been empirically evaluated using uninformative 
priors, it is less common with experiments where informative priors are used to explore combinatorial arm sets more ef-
ficiently. We not only utilize informative priors in our experiments, but also study the exploration of the road network 
through visual inspection of geospatial plots. Furthermore, we experimentally evaluate the robustness of the proposed 
framework to prior misspecification. We perform experiments for the road networks of multiple cities, using realistic traffic 
environment data.

As far as we are aware, there are no previous works analyzing the Bayesian regret of batched combinatorial Thompson 
Sampling. Furthermore, we also extend our analysis to the synchronous multi-agent setting. While there is prior work for 
batched linear contextual bandits (e.g., UCB in [35] and [36]), a combinatorial bandit problem is only a special case of 
the linear bandit problem for linear reward functions. Our technique, however, is feasible to extend for non-linear reward 
functions, such as in [38], where combinatorial Thompson Sampling is used to address the problem of finding paths which 
minimize their maximum edge weights.

Finally, this is the first work extending and evaluating the BayesUCB algorithm [19] to the online shortest path problem, 
empirically demonstrating good performance of the algorithm in this problem setting.

2. Energy consumption model

In this section, we start by describing how we model the road network and the different factors affecting the energy 
consumption of a vehicle traversing a specific road segment. We then outline two different Bayesian approaches to extend 
the deterministic energy consumption model to a probabilistic setting.

2.1. Setup of the energy consumption model

We model the road network by a directed graph G(V, E, w) where each vertex u ∈ V represents an intersection of the 
road segments, and E indicates the set of directed edges. Each edge e = (u1, u2) ∈ E is an ordered pair of vertices u1, u2 ∈ V
such that u1 �= u2 and it represents the road segment between the intersections associated with u1 and u2. In the cases 
where bidirectional travel is allowed on a road segment represented by (u1, u2) ∈ E , we add an edge (u2, u1) ∈ E in the 
opposite direction. A directed path is a sequence of vertices 〈u1, u2, . . . , un〉, where uh ∈ V for h = 1, . . . , n and (uh, uh+1) ∈ E
for h = 1, . . . , n − 1. Hence, a path p can also be viewed as a sequence of edges. If p starts and ends with the same vertex, 
p is called a cycle. Note that, in this work, different paths may have different numbers of vertices.

We associate a weight vector w to the graph, where each element we represents the total energy consumed by a vehicle 
traversing edge e ∈ E . We extend the notation so that the total weight of a path p is denoted w p := ∑

e∈p we . For each 
edge e, we also define other edge attributes associated with road segments, such as the average speed ve , the length le , and 
the inclination αe .

In our setting, the amount of energy consumed at different road segments is stochastic and a priori unknown. We adopt 
a Bayesian approach to model the energy consumption at each road segment e ∈ E , i.e., the edge weights. Such a choice 
3
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provides a principled way to induce prior knowledge. Furthermore, as we will see, this approach fits well with the online 
learning and exploration of the parameters of the energy model.

We first consider a deterministic model of vehicle energy consumption Ee for an edge e, which will be used later as 
the prior. Similar to e.g., [39,7], our model is based on longitudinal vehicle dynamics and Newton’s second law of motion. 
For convenience, we assume that vehicles drive with constant speed along individual edges so that we can disregard the 
longitudinal acceleration term. However, this assumption is only used for the prior. We then have the following equation 
for the approximated energy consumption (in watt-hours):

Ee := mgle sin(αe) + mgCrle cos(αe) + 0.5Cd Aρle v2
e

3600η
. (2.1)

In Eq. (2.1) the vehicle mass m, the rolling resistance coefficient Cr , the front surface area A and the air drag coefficient 
Cd are vehicle-specific parameters. Whereas, the road segment length l, speed v and inclination angle α are location (edge) 
dependent. In principle, Cr could also be considered edge-specific (since it also depends on the surface of the road), but 
in this work, we assume that it is the same for all edges. We treat the gravitational acceleration g and air density ρ as 
constants. The powertrain efficiency η is vehicle specific and can be approximated by a constant η = 1 for an ideal vehicle 
with no battery-to-wheel energy losses.

Actual energy consumption can be either positive (traction) or negative (regenerative braking). If the energy consumption 
is modeled accurately and used as we in a graph G(V, E, w), the law of conservation of energy guarantees that there exists 
no cycle c in G where wc < 0. However, since we are modeling and estimating the expected energy consumption of each 
individual road segment independently (to ensure that the problem is tractable), this guarantee does not necessarily hold in 
our case.

While modeling energy recuperation is desirable from an accuracy perspective, it introduces some difficulties. In terms 
of computational complexity, Dijkstra’s algorithm [40] does not allow negative edge weights and the Bellman-Ford algo-
rithm [41–43] is slower by an order of magnitude. There are methods to overcome this (e.g., [44]), but they still assume 
that there are no negative edge weight cycles in the network. Hence, we choose to only consider positive edge weights 
when solving the energy efficient (shortest path) problem, which enables us to use Dijkstra’s algorithm in this work. This 
approximation still achieves meaningful results, since even with recuperation discarded, edges with high energy consump-
tion are avoided. So while the powertrain efficiency η has a higher value when the energy consumption is negative than 
when it is positive, we believe using a constant is a justified simplification as we only consider positive edge-level energy 
consumption in the optimization stage. However, we emphasize that our generic online learning framework is independent 
of such approximations, and can be employed with any senseful energy model and shortest path algorithm.

2.2. Rectified Gaussian model of energy consumption

Motivated by [45], as the first attempt at a probabilistic model of energy consumption, we assume the stochastic energy 
consumption Ẽe of a road segment represented by an edge e follows a Gaussian distribution, given a certain small range of 
inclination, vehicle speed and acceleration. We also assume that Ẽe is independent from Ẽe′ for all e′ ∈ E where e′ �= e and 
that we may observe negative energy consumption. In other words, we assume that we may observe the energy recuperation 
of the vehicle, even though we only use estimates of the non-negative energy consumption when solving the shortest path 
problem (as stated in Section 2.1). The likelihood function (where, for later convenience, Ẽe is negated so that θ∗

e indicates 
a mean reward) is then

P (Ẽe | θ∗
e ,σ 2

e ) := N (−Ẽe | θ∗
e ,σ 2

e ).

Here, for clarity, we assume the noise variance σ 2
e is given. We can then follow a Bayesian approach, and use a Gaussian 

conjugate prior over the mean energy consumption:

P (θ∗
e | μe,0, ς

2
e,0) := N (θ∗

e | μe,0, ς
2
e,0),

where we choose μe,0 ← −Ee and ς2
e,0 ← (ϑμe,0)

2 for some constant ϑ > 0. Due to the conjugacy properties, we have 
closed-form expressions for updating the posterior distributions with new observations of Ẽe . For any path p in G , we 
have E 

[∑
e∈p Ẽe

]
= ∑

e∈p E[Ẽe], which means we can find the path with the lowest expected energy demand if we set 

we ← E[Ẽe] and solve the shortest path problem over G(V, E, w). When the expected energy consumption is estimated 
instead of being known, to deal with the risk of we < 0 (i.e., negative weights), we instead set we ← E [ze] where ze is 
distributed according to the rectified Gaussian distribution N R(−θ∗

e , σ 2
e ), which is defined so that ze := max (0, Ẽe) and 

Ẽe ∼ N (−θ∗
e , σ 2

e ). The expected value of ze is then E [ze] = −(θ∗
e · (1 − 	(−θ∗

e /σe)) + σe · φ(−θ∗
e /σe)), where 	 and φ are 

the standard Gaussian CDF and PDF respectively. Thus, since we observe both negative and positive energy consumption, 
we may utilize the conjugacy properties of the Gaussian likelihood and prior distribution to efficiently update and sample 
from the posterior distribution over the (non-negative) rectified Gaussian mean.
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2.3. Log-Gaussian model of energy consumption

Alternatively, instead of assuming a rectified Gaussian distribution for the energy consumption of each edge, we model 
the non-negative edge weights by (conjugate) Log-Gaussian likelihood and prior distributions. By definition, if we have a 
Log-Gaussian random variable Z ∼ LN (μ, σ 2), then the logarithm of Z is a Gaussian random variable (log Z) ∼ N (μ, σ 2). 
Therefore, we have the expected value E[Z ] = exp{μ + 0.5σ 2} and the variance Var[Z ] = (exp{σ 2} − 1) · exp{2μ + σ 2}. We 
can then define the likelihood function as

P
(

Ẽe

∣∣∣θ∗
e ,σ 2

e

)
:= LN

(
Ẽe

∣∣∣∣log (−θ∗
e ) − 1

2
log

(
1 + σ 2

e

ψ2
e

)
, log

(
1 + σ 2

e

ψ2
e

))
, (2.2)

such that we match the moments of the rectified Gaussian model as well as possible, with E[Ẽe] = −θ∗
e and Var[Ẽe] =

σ 2
e · (θ∗

e )2

ψ2
e

. We also choose the prior hyper-parameters such that E[θ∗
e ] = μe,0 and Var[θ∗

e ] = ς2
e,0, and also let ψe = μe,0, 

where μe,0 and ςe,0 are calculated in the same way as for the Gaussian prior (except that μe,0 is restricted to be negative) 
in order to make fair comparisons between the Log-Gaussian and rectified Gaussian results. The resulting prior distribution 
is

P
(
θ∗

e

∣∣μe,0, ς
2
e,0

) := LN
(

−θ∗
e

∣∣ log (−μe,0) − 1

2
log

(
1 + ς2

e,0

μ2
e,0

)
, log

(
1 + ς2

e,0

μ2
e,0

))
. (2.3)

We emphasize that the specific parameterization that we use for the Log-Gaussian model in Eq. (2.2) allows for closed 
form posterior updates with the prior distribution in Eq. (2.3). Since −θe is drawn from a Log-Gaussian prior distribution, 
then the value (i.e., a linear function of log(−θe)) of the first parameter of the Log-Gaussian likelihood described in Eq. (2.2)
is Gaussian (i.e., the conjugate prior distribution of the first parameter using the standard parameterization). For more 
details on Bayesian updates with this Log-Gaussian parameterization, see e.g., [46]. We summarize the notation used in the 
preceding sections and the rest of the paper in Table A.1 of Appendix A.

3. Online learning and exploration of the energy model

We develop an online learning framework to explore the parameters of the energy model adaptively alongside sequentially 
solving the navigation (optimization) problem at different time steps. Here, a time step (or round) refers to each time we 
select and traverse a path. At the beginning, the exact energy consumption of the road segments and the parameters of 
the respective model are unknown. Thus, we start with an approximate and possibly inaccurate estimate of the parameters. 
We use the current estimates to solve the current navigation task. We then update the model parameters according to the 
observed energy consumption at different road segments (edges) of the navigated path, and use the new parameters to 
solve the next task.

Algorithm 1 describes these steps, where the vectors μt−1 and ς t−1 refer to the current posterior parameters of the 
energy model for all the edges at the current time t , which are used to obtain the current edge weight vector wt . Whenever 
we refer to an element of a vector indexed by a time step t , we always let the rightmost index be t , e.g., we,t in the vector 
wt . We solve the optimization problem using wt to determine the optimal action (or arm in the nomenclature of multi-
armed bandit problems) at , which in this context is a path through a graph. The action at is applied and a reward rt(at) is 
observed, consisting of the actual measured energy consumption for each of the passed edges. We assume that the energy 
consumption distribution of each edge is fixed over time, and therefore, we exclude the subscript t of the reward where it 
is not needed, such as for the expected reward E [r(at)]. Since we want to minimize energy consumption, we regard it as 
a negative reward when we update the parameters (shown for example for the rectified Gaussian model in Algorithm 2). T
indicates the total number of time steps, sometimes called the horizon.

To measure the effectiveness of our online learning algorithm, we consider its regret, which is the difference in the 
total expected reward between always playing the optimal action and playing actions according to the algorithm. Formally, 
the instant regret at time t (or alternatively the gap of the action selected at time t) is defined as �t := E [r(a∗)] −
E [r(at)] where a∗ := arg maxa E [r(a)] is the action which maximizes the expected reward, and the cumulative regret is 
defined as Regret(T ) := ∑T

t=1 �t . Since our framework uses a Bayesian approach, we also consider Bayesian regret, which 
is the expected value of the regret over problem instances sampled from the prior distribution, so that BayesRegret(T ) :=
E [Regret(T )].

3.1. Shortest path problem as multi-armed bandit

A combinatorial bandit [47,25] is a multi-armed bandit problem where an agent is only allowed to pull sets of arms 
instead of an individual arm. However, there may be restrictions on the feasible combinations of the arms. We consider the 
combinatorial semi-bandit case where the rewards are observed for each individual arm pulled by an agent during a round.
5
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Algorithm 1 Online learning for energy efficient navigation.
Require: μ0, ς0
1: for t ← 1, . . . , T do
2: wt ← GetEdgeWeights(t, μt−1, ς t−1)
3: at ← SolveOptimizationToFindAction(wt )
4: rt ← ApplyActionAndObserveReward(at )
5: μt , ς t ← UpdateParameters(at , rt , μt−1, ς t−1)

Algorithm 2 Gaussian parameter update of the energy model.
1: procedure UpdateParameters(at , rt , μt−1, ς t−1)
2: for each edge e ∈ at do

3: ς2
e,t ←

(
1

ς2
e,t−1

+ 1
σ 2

e

)−1

4: μe,t ← ς2
e,t

(
μe,t−1

ς2
e,t−1

+ rt (e)
σ 2

e

)
5: return μt , ς t

A number of different combinatorial problems can cast to multi-armed bandits in this way, among them the online 
shortest path problem [25–27] is the focus of this work. An efficient algorithm for the deterministic problem (e.g., [40]) can 
be used as an oracle [16] to provide feasible sets of arms to the agent, as well as to maximize the expected reward.

We connect this to the optimization problem in Algorithm 1, where we want to find an arm at . At time t , let G(V, E, wt)

be a directed graph with weight vector wt and sets of vertices V and edges E . Given a source vertex u1 ∈ V and a target 
vertex un ∈ V , let P be the set of all paths p in G such that p = 〈u1, . . . , un〉. Assuming non-negative edge costs we,t for 
each edge e ∈ E , the problem of finding the shortest path (arm at ) from u1 to un can be formulated as

at = arg min
p∈P

∑
e∈p

we,t .

For the analysis, we introduce some formal definitions for this stochastic combinatorial semi-bandit problem. There is 
a set of base arms A, which corresponds to E in the considered graph. The set of arms selected at time t is called the 
super-arm at ⊆ A. The set of feasible super-arms I such that at ∈ I , is equal to the set of paths P . We further define the 
expected reward of super-arm a with respect to a particular mean reward vector (for all base arms) θ as fθ (a) :=∑

i∈a θi . 
Hence, according to the previously introduced definition of regret, we have that Regret(T ) =∑T

t=1 ( fθ∗ (a∗) − fθ∗ (at)).

3.2. Thompson Sampling

In our Bayesian setup, a greedy strategy chooses the arm which maximizes the expected reward according to the cur-
rent estimate of the mean rewards. Since the greedy method does not actively explore the environment, there are other 
methods which perform better in terms of minimizing cumulative regret. One commonly used method is ε-greedy, where a 
(uniformly) random arm is taken with probability ε and the greedy strategy is used otherwise. While, in principle, it could 
possible to select paths uniformly at random for the exploration time steps, the size of the set of all paths P (corresponding 
to the set of feasible super-arms I) can be exponential with respect to the number edges in the graph. This might even 
include paths similar to random walks through the graph, which would almost certainly be very inefficient in terms of 
accumulated edge costs. Hence, this method is not well suited to the shortest path problem. A modification of ε-greedy 
(based on Algorithm 1 in the supplementary material of [18]), where only a single edge (and the shortest path through it) 
is sampled, is introduced in Algorithm 7. However, for large graphs this might still lead to unreasonable exploration paths 
(e.g., a path between New York City and Boston through a randomly selected detour around Los Angeles).

An alternative method for exploration is Thompson Sampling (TS). In contrast to the greedy method, with TS (like in ε-
greedy), arms are randomly sampled. However, where arms are sampled uniformly at random with ε-greedy, the TS agent 
samples from the model, i.e., during each time step, it selects an arm which has a high probability of being optimal by 
sampling mean rewards from the posterior distribution and choosing an arm which maximizes them. In other words, the 
method utilizes the prior beliefs about the parameter values to guide exploration towards reasonable arms.

Thompson Sampling for the energy consumption shortest path problem is outlined in Algorithm 3, where it can be used 
in Algorithm 1 to obtain the edge weights in the network (only shown for the rectified Gaussian model).

3.2.1. Regret analysis
In the following section, we provide an analysis on the cumulative regret of Thompson Sampling for the shortest path 

navigation problem. While better upper bounds on Bayesian regret for combinatorial TS is possible (e.g., using our proof for 
the batched combinatorial setting in Theorem 3 with batch size 1, we obtain a Bayesian regret upper bound of Õ

(
|E |√T

)
), 

this result may give some insight on the relationship between reinforcement learning problems and combinatorial bandit 
problems.
6
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Algorithm 3 Thompson Sampling.
1: procedure GetEdgeWeights(t, μt−1, ς t−1)
2: for each edge e ∈ E do
3: θ̃e ← Sample from posterior N (μe,t−1, ς2

e,t−1)

4: we,t ←E[ze] where ze ∼ N R (−θ̃e, σ 2
e )

5: return wt

Proposition 1. The Bayesian regret of Algorithm 1 is upper bounded by

BayesRegret(T ) ≤ Õ
(
|V|2√|E| T

)
.

We arrive at this result by relating the problem to recent results in reinforcement learning literature [15]. We view the 
online shortest path problem as an episodic reinforcement learning problem on an unknown finite time horizon Markov 
decision process (MDP). Here, each vertex u ∈ V corresponds to a state, each edge e ∈ E corresponds to an action, and the 
reward distributions for each action are the same as in the bandit problem. Like in the bandit problem formulation, the 
rewards of different states are assumed to be independent. Furthermore, given a state and an (allowed) action, transitions 
are deterministic, such that the next state is the end vertex of the edge corresponding to the action. Each episode starts in 
the source vertex state and ends when the target vertex state is reached. In other words, each episode corresponds a time 
step (and path selection) in the bandit problem formulation.

Applying posterior sampling for reinforcement learning (PSRL) like in [48], to this problem, using identical priors over 
reward distribution parameters as in the bandit problem, is equivalent to using TS on the combinatorial semi-bandit prob-
lem. At the start of each episode, PSRL samples an MDP from the current prior / posterior distribution over MDPs (here, a 
distribution over reward distributions, since the transitions are deterministic and known).

The policy used during this episode by PSRL is then the optimal policy with respect to the sampled MDP. In this problem, 
since the rewards are the negative edge weights of the graph, the shortest path between the source and target vertices will 
be selected.

Since the posterior parameters involved in PSRL are updated in the same way as in the bandit problem, identical ob-
servations and samples will lead to identical posterior updates. Hence, they are equivalent, and a regret bound for one will 
apply to the other. From [15], with τ being the episode length and T from the bandit problem corresponding to the number 
of episodes in the RL problem, we have

BayesRegret(T ) ≤ Õ
(
τ
√|V| |E| τ T

)
≤ Õ

(
|V|2√|E| T

)
.

We also note that Conjecture 1 of [15] would improve this result so that

BayesRegret(T ) ≤ Õ
(
|V|√|V| |E| T

)
.

We note that the combinatorial semi-bandit problem formulation of Section 3.1 can be seen as a simpler special case of 
the reinforcement learning problem with less complexities to learn (e.g., less parameters to estimate, no state transitions 
modeling, etc.). In particular, whereas the traffic environment is affected by the paths that we choose, any state changes 
caused by an agent do not typically affect it immediately, since an edge is likely not traversed more than once during a 
single episode (path). If we want to adapt to the observed immediate rewards of different base arms while driving on a 
selected path, this could be modeled as a reinforcement learning problem, e.g., like the (#P-hard) stochastic shortest path 
problem with recourse [49], which may (in principle) then be addressed by PSRL. In general, however, choosing the less 
complex (though still meaningful) bandit problem formulation enables us to use powerful methods with proven strong 
performance guarantees.

3.3. Bayesian Upper Confidence Bound

Another class of algorithms demonstrated to work well in the context of multi-armed bandits is the collection of the 
methods developed around the Upper Confidence Bound (UCB). Informally, these methods are designed based on the prin-
ciple of optimism in the face of uncertainty. The algorithms achieve efficient exploration by choosing the arm with the 
highest empirical mean reward added to an exploration term (the confidence width). Hence, the arms chosen are those 
with a plausible possibility of being optimal.

In [18] a combinatorial version of UCB (CUCB) is shown to achieve sub-linear regret for combinatorial semi-bandits. 
However, using a Bayesian approach is beneficial in this problem since it allows us to employ the theoretical knowledge on 
the energy consumption in a prior. Hence, we consider BayesUCB [19] and adapt it to the combinatorial semi-bandit setting. 
Similar to [19], we denote the quantile function for a distribution λ as Q (β, λ), defined such that for a random variable 
distributed according to λ (s.t. X ∼ λ), we have Pr(X ≤ Q (β, λ)) = β . The idea of that work is to use upper quantiles of the 
7
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Algorithm 4 BayesUCB.
1: procedure GetEdgeWeights(t, μt−1, ς t−1)
2: for each edge e ∈ E do

3: −θ̃e ← Q
(

1
t ,N (−μe,t−1, ς2

e,t−1)
)

4: we,t ←E[ze] where ze ∼ N R (−θ̃e, σ 2
e )

5: return wt

posterior distributions of the expected arm rewards to select arms. If λ denotes the posterior distribution of a base arm and 
t is the current time step, the Bayesian Upper Confidence Bound (BayesUCB) for that base arm is Q (1 − 1/t, λ).

This method is outlined in Algorithm 4 for the rectified Gaussian model. Here, since the goal is to minimize the energy 
consumption which can be considered as the negative of the reward, we use the lower quantile Q (1/t, λ).

4. Multi-agent learning and exploration

The online learning may speed up via having multiple agents exploring simultaneously and sharing information on the 
observed rewards with each other. In our particular application, this corresponds to a fleet of vehicles of similar type 
sharing information about energy consumption across the fleet. Such a setting can be very important for road planning, 
electric vehicle industries, vehicle fleet operators and city principals.

The communication between the agents for the sake of sharing the observed rewards can be synchronous or asyn-
chronous. In this paper, we consider the synchronous setting, where the vehicles drive concurrently in each time step and 
share their accumulated knowledge with the fleet before the next iteration starts. At each time step, each individual vehicle 
independently selects a path to explore/exploit according to the online learning strategies provided in Section 3. Here, we 
assume that all vehicles start their paths with the same source vertex and end them at the same target vertex, though 
even without this assumption, vehicles would benefit from information sharing as long as there is some overlap between 
selected paths. The vehicles share information synchronously, when all agents have finished their trips for a certain time 
step. During each time step, the agents are allowed to select paths which are overlapping (with shared edges), but we do 
not model any physical interactions between vehicles (e.g., how increased traffic intensity on those road segments affects 
energy consumption). However, this could be an interesting topic for future work.

Below, we provide two different regret bounds for TS-based multi-agent learning under the synchronous setting. Both 
are based on the idea of viewing the synchronous multi-agent problem as a single-agent problem with delayed feedback 
received in batches. Specifically, the delay corresponds to the number of vehicles in the fleet, since we wait for all of them 
to finish traversing their selected paths until we update the posterior distributions and start the next time step.

4.1. Thompson Sampling with queued delayed feedback

The first approach is based on the method of [33], which converts any algorithm for non-delayed stochastic bandit 
problems to an algorithm which handles delayed feedback, with a term constant in T added to the regret. This method 
and other similar queue-based methods have previously been used to adapt (and analyze) existing bandit algorithms for 
various problem settings with delayed feedback (see e.g., [50,51]). The approach of [33] is to wrap the original algorithm 
in an outer algorithm, which they call Queued Partial Monitoring with Delays (QPM-D). In essence, the inner algorithm 
functions as in the non-delayed case, unless the feedback of a selected arm is delayed and not available yet. In that case, 
the outer algorithm takes over and repeatedly plays the selected arm until feedback is received. Since the arm is played 
multiple times, excess delayed feedback, not immediately used by the inner algorithm, is also received. The outer algorithm 
stores the excess feedback in a queue data structure (where the order in which elements are inserted is also the order in 
which they are later retrieved, i.e., First In, First Out, or FIFO). This allows the inner algorithm to retrieve feedback from the 
queue the next time the arm is selected, instead of having to wait for delayed feedback. We outline QPM-D adapted to our 
problem in Algorithm 5.

Algorithm 5 QPM-D for Algorithm 1.
1: Create an empty Queue[a] for each a ∈ I .
2: Let b ∈ I be the first super-arm selected by Algorithm 1.
3: for t ← 1, . . . , T do
4: Predict:
5: while Queue[b] is non-empty do
6: Update Algorithm 1 with one reward from Queue[b].
7: Let b be the next super-arm selected by Algorithm 1.

8: There are no queued rewards for b, so perform arm at ← b at time t to receive rewards (possibly delayed) by the environment.
9: Update:

10: Let Dt be the set of (delayed) rewards received at time t and each (s, rs(as)) ∈ Dt be the timestamped reward rs(as) resulting from the arm as at 
time s.

11: for (s, rs(as)) ∈ Dt do
12: Add the reward rs(as) to Queue[as].
8
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Theorem 2. Let K be the number of agents, T be the horizon and Regretk(T ) be the regret of each agent k ∈ [K ]. In the synchronous 
multi-agent online shortest path setting (i.e., a fleet of K agents / vehicles working in parallel in each time step), the total fleet regret 
incurred by invoking Algorithm 5 satisfies 

∑K
k=1 Regretk(T ) ≤ O (|P|K + Regret(T K )).

Proof. The result is obtained as a corollary of Theorem 6 in [33] which converts online algorithms for the non-delayed case 
to ones that can handle delays in the feedback (i.e., Algorithm 5), while retaining their theoretical guarantees. We consider 
the online shortest path problem as a standard stochastic bandit problem where the paths are the arms, and handle the 
multi-agent setting using Algorithm 5, like a sequential setting with delayed feedback. Let κt denote the feedback delay of 
the action at time t . Then according to [33] we have

K∑
k=1

Regretk(T ) ≤ Regret(T K ) +
∑
p∈P

O
(

max
t

κt

)

≤ Regret(T K ) +
∑
p∈P

O (K )

≤ O (|P|K + Regret(T K )) . �
While the additional first term of the regret is constant in T , it is also linear in |P|, which may be exponential w.r.t. |E |.

4.2. Thompson Sampling with batched feedback

In order to remove the exponential factor in Theorem 2, we outline a second approach. While the synchronous multi-
agent setting can be cast as a delayed feedback problem, the general delay model is not actually necessary. Since the updates 
are synchronous, viewing it as a batched problem setting is sufficient. In this setting, rewards for selected arms are received 
periodically at fixed intervals, i.e., like tumbling windows. We note that this problem formulation can be useful beyond the 
multi-agent setting, e.g., in environments where feedback may be delayed due to wireless connection problems.

The regret analysis is not as straightforward as the one for Theorem 2. We combine ideas on batched bandit algorithms 
and analyses from [52], [35] and [36] with the general proof framework for deriving Bayesian regret bounds introduced 
by [32]. Before considering the multi-agent case, we start by outlining Thompson Sampling for the batched combinatorial 
semi-bandit setting in Algorithm 6. Here, we first consider a general stochastic combinatorial semi-bandit problem (i.e., 
not limited to the online shortest path problem) where rewards for each base arm i ∈ A are drawn from N

(
θ∗

i , σ 2
i

)
, with 

θ∗
i ∼ N

(
μi,0, ς

2
i,0

)
and finite (and known) variance σ 2

i . Also, we let B be the total number of batches, each of size K , 
such that T = B K . Furthermore, we denote the last time step in each batch b ∈ [B] as tb , i.e., tb = bK . We also define the 
history Ht as the sequence of actions and rewards until time step t , such that Ht = (a1, r1(a1), . . . ,at−1, rt−1(at−1)). Since 
the actions and rewards are random variables, Ht is a random variable as well. We denote a realization of Ht as H , i.e., a 
fixed history of actions and rewards.

Algorithm 6 Batched Thompson Sampling for combinatorial semi-bandits.
Require: Time horizon T , number of batches B , prior parameters μ0, ς0.
1: for b ← 1, . . . , B do
2: for t ← tb−1 + 1, . . . , tb do
3: for i ∈ A do
4: θ̃i ← Sample from posterior N

(
μi,tb−1 , ς2

i,tb−1

)
5: at ← arg maxa∈I f θ̃ (a)

6: Play super-arm at

7: Observe batched rewards rtb−1+1, . . . rtb . Append corresponding arms and rewards to the history of selected super-arms and received rewards, such 
that Htb+1 = (

a1, r1(a1), . . . ,atb , rtb (atb )
)
.

8: Compute posterior parameters μtb
, ς tb

given the history Htb+1.

In this problem setting and algorithm, the rewards for all arms performed during a batch are received at the end of that 
batch. Hence, in each time step, parameters are sampled from the posterior distribution given the rewards observed at the 
end of the previous batch.

4.2.1. Regret analysis
We analyze the regret of this algorithm in the proof of Theorem 3, where

Theorem 3. For Algorithm 6, with horizon T and batch size K , we have BayesRegret(T ) = Õ(|A| K + |A|√T ).
9
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In order to prove Theorem 3, we need a few intermediary lemmas and assumptions. For base arm i, let θ̂i,t be the 
average reward of i until time step t , and Nt(i) be the number plays of i until time step t .

Assumption 1. For each base arm i ∈A, the variance σ 2
i is finite, and σ 2

i ≤ 1.

Since we assume that the variance σ 2
i of each base arm i ∈ A is finite, we let, for convenience of notation, σ 2

i ≤ 1 for all 
i ∈A (which can be achieved by scaling the feedback distributions of all base arms).

Assumption 2. Given the horizon T and the number of base arms |A|, we have T ≥ |A|.

Assumption 3. Each base arm i ∈ |A| has been played once initially, such that N0(i) = 1.

Assumptions 2 and 3 are mainly for convenience, to reduce the complexity of the proofs, whereas the finite variance 
assumption is needed for the concentration inequality we utilize in the proof of Lemma 7. We begin the analysis by defining 
upper and lower confidence bounds (for a super-arm a and history Ht , as defined in Algorithm 6):

U (a, Ht) := f
θ̂ t−1

(a) +
∑
i∈a

√
8 log T

Nt−1(i)

L(a, Ht) := f
θ̂ t−1

(a) −
∑
i∈a

√
8 log T

Nt−1(i)
.

Using these definitions, we can decompose the regret in a way similar to [32] as follows:

Lemma 4. Algorithm 6 has

BayesRegret(T ) =
B∑

b=1

tb∑
t=tb−1+1

E
[
U (at, Htb−1+1) − L(at, Htb−1+1)

]+
B∑

b=1

tb∑
t=tb−1+1

E
[
L(at, Htb−1+1) − fθ∗(at)

]+
B∑

b=1

tb∑
t=tb−1+1

E
[

fθ∗(a∗) − U (a∗, Htb−1+1)
]
.

Proof. By the definition of Bayesian regret, we have that:

BayesRegret(T )

=
T∑

t=1

E
[

fθ∗(a∗) − fθ∗(at)
]

=
B∑

b=1

tb∑
t=tb−1+1

E
[

fθ∗(a∗) − fθ∗(at)
]

(Tower rule)

=
B∑

b=1

tb∑
t=tb−1+1

E
H∼P

(
Htb−1+1

) [E[ fθ∗(a∗) − fθ∗(at)

∣∣∣∣ Htb−1+1 = H

]]

=
B∑

b=1

tb∑
t=tb−1+1

E
H∼P

(
Htb−1+1

) [E[U (at, H) − U (at, H) + fθ∗(a∗) − fθ∗(at)

∣∣∣∣ Htb−1+1 = H

]]

(Conditioned on the history Htb−1+1, up to and including the last batch b − 1, all super-arms at for t = tb−1 + 1, . . . , tb and 
the optimal super-arm a∗ are identically distributed. We have that E 

[
U (at , H) | Htb−1+1 = H

]=E 
[
U (a∗, H) | Htb−1+1 = H

]
, 

since U is a deterministic function of a super-arm and a history)
10
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=
B∑

b=1

tb∑
t=tb−1+1

E
H∼P

(
Htb−1+1

) [E[U (at, H) − U (a∗, H) + fθ∗(a∗) − fθ∗(at)

∣∣∣∣ Htb−1+1 = H

]]

=
B∑

b=1

tb∑
t=tb−1+1

E
[
U (at, Htb−1+1) − L(at, Htb−1+1)

]

+
B∑

b=1

tb∑
t=tb−1+1

E
[
L(at, Htb−1+1) − fθ∗(at)

]

+
B∑

b=1

tb∑
t=tb−1+1

E
[

fθ∗(a∗) − U (a∗, Htb−1+1)
]
. �

To bound the last two terms of the decomposed Bayesian regret, we use the following lemma.

Lemma 5. For any batch b = 1, . . . , B and any time step t = tb−1 + 1, . . . , tb , we have that

E
[
L(at, Htb−1+1) − fθ∗(at)

]≤ 2

T

E
[

fθ∗(a∗) − U (a∗, Htb−1+1)
]≤ 2

T
.

Proof. Both E 
[
L(at , Htb−1+1) − fθ∗ (at)

]≤ 2
T and E 

[
fθ∗ (a∗) − U (a∗, Htb−1+1)

]≤ 2
T are proven in the same way, so we focus 

on the first inequality:

E
[
L(at, Htb−1+1) − fθ∗(at)

]
= E

⎡
⎣ f

θ̂ tb−1
(at) − fθ∗(at) −

∑
i∈at

√
8 log T

Ntb−1(i)

⎤
⎦

= E

⎡
⎣∑

i∈at

θ̂i,tb−1 −
∑
i∈at

θ∗
i −

∑
i∈at

√
8 log T

Ntb−1(i)

⎤
⎦

= E

⎡
⎣∑

i∈at

(
θ̂i,tb−1 − θ∗

i −
√

8 log T

Ntb−1(i)

)⎤
⎦

(We let [x]+ := max(0, x))

≤E

⎡
⎣∑

i∈at

[
θ̂i,tb−1 − θ∗

i −
√

8 log T

Ntb−1(i)

]+⎤⎦

≤E

⎡
⎣∑

i∈A

[
θ̂i,tb−1 − θ∗

i −
√

8 log T

Ntb−1(i)

]+⎤⎦

=
∑
i∈A

E

⎡
⎣[θ̂i,tb−1 − θ∗

i −
√

8 log T

Ntb−1(i)

]+⎤⎦

≤
∑
i∈A

E

⎡
⎣
[
|θ̂i,tb−1 − θ∗

i | −
√

8 log T

Ntb−1(i)

]+⎤⎦

=
∑
i∈A

E

[
|θ̂i,tb−1 − θ∗

i | −
√

8 log T

Ntb−1(i)

∣∣∣∣ |θ̂i,tb−1 − θ∗
i | ≥

√
8 log T

Ntb−1(i)

]
· Pr

{
|θ̂i,tb−1 − θ∗

i | ≥
√

8 log T

Ntb−1(i)

}

(By Lemma 6 and Lemma 7)
11
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≤
∑
i∈A

2

T 2

(By Assumption 2, |A| ≤ T )

≤ 2

T
. �

To bound the expected overestimation (or, correspondingly, underestimation) in the second-to-last inequality of the proof 
for Lemma 5, we derive two intermediate results in Lemma 6 and Lemma 7. For both of the lemmas, we let ν̄i,x be the 
average reward of base arm i over the first x times it has been played, i.e., contained in any played super-arm. In other 
words, for each batch b ∈ [B] we have that θ̂i,tb−1 = ν̄i,Ntb−1 (i) . Additionally, for the proofs of both lemmas, we note that the 
average ν̄i,x is Gaussian with mean θ∗

i and variance σ 2
i /x. Since, by Assumption 1, we have that σ 2

i ≤ 1, this implies that 
(ν̄i,x − θ∗

i ) has mean 0 and variance ≤ 1.

Lemma 6. For any batch b ∈ [B] and base arm i ∈A, it holds that

E

[
|θ̂i,tb−1 − θ∗

i | −
√

8 log T

Ntb−1(i)

∣∣∣∣ |θ̂i,tb−1 − θ∗
i | ≥

√
8 log T

Ntb−1(i)

]
≤ 1.

Proof. We have that:

E

[
|θ̂i,tb−1 − θ∗

i | −
√

8 log T

Ntb−1(i)

∣∣∣∣ |θ̂i,tb−1 − θ∗
i | ≥

√
8 log T

Ntb−1(i)

]

(Tower rule)

= E
x∼P

(
Ntb−1 (i)

)
[
E

[
|ν̄i,x − θ∗

i | −
√

8 log T

x

∣∣∣∣ |ν̄i,x − θ∗
i | ≥

√
8 log T

x
∧ Ntb−1(i) = x

]]

(E 
[
ν̄i,x

]= θ∗
i , hence ν̄i,x − θ∗

i is 0-mean Gaussian, and ν̄i,x − θ∗
i

d= θ∗
i − ν̄i,x)

= E
x∼P

(
Ntb−1 (i)

)
[
E

[
ν̄i,x − θ∗

i −
√

8 log T

x

∣∣∣∣ ν̄i,x − θ∗
i ≥

√
8 log T

x
∧ Ntb−1(i) = x

]]
. (4.1)

For any fixed integer x > 0, we have that 
(
ν̄i,x − θ∗

i −
√

8 log T
x

)
is Gaussian with expected value 

(
−
√

8 log T
x

)
< 0. The 

inner expectation in Eq. (4.1) is the expected value of the corresponding truncated (below 0) Gaussian distribution, which 

(by, e.g., Theorem 2 of [53]) is increasing in 
(

−
√

8 log T
x

)
. Consequently,

E

[
ν̄i,x − θ∗

i −
√

8 log T

x

∣∣∣∣ ν̄i,x − θ∗
i −

√
8 log T

x
≥ 0

]

≤E

[
ν̄i,x − θ∗

i

∣∣∣∣ ν̄i,x − θ∗
i ≥ 0

]

(Mean of truncated Gaussian, see [53], with E 
[
ν̄i,x − θ∗

i

]= 0 and Var
[
ν̄i,x − θ∗

i

]= σ 2
i /x)

= σi√
x

φ (0)

1 − 	(0)

(By Assumption 1)

≤ φ(0)

1 − 	(0)
≈ 0.798

≤ 1. (4.2)

The claim follows by bounding the inner expectation of Eq. (4.1) using Eq. (4.2). �
Lemma 7. Pr

{
∃b ∈ [B] ∃i ∈A, |θ∗

i − θ̂i,tb−1 | ≥
√

8 log T
Ntb−1 (i)

}
≤ 2

T 2 .
12
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Proof. We perform a standard concentration analysis using union bounds and Hoeffding inequality, adapted for the batched 
feedback setting:

Pr

{
∃b ∈ [B] ∃i ∈ A, |θ∗

i − θ̂i,tb−1 | ≥
√

8 log T

Ntb−1(i)

}

≤ Pr

{
∃x ∈ [tB−1] ∃i ∈ A, |θ∗

i − ν̄i,x| ≥
√

8 log T

x

}

≤ Pr

{
∃x ∈ [T ] ∃i ∈ A, |θ∗

i − ν̄i,x| ≥
√

8 log T

x

}

(Union bound)

≤
T∑

x=1

∑
i∈A

Pr

{
|θ∗

i − ν̄i,x| ≥
√

8 log T

x

}

(Hoeffding inequality for 1-subgaussian random variables, since θ∗
i − ν̄i,x is Gaussian with mean 0 and variance ≤ 1, by 

Assumption 1)

≤
T∑

x=1

∑
i∈A

2

T 4

(By Assumption 2, |A| ≤ T )

≤ 2

T 2
. �

With the last two terms of the regret decomposition of Lemma 4 bounded using Lemma 5, we may focus on the first 
term. We can bound it in the following way:

Lemma 8. 
∑B

b=1
∑tb

t=tb−1+1 E 
[
U (at , Htb−1+1) − L(at , Htb−1+1)

]≤ 4
√

8 log T · (|A| K + |A|√T ).

Proof.

B∑
b=1

tb∑
t=tb−1+1

E
[
U (at, Htb−1+1) − L(at, Htb−1+1)

]

= 2
B∑

b=1

tb∑
t=tb−1+1

E

⎡
⎣∑

i∈at

√
8 log T

Ntb−1(i)

⎤
⎦

= 2
B∑

b=1

tb∑
t=tb−1+1

⎛
⎝E

⎡
⎣∑

i∈at

(√
8 log T

Ntb−1(i)
−
√

8 log T

Nt−1(i)

)⎤⎦+E

⎡
⎣∑

i∈at

√
8 log T

Nt−1(i)

⎤
⎦
⎞
⎠

= 2
B∑

b=1

tb∑
t=tb−1+1

E

⎡
⎣∑

i∈at

(√
8 log T

Ntb−1(i)
−
√

8 log T

Nt−1(i)

)⎤
⎦+ 2

T∑
t=1

E

⎡
⎣∑

i∈at

√
8 log T

Nt−1(i)

⎤
⎦ .

The first term in the last expression above bounds the regret resulting from the batch delays, while the second term 
bounds the regret of the Thompson Sampling algorithm for the corresponding non-batched combinatorial semi-bandit set-
ting. We start by bounding the first term:

2
B∑

b=1

tb∑
t=tb−1+1

E

⎡
⎣∑

i∈at

(√
8 log T

Ntb−1(i)
−
√

8 log T

Nt−1(i)

)⎤⎦

≤ 2
B∑

b=1

tb∑
t=t +1

E

⎡
⎣∑

i∈a

(√
8 log T

Ntb−1(i)
−
√

8 log T

Ntb (i)

)⎤⎦

b−1 t

13
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≤ 2
B∑

b=1

tb∑
t=tb−1+1

E

[∑
i∈A

(√
8 log T

Ntb−1(i)
−
√

8 log T

Ntb (i)

)]

= 2
B∑

b=1

tb∑
t=tb−1+1

∑
i∈A

E

[(√
8 log T

Ntb−1(i)
−
√

8 log T

Ntb (i)

)]

= 2K
B∑

b=1

∑
i∈A

E

[(√
8 log T

Ntb−1(i)
−
√

8 log T

Ntb (i)

)]

= 2K
∑
i∈A

E

[(√
8 log T

Nt0(i)
−
√

8 log T

NtB (i)

)]

≤ 2K
∑
i∈A

E

[(√
8 log T

Nt0(i)

)]

(By Assumption 3, Nt0 = 1)

= 2K
∑
i∈A

E
[(√

8 log T
)]

= 2K |A|√8 log T

We can then continue by bounding the second term:

2
T∑

t=1

E

⎡
⎣∑

i∈at

√
8 log T

Nt−1(i)

⎤
⎦

= 2
√

8 log T
∑

t∈[T ]
E

⎡
⎣∑

i∈at

1√
Nt−1(i)

⎤
⎦

= 2
√

8 log T
∑
i∈A

E

⎡
⎣∑

t:i∈at

1√
Nt−1(i)

⎤
⎦

(See the proof of Lemma 1 in [32])

≤ 2
√

8 log T
∑
i∈A

E
[

2
√

NT (i)
]

(Cauchy-Schwarz inequality)

≤ 2
√

8 log T ·E
⎡
⎣2

√
|A|

∑
i∈A

NT (i)

⎤
⎦

≤ 2
√

8 log T ·E
[

2
√

|A|2T

]

= 4|A|√8T log T .

This completes the proof of the lemma. �
With these lemmas, we can finish the proof of Theorem 3:

Proof of Theorem 3. We bound terms in the regret decomposition of Lemma 4 using Lemma 5 and Lemma 8, such that:

BayesRegret(T )

≤ 4 + 4
√

8 log T · (|A| K + |A|√T )

≤ Õ(|A| K + |A|√T ). �
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The result in Theorem 3 applies to a setting with unbounded Gaussian rewards. While general, it does not directly 
correspond to either of the models described in Section 2. However, it is straightforward to modify the proof so that it 
applies to a setting with rectified Gaussian base arm rewards (i.e., for a batched version of Algorithm 3).

Proposition 9. The Bayesian regret of Algorithm 6, modified to sample arms as in Algorithm 3, with horizon T and batch size K , 
satisfies BayesRegret(T ) = Õ(|A| K + |A|√T ).

Proof. Let f R
θ (a) := − 

∑
i∈a Ezi∼N R (−θi ,σ

2
i ) [zi] be the expected super-arm reward function for a combinatorial semi-bandit 

with rectified Gaussian base arm feedback. Note that, to connect the super-arm reward function to the rectified Gaussian 
model in Section 2.2 and the online shortest path problem formulation, we let base arm feedback be negative, with rectifi-
cation above 0. The first term of the regret decomposition in Lemma 4 is bounded in Lemma 8 using only the confidence 
width term of the upper and lower confidence bounds, not involving the estimated expected super-arm rewards. Hence, 
under the assumption that we can use the same confidence bounds as in the (non-rectified) Gaussian setting, we only need 
to ensure that the bounds of the last two terms of the regret decomposition still hold. We can do this with a modification 
of the proof of Lemma 5.

E
[

L(at, Htb−1+1) − f R
θ∗(at)

]

= E

⎡
⎣ f R

θ̂ tb−1

(at) − f R
θ∗(at) −

∑
i∈at

√
8 log T

Ntb−1(i)

⎤
⎦

= E

⎡
⎣−

∑
i∈at

Eẑi∼N R (−θ̂i,tb−1
,σ 2

i )

[
ẑi
]+

∑
i∈at

Ezi∼N R (−θ∗,σ 2
i ) [zi] −

∑
i∈at

√
8 log T

Ntb−1(i)

⎤
⎦

= E

⎡
⎣∑

i∈at

(
−Eẑi∼N R (−θ̂i,tb−1

,σ 2
i )

[
ẑi
]+Ezi∼N R (−θ∗,σ 2

i ) [zi] −
√

8 log T

Ntb−1(i)

)⎤
⎦

(We have that −Eẑi∼N R (−θ̂i,tb−1
,σ 2

i )

[
ẑi
]+Ezi∼N R (−θ∗,σ 2

i ) [zi] ≤ θ̂i,tb−1 − θ∗
i , since 0 < ∂

∂θ
Ez∼N R (θ,σ 2

i ) [z] < 1)

≤E

⎡
⎣∑

i∈at

(
θ̂i,tb−1 − θ∗

i −
√

8 log T

Ntb−1(i)

)⎤⎦ . (4.3)

After Eq. (4.3), the rest of the proof of Lemma 5 holds unmodified. Hence, the bound of Theorem 3 also holds in the 
case of rectified Gaussian base arm feedback. �

We can extend this result to the multi-agent online shortest path setting through the following corollary (where the set 
of edges E corresponds to the set of base arms A used throughout the proof of Theorem 3). We note that recently, a similar 
result has been derived in [54] for frequentist regret in a linear contextual bandit setting.

Corollary 10. Let K be the number of agents, T be the horizon and Regretk(T ) be the regret of each agent k ∈ [K ]. In the synchronous 
multi-agent online shortest path setting (i.e., a fleet of K agents / vehicles working in parallel in each time step), the total fleet regret 
incurred by invoking Algorithm 6 satisfies 

∑K
k=1 BayesRegretk(T ) ≤ Õ

(
|E | K + |E |√T K

)
.

Proof. We prove this in the same way as the proof for Theorem 2, but use Theorem 3 instead of the result for QPM-D in 
[33]. �

For completeness, we also formally state the Bayesian regret upper bound mentioned in Section 3.2.1 as the following 
corollary of Theorem 3 and Proposition 9, with batch size 1.

Corollary 11. The Bayesian regret of Algorithm 1 is upper bounded by

BayesRegret(T ) ≤ Õ
(
|E|√T

)
.

This corollary matches the bound from Proposition 3 of [32], which can be applied to any combinatorial semi-bandit 
problem with a linear super-arm reward function, when seen as a special case of the linear bandit problem. However, our 
analysis does not assume that the prior distributions have bounded support.
15



One way to discuss the optimality of the upper bounds derived in Theorem 3 and Proposition 9, is to compare them 
with existing lower bounds. To our knowledge, there is no established lower bound for the specific setting studied in this 
work (i.e., the batched feedback combinatorial semi-bandit problem). However, there are related bounds that one could 
either possibly derive a lower bound from, or discuss the upper bound in terms of. Perchet et al. derived a lower bound 
(Theorem 4 in [34]) for the excess regret due to the delay in the two-armed bandit problem, which is a special case of our 
problem. Furthermore, there are lower bounds for the (non-delayed) combinatorial semi-bandit problem (e.g., by Kveton et 
al., Proposition 2 in [55]), which induce a mandatory term in any lower bound for this problem. Combining these two will 
result in a lower bound to which the upper bound we derive in Theorem 3 is not tight in the excess regret term, since 
the upper bound includes a linear dependence on the number of base arms. We conjecture that it should also be possible 
to adapt the lower bound (for linear contextual bandits with adversarially generated contexts) by Ren et al. in Theorem 
1 of [36], which includes a square-root factor (i.e., 

√|A| with the notation used in our work) for the excess regret term. 
It is notable that under both of these conjectured lower bounds, the Õ

(√
T
)

term of our upper bound is optimal up to 
polylogarithmic factors.

5. Experimental results

In this section, we describe different experimental studies. For real-world experiments, we extend the simulation frame-
work presented in [56] to network/graph bandits with general directed graphs, in order to enable exploration scenarios in 
realistic road networks. Furthermore, we add the ability to generate synthetic networks of specified size to this framework, 
in order to compare with the derived regret bounds (as the ground truth is provided for the synthetic networks). In all 
experiments, Dijkstra’s algorithm is used to compute the shortest paths through the networks.

5.1. Real-world experiments

For the experiments in real-world road networks, we study one scenario with realistic energy consumption distributions 
handled by the agents using misspecified wide prior distributions, and another scenario where the prior distributions are 
completely known and utilized by the agents. In the second scenario, the parameters of the underlying energy consump-
tion distributions are sampled from the prior distributions before each experiment run, whereas in the first scenario, the 
underlying distributions are fixed over multiple runs. Based on the second setting, we also consider a third setting where 
the energy consumption of different edges is correlated.

For each of the settings, we perform experiments using data from three cities: Luxembourg, Monaco and Turin. For 
Luxembourg, specifically, we study two problem instances (denoted #1 and #2) with different source and target vertices. 
We utilize, respectively for each of the cities, the Luxembourg SUMO Traffic (LuST) [22], Monaco SUMO Traffic (MoST) [23]
and Turin SUMO Traffic (TuST) [24] scenarios to provide realistic traffic patterns and vehicle speed distributions for each 
hour of the day. This is used in conjunction with altitude data [57], and vehicle parameters from an electric vehicle. The 
resulting graph G for Luxembourg has |V| = 2247 nodes and |E | = 5651 edges, representing a road network with 955 km 
of highways, arterial roads and residential streets.

We use the default vehicle parameters provided for the energy consumption model in [6], with vehicle front surface area 
A = 8 m2, air drag coefficient Cd = 0.7 and rolling resistance coefficient Cr = 0.0064. The vehicle is a medium duty truck 
with vehicle mass m = 14750 kg, which is the curb weight added to half of the payload capacity.

We approximate the powertrain efficiency during traction by η+ = 0.88 and powertrain efficiency during regeneration 
by η− = 1.2. In addition, we use the constant gravitational acceleration g = 9.81 m/s2 and air density ρ = 1.2 kg/m3.

5.1.1. Prior distribution misspecified by agent
In this set of experiments, with results shown in Fig. 1 and Table 1, we study a scenario where agents do not have access 

to the true prior distributions of the environment. To simulate the ground truth of the energy consumption, we take the 
average speed ve of each edge e from a full 24 hour scenario in each city road network. In particular, for LuST we observe 
the values during a peak hour (8 AM), with approximately 5500 vehicles active in the network. This hour is selected to 
increase the risk of traffic congestion, hence finding the optimal path becomes more challenging. We also get the variance 
of the speed of each road segment from the SUMO scenarios. Using this information, we sample the speed value for each 
visited edge and use the energy consumption model to generate the rewards for the arms.

For the probabilistic model, we assume σe to be proportional to Ee in Eq. (2.1), such that σ 2
e = (ϕEe)

2, where we set 
ϕ = 0.1. For the prior distribution of an edge e ∈ E , we misspecify it by using the speed limit of e as ve , indicating that the 
real average speed is unknown. Then μe,0 = −Ee and ς2

e,0 = (ϑμe,0)
2, where ϑ = 0.25.

As a baseline, we consider the greedy algorithm for both the rectified Gaussian and Log-Gaussian models, where the 
exploration rule is to always choose the path with the lowest currently estimated expected energy consumption, similar to 
the recent method in [7].

We run the simulations for the BayesUCB, TS and greedy algorithms with a horizon of T = 2000 (i.e., T = 2000 time 
steps). Table 1 and Figs. 1b, 1d, 1f and 1h show the cumulative regret for the rectified Gaussian and Log-Gaussian models 
(indicated in all tables and figures with prefixes “N-” and “LN-”, respectively, before the name of each algorithm), where 
N. Åkerblom, Y. Chen and M. Haghir Chehreghani Artificial Intelligence 317 (2023) 103879
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Fig. 1. Experimental results on the real-world road networks in the scenario where agents use misspecified priors. For Luxembourg #1, Luxembourg #2, 
Monaco and Turin, respectively, (a), (c), (e) and (g) show the exploration of Thompson Sampling in the road networks, where the red lines indicate the 
edges visited by the agent during exploration. Paths more frequently traveled are indicated with darker shades of red. Plots (b), (d), (f) and (h) show the 
average cumulative regret results for Thompson Sampling (TS), BayesUCB and probabilistic greedy algorithms, applied using rectified Gaussian (prefix N) 
and Log-Gaussian (prefix LN) energy consumption models. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)
17
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Table 1
Average and standard deviation of regret at T = 2000 of agents with misspecified prior distributions. Bold average 
values indicate the agent with the lowest regret in each scenario.

City Luxembourg #1 Luxembourg #2

Agent AVG SD AVG SD

LN-BayesUCB 21514.64 469.83 43892.62 970.91
LN-TS 7176.85 780.50 4995.93 465.94
LN-greedy 364785.95 0.00 220100.48 0.00
N-BayesUCB 78264.31 3310.40 112856.00 1583.15
N-TS 16349.08 3082.75 16011.48 2135.49
N-greedy 409337.40 0.00 220100.48 0.00

City Monaco Turin

Agent AVG SD AVG SD

LN-BayesUCB 295057.14 2750.97 59497.53 327.61
LN-TS 56110.55 1822.57 4056.06 566.55
LN-greedy 76880.85 25947.25 26217.88 17912.42
N-BayesUCB 329570.78 3748.02 138046.11 2033.91
N-TS 65407.80 4739.13 6938.36 556.36
N-greedy 262622.60 0.00 37024.61 0.00

Fig. 2. Experimental results in the multi-agent setting, with each line showing the average cumulative regret (horizon T = 100) for each agent in fleets of 
size K , using Thompson Sampling.

the regret is averaged over 10 runs for each agent in each city. The intuition is that the energy saved by using the TS 
and BayesUCB agents instead of the baseline greedy agent is the difference in regret, expressed in watt-hours. It is clear 
that Thompson Sampling with the Log-Gaussian model has the best performance in terms of cumulative regret, but the 
other non-greedy agents also achieve good results. To illustrate that Thompson Sampling explores the road network in a 
reasonable way, Figs. 1a, 1c, 1e and 1g visualize the road network and the paths visited by this exploration algorithm in 
each city. Each plot displays all paths visited by the agent during a single experiment, where more frequently traveled paths 
are indicated with darker shades of red. We observe that in Figs. 1a, 1c and 1g, no significant detours are performed, in 
the sense that most paths are close to the optimal path. While there are some detours shown in Fig. 1e, we note that the 
distances in Monaco are small compared to the other cities, and that Fig. 1f indicates that the detours do not result in much 
additional regret.

For the multi-agent case, we use LuST and a horizon of T = 100 and 10 scenarios where we vary the number of concur-
rent agents by K ∈ [1, 10] in each scenario. The cumulative regret averaged over the agents in these scenarios is shown in 
Fig. 2 for each K . In the figure, the final cumulative regret for each agent decreases sharply with the addition of just a few 
agents to the fleet. This continues until there are five agents, after which there seems to be diminishing returns in adding 
more agents. While there is some overhead (parallelism cost), just enabling two agents to share knowledge with each other 
decreases their average cumulative regret at t = T by almost a third. This observation highlights the benefit of providing 
collaboration early in the exploration process, which is also supported by the regret bound in Corollary 10.

5.1.2. Prior distribution known by agent
In Section 5.1.1 we had realistic unknown energy consumption distributions (fixed across all experiment runs), handled 

by the agents using misspecified prior distributions. For the second set of experiments, with results shown in Fig. 3 and 
Table 2, we instead assume that the prior distributions are completely known by the agents. In other words, the environment 
samples the unknown mean vector θ∗ from the prior before all of the agents are applied to the problem instance specified 
by θ∗ . Again, the regret results are averaged over 10 runs of each agent, in this setting resulting in an estimate of the 
Bayesian regret for each agent.
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Fig. 3. Experimental results on the real-world road networks in the scenario where agents use known priors. For Luxembourg #1, Luxembourg #2, Monaco 
and Turin, respectively, (a), (b), (c) and (d) show the average cumulative regret results for the Thompson Sampling (TS), BayesUCB, εt -greedy with fixed εt =
0.1 (eps-greedy-0.1), εt = 0.5 (eps-greedy-0.5), εt -greedy with decaying εt , and probabilistic greedy algorithms, with rectified Gaussian energy consumption 
models.

Table 2
Average and standard deviation of regret at T = 2000 of agents with known prior distributions. Bold average 
values indicate the agent with the lowest regret in each scenario.

City Luxembourg #1 Luxembourg #2

Agent AVG SD AVG SD

N-BayesUCB 72712.10 5476.08 105222.10 7097.73
N-TS 15062.19 3711.03 20747.41 3942.83
N-eps-greedy-0.1 621259.95 93672.80 697639.05 115938.33
N-eps-greedy-0.5 2737852.81 97107.13 2762055.80 160802.01
N-eps-t-greedy-1.0 155814.50 117049.01 250879.22 224149.22
N-greedy 164903.85 119811.93 353713.63 307249.42

City Monaco Turin

Agent AVG SD AVG SD

N-BayesUCB 217256.84 70577.34 147010.93 8855.33
N-TS 67054.53 53218.99 7874.74 3559.68
N-eps-greedy-0.1 1949999.04 2840684.71 980895.00 134349.00
N-eps-greedy-0.5 3385113.34 2767510.10 4532613.64 201149.99
N-eps-t-greedy-1.0 1682411.76 3029371.15 167010.98 138348.82
N-greedy 1856111.47 2954720.83 178214.82 186056.16

Since we assume that each agent is aware of the true prior distribution in this problem setting, we settle on the rectified 
Gaussian model of energy consumption for these experiments, with Gaussian prior distributions. As replacements for the 
Log-Gaussian agents, we increase the number of baselines by implementing a version of ε-greedy adapted to combinatorial 
semi-bandits, based on Algorithm 1 introduced in the supplementary material of [18].

As outlined in Algorithm 7, at each time step t with probability εt , we select an edge (uh, uh′) ∈ E uniformly at random. 
We then find the shortest paths with respect to the posterior mean vector, between (1) the source vertex of the problem 
instance and uh , and (2) uh′ and the target vertex. The resulting concatenated path, including the edge (uh, uh′), is used to 
explore the road network graph. With probability 1 − εt , we instead greedily select the shortest path between the source 
and target vertices, exploiting the current posterior mean estimates.

We evaluate agents using constant values of εt (0.1 and 0.5), as well as an agent εt decaying in t (with εt = 1
t ). We 

motivate the latter with Theorem 4 in the supplementary material of [18], where the authors show a sub-linear upper 
bound on the expected regret of their εt -greedy algorithm, with εt in the order of 1

t (with an additional constant factor 
derived from information about the problem instance).
19



N. Åkerblom, Y. Chen and M. Haghir Chehreghani Artificial Intelligence 317 (2023) 103879
Algorithm 7 εt -greedy for combinatorial semi-bandits.
Require: Time horizon T , prior parameters μ0, ς0, exploration probability εt for t ∈ [T ].

1: for t ← 1, . . . , T do
2: Sample x ∼ Bernoulli(εt )

3: if x = 1 then
4: Sample an edge (uh, uh′ ) uniformly from E .
5: p1 ← Shortest path w.r.t. μt−1, between source vertex and uh .
6: p2 ← Shortest path w.r.t. μt−1, between uh′ and target vertex.
7: at ← Concatenate p1 and p2.
8: else
9: at ← Shortest path w.r.t. μt−1, between source and target vertices.

10: Play at , update posterior parameters μt , ς t using observed rewards rt (at ).

Fig. 4. Experimental results on the real-world road networks in the scenario where there is correlation between edges in the environments. For Luxembourg 
#1, Luxembourg #2, Monaco and Turin, respectively, (a), (b), (c) and (d) show the average cumulative regret results for the Thompson Sampling (TS), 
BayesUCB, εt -greedy with fixed εt = 0.1 (eps-greedy-0.1), εt = 0.5 (eps-greedy-0.5), εt -greedy with decaying εt , and probabilistic greedy algorithms, with 
rectified Gaussian energy consumption models.

As shown in Figs. 3a, 3b, 3c and 3d, the results from the experiments with the TS, BayesUCB and (pure) greedy agents 
closely match the corresponding experiments in the misspecified prior problem setting of the previous section, while εt -
greedy with decaying εt has comparable performance to the greedy agent. The εt -greedy agents with constant εt perform 
consistently worse than the other agents. Also supported by Table 2, the regret of the TS agent still saturates rapidly and 
achieves the best average regret out of the evaluated agents for all cities.

5.1.3. Networks with correlated edge weights
To demonstrate that the proposed framework performs well even when a few environment assumptions are relaxed, we 

run an additional set of experiments in a variation of the setting described in Section 5.1.2, with results shown in Fig. 4
and Table 3. Whereas in the previous sections the stochastic weights of all edges are assumed to be mutually independent, 
we now introduce correlation between edge weights. An example of this in real-world road networks can be that traffic 
congestion on one road segment is likely to affect nearby road segments as well.

As in the previous section, a mean vector θ∗ unknown to the agents is generated by the environment, where each 
element is sampled independently from the (Gaussian) prior distribution of each edge in the road network. Subsequently, 
we randomly assign all edges in E to a set of |E |/2 pairs of edges. We let the energy consumption of the individual edges 
in each such pair of edges (e, e′) ∈ E × E be perfectly correlated, but we define the marginal distributions according to 
the model in Section 2.2. In each time step, we jointly sample the energy consumption for each pair (e, e′) from a two-
dimensional distribution with mean vector θ∗

(e,e′) and covariance matrix �(e,e′) , defined as

θ∗
(e,e′) =

[
θ∗

e
θ∗

e′

]
, �(e,e′) =

[
σ 2

e σeσe′
σeσe′ σ 2

e′

]
.
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Table 3
Average and standard deviation of regret at T = 2000 of agents, where there is correlation between edges in the 
environments. Bold average values indicate the agent with the lowest regret in each scenario.

City Luxembourg #1 Luxembourg #2

Agent AVG SD AVG SD

N-BayesUCB 73439.29 7133.48 108704.02 9960.32
N-TS 18313.43 2235.25 18351.64 4221.91
N-eps-greedy-0.1 619592.02 100767.70 652295.17 115089.44
N-eps-greedy-0.5 2732324.05 160432.90 2768669.58 141189.83
N-eps-t-greedy-1.0 130141.09 85763.04 214824.01 173082.45
N-greedy 218541.56 208088.80 371926.16 326922.34

City Monaco Turin

Agent AVG SD AVG SD

N-BayesUCB 209794.25 57753.94 148316.20 8128.75
N-TS 54797.54 22390.01 8809.96 4657.47
N-eps-greedy-0.1 1414164.08 1406368.66 936641.81 91197.23
N-eps-greedy-0.5 3202314.86 1601363.76 4584797.59 162979.92
N-eps-t-greedy-1.0 1485022.56 2844251.84 178088.28 142590.73
N-greedy 1840158.61 3102682.97 199636.06 186795.70

Fig. 5. Final cumulative regret (T = 2000) on synthetic networks as a function of |E|.

Beyond the generation of correlated energy consumption by the environment, the experiments are set up exactly as in 
Section 5.1.2. The agents are assumed to be unaware of the correlation, and only attempt to estimate the parameters of 
the marginal distributions. As shown in Figs. 4a, 4b, 4c and 4d, as well as in Table 3, when compared with results in the 
previous section, the performance of the agents is not noticeably affected by the presence of correlation.

5.2. Synthetic networks

In order to evaluate the regret bound in Proposition 1, we design synthetic directed acyclic network instances G(V, E, w)

according to a specified number of vertices n and number of edges o (with the constraint that n − 1 ≤ o ≤ n(n − 1)/2). We 
start the procedure by adding n vertices u1, . . . , un to V . Then for each h ∈ [1, n − 1] we add an edge (uh, uh+1) to E . This 
ensures that the network contains a path with all vertices in V . Finally, we add o − n edges (uh, uh′) uniformly at random 
to E , such that h �= h′ , h + 1 �= h′ and h < h′ .

Since these networks are synthetic, instead of modeling probabilistic energy consumption, we design instances where 
it is difficult for an exploration algorithm to find the path with the lowest expected cost. Given a synthetic network G
generated according to the aforementioned procedure, we select p = 〈u1, . . . , un〉 to be the optimal path. In other words, p
contains every vertex u ∈ V . The reward distribution for each edge e in p is chosen to be N (−Ẽe|θ∗

e , σ 2
e ) with θ∗

e = −10
and σ 2

e = 4. For (uh, uh′) ∈ E where (uh, uh′) /∈ p, we set θ∗
e = −11(h′ −h), where h′ −h is the number of vertices skipped by 

the shortcut. This guarantees that no matter the size of the network and the number of edges that form shortcuts between 
vertices in p, p will always have a lower expected cost than any other path in G .

For the agent prior N (θ∗
e |μe,0, ς2

e,0), we set μe,0 = −11(h′ −h) and ς2
e,0 = 8. This choice of prior mean implies according 

to our prior beliefs, every path from the source u1 to the target un will initially have the same estimated expected cost.
We run the synthetic network experiment with T = 2000 time steps, varying the number of vertices |V| ∈ {30, 40, 50, 60}

and edges |E | ∈ {200, 250, 300, 350, 400}. In Fig. 5, each plot represents the cumulative regret at T = 2000 for a fixed |V|, as 
a function of |E |. We observe that the regret increases no more than linearly with the number of edges, which is consistent 
with the theoretical regret bound in Corollary 11.
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6. Conclusion

We developed a Bayesian online learning framework for the problem of energy efficient navigation of electric vehicles. 
Our Bayesian model assumes a rectified Gaussian or Log-Gaussian energy model. To learn the unknown parameters of the 
model, we adapted exploration methods such as Thompson Sampling and BayesUCB within the online learning framework. 
We extended the framework to multi-agent and batched feedback settings, and established theoretical regret bounds. Finally, 
we demonstrated the performance of the framework with several real-world and synthetic experiments.
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Appendix A. Notation

The notation used throughout the paper is summarized below, in Table A.1. Note that since each edge e ∈ E corresponds 
to a base arm i ∈A, these are used interchangeably as subscript indices to various variables.

Table A.1
Summary of the notation used throughout the paper.

Notation Description

a A super-arm
at Super-arm selected at time t
a∗ Optimal super-arm
a An arm
at Arm selected at time t
b Batch index (in batched feedback setting)
b A super-arm (alternative)
c A cycle (path)
d Number of base arms
e An edge
g Gravitational acceleration (m/s2)
h Vertex index
h′ Vertex index (alternative)
i A base arm
j A base arm (alternative)
k Agent index (in multi-agent setting)
le Length of edge e (m)
m Vehicle mass (kg)
n Final (vertex) index (of, e.g., a path)
o Final number of edges in synthetic network setting
p A path (connected sequence of vertices / edges)
s A time step / round (alternative)
t A time step / round
tb Last time step / round of batch b
u A vertex
v Vehicle speed (m/s)
wt Edge weight vector at time t
we,t Weight of edge e at time t
ze Rectified (Gaussian) energy consumption edge e
A Front surface area of vehicle (m2)
B Number of batches
Cr Rolling resistance coefficient of edge e
Cd Air drag coefficient of vehicle
Ee Approximated energy consumption of edge e (Wh)
Ẽe Stochastic energy consumption of edge e (Wh)
Ht History (random) of actions and rewards until time t
H A realized (fixed) history of actions and rewards
K Number of agents in the multi-agent setting
N. Åkerblom, Y. Chen and M. Haghir Chehreghani Artificial Intelligence 317 (2023) 103879
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Table A.1 (continued)

Notation Description

M A Markov Decision Process (MDP)
T Time horizon
αe Inclination angle of edge e (radians)
β Probability threshold parameter of quantile function
�t Instant regret (suboptimality gap) at time t
ε Exploration probability of ε-greedy algorithm
εt Exploration probability of εt -greedy algorithm at time t
η Powertrain efficiency of vehicle
η+ Powertrain efficiency of vehicle during traction
η− Powertrain efficiency of vehicle during braking
θ A mean vector
θ̂ t Average reward vector until time t
θ̃ Sampled mean reward vector
θ∗ True mean reward vector
θ∗

(i, j) True mean reward vector of correlated base arms i and j

θ̂i,t Average reward of base arm i until time t
θ̃i Sampled mean reward of base arm i
θ∗

i True mean reward of base arm i
ϑ Factor of the mean to calculate prior standard deviation
κt Feedback delay of arm selected at time t
λ A distribution
μ0 Prior mean vector
μt Posterior mean vector at time t
μi,0 Prior mean of base arm i
μi,t Posterior mean of base arm i at time t
ν̄i,x Average reward of base arm i over first x plays
ρ Air density (kg/m3)
σ 2

i Noise variance of base arm i
�(i, j) Covariance matrix of correlated base arms i and j
ς0 Prior standard deviation vector
ς t Posterior standard deviation vector at time t
ς2

i,0 Prior variance of base arm i

ς2
i,t Posterior variance of base arm i at time t

τ Episode length of reinforcement learning problem
ϕ Factor of the mean to calculate noise standard deviation
ψi Gaussian prior mean of base arm i
A Set of base arms
Dt Set of delayed rewards at time t
E Set of edges
G(V,E, w) A (weighted) graph with vertices V , edges E , and weights w
I Set of super-arms
M Set of Markov Decision Processes (MDPs)
P Set of paths
V Set of vertices
R Set of real numbers
R+ Set of non-negative real numbers
BayesRegret(T ) Bayesian regret until horizon T
BayesRegretk(T ) Bayesian regret of agent k until horizon T
Bernoulli(·) Bernoulli distribution
E[·] Expected value of random variable
fθ (a) Expected reward of super-arm a, given the mean vector θ

f R
θ (a)

Expected reward of super-arm a, given the mean vector θ ,
under rectified Gaussian base arm feedback

L(a, H) Lower confidence bound of super-arm a given history H
LN (·) Log-Gaussian distribution
Mode[·] Mode of random variable
N (·) Gaussian distribution
N R (·) Rectified Gaussian distribution
Nt (i) Number of plays of base arm i until time t
O(·) Order of a function
Õ(·) Order of a function (excluding polylogarithmic factors)
P (·) Probability distribution of random variable
Pr{·} Probability of event
Q (β,λ) Quantile function of distribution λ with probability threshold β

Queue[a] Delayed feedback queue of super-arm a
rt (a) Reward of super-arm a at time t
Regret(T ) Frequentist regret until horizon T
Regretk(T ) Frequentist regret of agent k until horizon T
U (a, H) Upper confidence bound of super-arm a given history H
Var[·] Variance of random variable
φ(x) Standard Gaussian probability density function (PDF)
	(x) Standard Gaussian cumulative distribution function (CDF)
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