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Proteogenomics decodes the evolution of human
ipsilateral breast cancer
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Ipsilateral breast tumor recurrence (IBTR) is a clinically important event, where an isolated in-
breast recurrence is a potentially curable event but associated with an increased risk of
distant metastasis and breast cancer death. It remains unclear if IBTRs are associated with
molecular changes that can be explored as a resource for precision medicine strategies. Here,
we employed proteogenomics to analyze a cohort of 27 primary breast cancers and their
matched IBTRs to define proteogenomic determinants of molecular tumor evolution. Our
analyses revealed a relationship between hormonal receptors status and proliferation levels
resulting in the gain of somatic mutations and copy number. This in turn re-programmed the
transcriptome and proteome towards a highly replicating and genomically unstable IBTRs,
possibly enhanced by APOBEC3B. In order to investigate the origins of IBTRs, a second
analysis that included primaries with no recurrence pinpointed proliferation and immune
infiltration as predictive of IBTR. In conclusion, our study shows that breast tumors evolve
into different IBTRs depending on hormonal status and proliferation and that immune cell
infiltration and Ki-67 are significantly elevated in primary tumors that develop IBTR. These
results can serve as a starting point to explore markers to predict IBTR formation and stratify
patients for adjuvant therapy.
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reduced the risk of local recurrences!. Still, about 4-11%

of BCs develop a ipsilateral breast tumor recurrence
(IBTR) within 10 years>3. IBTR is a clinically important event in
BC, where an isolated in-breast recurrence is a potentially curable
event but associated with an increased risk of distant metastases
and breast cancer death*-%. The time interval between IBTR and
distant metastases constitutes a therapeutic window to prevent
further spread. Over the course of the disease, the primary tumor
(PT) evolves by clonal expansion and changes its mutational
landscape. Adjuvant treatments are effective at preventing
recurrent disease, but may lead to the expansion of therapy
resistant clones, such as ESRI mutations!®!!. To date, there has
been limited efforts in characterizing changes in the molecular
phenotype of IBTR and how this relates to tumor evolution and
response to therapy.

The mutational repertoire and its effect on the transcriptome
and proteome in primary BCs has been analyzed in numerous
studies. These reports have connected key drivers and tumor
subtype e.g., TP53 and PIK3CA mutations with estrogen receptor
(ER) negative and positive tumors, respectively, and defined how
specific mutations impact prognosis!2~14, providing opportunities
for patient stratification and novel therapies. However, while
investigation of distant metastases is becoming more frequent,
few studies have investigated the processes that lead to the
development of IBTRs. Ultra-deep sequencing studies focusing on
matched primary and distant recurrent tumors have shown the
relevance of specific driver mutations such as JAK2 in promoting
tumor progression and proliferation, which has in turn catalyzed
new avenues for therapeutic intervention by JAK-STAT pathway
inhibition!>-17, Genomic alterations occurring between primary
and recurrent cancers, such as missense mutations and copy
number (CN) changes, have further clarified mutational processes
involved in the evolution to distant metastases, such as APOBEC-
mediated mutagenesis!8.

Here, we have employed a previously developed proteogenomics
workflow!? to determine the evolution of IBTRs at the genomic,
transcriptomic, and proteomic level from corresponding matched
PTs to investigate paths of mutational evolution. Additionally, PTs
from this set were compared with PTs that did not develop
recurrent disease to define molecular and clinical features predis-
posing the development of IBTR. Integrated proteogenomics ana-
lyses provide additional information regarding specific pathway
activation e.g., ERBB2, and the consequent efficacy of inhibition
therapy??, as well as an additional depth in tumor classification and
biomarker selection?!-23, Our analysis shows that the development
of BC IBTRs is dependent on both hormonal receptor status of the
PT, as well as changes in the DNA replication and transcription
machinery in tandem with APOBEC proteins to increase genomic
instability, resulting in an increased mutational load. Furthermore,
the comparative analysis of PTs revealed that tumor proliferation
and immune cell infiltration were enriched in tumors that develop
IBTRs, which could be recapitulated by standard clinical markers
obtained via immunohistochemistry.

C ontinuous improvements in breast cancer (BC) care has

Results

Proteogenomic validation of clinical and molecular char-
acteristics. Here we analyzed a set of 54 samples from 27 patients
who developed IBTR. The 27 tumor pairs (PTs and IBTRs) were
selected from a previous multi-center study that aimed to define
radiosensitivity markers®%. The paired analysis of PT and IBTR
enabled a patient-centered view of the changes in recurrent
tumors, measured by the changes in the genomic, transcriptomic,
and proteomic landscapes. PTs and IBTRs were characterized
based on ER-, PgR-, ERBB2-, and Ki-67-status, histological tumor

grade, molecular subtype?, and treatments (Fig. 1a, b). When
comparing the PT and IBTR subsets no statistical difference in
clinical and histopathological parameters was observed (Table 1
and Supplementary Data 1). The transcriptomics and proteomics
data showed a high degree of concordance with THC evaluation of
key tumor markers (Fig. 1c-g). In contrast, a significant con-
cordance for Ki-67 was observed only in IBTRs (RNA p <0.01,
protein p =0.019). This observation may stem from hetero-
geneous Ki-67 expression due to clonal selection. Interestingly, 10
tumor pairs switched tumor marker status in the transition from
PT to IBTR (ER: n=1; PgR: n = 6; Ki-67: n = 7), which were in
most cases validated by proteogenomics (RNA level: ER n=1/1,
PgR n=4/6, Ki-67 n=1/7; protein level: PgR n=4/6, Ki-67
n = 1/7; Supplementary Fig. 1a, b). The weak correlation of Ki-67
status switch to transcript and protein levels might be due to the
discrepancy between transcript/protein measurements when
compared to immunohistochemistry, which itself depends on
analytical and pre-analytical factors?®2”. ERBB2/Her2 status was
confirmed at the CN, RNA, and protein level (Fig. 1h—j), with no
status switch between PT-IBTR pairs. Overall, these results
demonstrate concordance between biomarker status and the
techniques employed in this study as well as pinpointing relevant
changes in tumor markers between PTs and IBTRs.

Changes in mutational signatures between primary and
recurrent tumors. Mutational processes involved in breast cancer
recurrence are often a result of homologous recombination
deficiency, APOBEC-mediated mutagenesis, or age-related gen-
ome deterioration!21828, To quantify the magnitude of genomic
changes between matched PTs and IBTRs, we analyzed the fre-
quency of base transitions and transversions, and the contribu-
tion of the 30 COSMIC mutational signatures (Supplementary
Fig. 2a)%. Two signatures displayed high contribution across PT
and IBTR samples, with signature 3, enriched in cytosine trans-
versions (possible cause: failure of DNA double-strand break
repair by homologous recombination), and signature 5, enriched
in cytosine and thymine substitutions (possible cause: unknown),
as the most contributing in both PTs and IBTRs (Supplementary
Fig. 2b). A low contribution was observed for other signatures
previously associated to BC (i.e. signature 8, 13, 17, 18)%.
Association analysis revealed a significant relationship between
loss of ER expression and higher contribution of signature 3
(Supplementary Fig. 2c), which has been associated to deficient
DNA repair during replication. This association suggests a link
between deficient DNA repair during replication and absence of
ER transcriptional activity. In the IBTR subset, signature 3
associated with loss of both ER (p <0.001) and PgR (p =0.017).
No significant association was found between remaining sig-
natures and clinical variables.

Next, we compared changes in contribution of the molecular
signatures between matched PTs and IBTRs (Fig. 2a). This
analysis showed that the contribution of signature 3 and 9 was
increased in IBTRs, while the contribution of signature 1 and 5
was decreased. Signature 17 was among the top 5 changing
signatures, but was discarded as the contribution was only shown
in two samples (Fig. 2b). Interestingly, the increase in signature 3
was associated with absence of hormonal receptors (ER p = 0.074;
PgR p =0.021), and high tumor grade (p = 0.047; Fig. 2c—e). As
signature 3 has been associated with failure of double strand
break repair by homologous recombination, such a process might
be exacerbated in tumors with high proliferation rates (ER-PgR
negative and high grade).

These results show that the changes in mutational processes
during IBTR formation are impacted by key tumor features such
as the presence/absence of hormonal receptors.
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Fig. 1 Cohort selection and metadata. \We selected a set of PTs and matched IBTRs (n = 27 + 27) from a larger multi-center (Lund, Uppsala, Stockholm)
study (a; this panel was created with BioRender.com). Clinical data and histopathological characteristics were registered upon sample collection or after
analyses of paraffin-embedded material, if available. b Description of key clinical parameters (light gray boxes represent missing values). Frozen tumors
were analyzed by WGS, RNAseq, and proteomics. Transcriptomic (RNAseq, ¢-e) and proteomic (MS, f, g) validation of IHC-based classification of ER, PgR,
and Ki-67 levels. Panels h-j depicts CN (WGS, left), transcript (RNAseq, center), and protein (MS, right) levels for tumors with detected ERBB2
amplification. Number of samples included in each test depends on availability of clinical data. Boxplots depict distribution of values as quartiles. Line at the
center of each boxplot depict the median value. CN, copy number; ER, estrogen receptor; ERBB2/Her2, receptor tyrosine-protein kinase erbB-2; Ki-67,
antigen Ki-67; IBTR, ipsilateral breast tumor recurrence; IBTRFS, IBTR-free survival, MS: mass spectrometry; PgR, progesterone receptor; PT,

primary tumor.

Copy number and mutational changes in ipsilateral breast
tumor recurrences. As we observed a significant change in the
contribution of two mutational signatures between PT-IBTR
pairs, we hypothesized that these events were accompanied by
additional genomic changes. To address this, we analyzed the
frequency of CN alterations and single nucleotide variants
(SNVs). We calculated genome-wide CN changes (DeltaCN, see
Methods) between PT-IBTR pairs per chromosome and char-
acterized as either gains or losses (cutoff DeltaCN: +0.75; median
gain/sample: 363, IQR: 48.5-1115.5; median loss/sample: 95, IQR:
22-291; Supplementary Fig. 3a). Closer inspection of the top 10
CN gain and losses in each chromosome revealed that genomic
regions in chromosomes 8 and 17 were frequently amplified or
deleted (Supplementary Fig. 3b, c). Overall, we did not detect any
association between changes in CN in the PT-IBTR pairs and CN
occurrence at specific chromosomes. However, clustering of the
CN changes showed a relationship between the frequency of gain/
loss and hormonal receptor status (Fig. 3a). Association analysis
to clinical biomarkers confirmed that absence of ER and PgR as
well as high Ki-67 expression were associated with an increase in
CN gains (ER p=0059, PgR p=0017, Ki-67 p=0.005

Fig. 3b-d), suggesting a relationship with lack of the ER-mediated
transcriptional program and high proliferation rates. To search
for molecular drivers of these relationships, we investigated
whether the frequency of CN gain was linked to the expression of
mutated TP53, which typically promotes genomic instability3!.
Despite the fact that TP53 mutations are frequent in ER negative
BCs, as also observed in our dataset (p=0.029; Fig. 3e, f), no
significant association between CN gains and TP53 mutational
status was observed (p =0.099), suggesting other factors play a
role in the establishment of CN changes in this sample set.
Next, we analyzed SNV changes for a set of previously defined
key cancer genes (Nik-Zainal et al.!%; Supplementary Fig. 4), and
evaluated SNV gain/loss occurring in PT-IBTR pairs. This
analysis showed that the most common SNV changes with
medium or high impact were missense and stop codon gains
(Supplementary Fig. 5a), with a general trend towards an
increasing SNV burden in IBTR (Supplementary Fig. 5b). Further
analysis showed that ER negative tumors increase in SNV gains
(p=0.078; Fig. 3g-j), while no significant association was
observed between SNV gains and other biomarkers or clinical
features. Upon assessing the most frequently mutated genes
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Table 1 Comparison between clinical and histo-pathological characteristics of primary and ipsilateral recurrent tumors.
ALL PRIMARY TUMOR IPSILATERAL
BREAST TUMOR
RECURRENCE
N % N % N % p-value
54 100 27 100 27 100
ERab Positive 34 63.0 18 66.7 16 59.3 1.000
Negative 17 31.5 9 333 8 29.6
PgRab Positive 24 44.4 n 40.7 13 481 0.572
Negative 26 481 15 55.6 n 40.7
Ki-672.b Low 18 333 10 37.0 8 29.6 0.556
High 29 53.7 13 481 16 593
ERBB22b Normal 34 63.0 18 66.7 16 593 1.000
Amplified 8 14.8 4 14.8 4 14.8
Ageb >55 29 53.7 13 481 16 593 0.586
<=55 25 46.3 14 51.9 n 40.7
Lymph-node positivity2 Positive 10 18.5 10 37.0 — — n/a
Negative 17 315 17 63.0 — —
Grade?¢ Low 1 1.8 0 0.0 1 3.7 0.549
Intermediate 27 50.0 14 51.9 13 481
High 16 29.6 9 333 259
Adjuvant radiotherapy No 8 14.8 8 29.6 — —
Yes 19 352 19 70.4 - -
Adjuvant endocrine therapy No 19 35.2 19 70.4 — —
Yes 8 14.8 8 29.6 — —
Adjuvant chemotherapy No 21 38.9 21 77.8 — —
Yes 6 ma 6 22.2 - -
aMissing data
bFisher exact test
€Chi-square test
ER estrogen receptor, ERBB2/Her2 receptor tyrosine-protein kinase erbB-2, Ki-67 antigen Ki-67, PgR progesterone receptor, TP53 tumor protein p53.

within ER positive and negative tumors, we confirmed PIK3CA
and TP53 were the most commonly mutated genes in these
subgroups, respectively (Supplementary Fig. 5¢). These mutations
were largely maintained or expanded through clonal selection in
IBTRs possibly due to a conferred selective advantage towards
cancer growth and survival.

Alongside CN and SNV gains, which in turn constitute a
measure of tumor genomic drift and/or clonal expansion from PTs
to IBTRs, we detected several losses: median SNV gain/sample = 3
(IQR: 1-4), median SNV loss/sample =2 (IQR: 1.25-3). These
likely indicate a reduction or loss of tumor sub-clones during from
PT to IBTR, but did not associate with hormonal receptor status or
other clinical variables with the exception of weak positive
relationships with age at diagnosis of PT (Spearman Rho = 0.295)
and IBTRFS (Spearman Rho =0.372). In summary, the paired
analysis conducted here suggests that primary ER and PgR
negative tumors are more genomically unstable (as also reviewed
in32), displaying a higher tendency to acquire genomic changes
such as CN and SNV, resulting in highly mutated IBTRs.

Multi-omic changes of primary breast cancer. Having estab-
lished that the absence of ER is significantly associated with the
accumulation of CN in IBTRs, we investigated to what degree the
genomic changes translated into alterations at the transcriptome
and proteome levels.

To this end, we calculated Cosine dissimilarities between each
sample within our genomic (CN), transcriptomic, and proteomic
datasets (see Methods for details; Supplementary Fig. 6a—c), and
extracted those between PT-IBTR pairs. A higher dissimilarity
coefficient indicates more diverged IBTRs when compared to
their matched PTs. We observed that dissimilarities between PT-
IBTR pairs were generally greater at the RNA and protein levels
when compared to CN (Supplementary Fig. 6d), indicating that

other non-genomic mechanisms contribute to the effect observed
at the transcriptome and proteome level33. This was reflected in
the distribution of dissimilarity coefficients, where RNA and
protein levels showed a bi-modal trend (Supplementary Fig. 6e).
As a major factor in determining accurate genomic (CN) and
molecular (RNA, protein) measurements4, tumor purity was
ruled out as a potential confounder of PT-IBTR dissimilarities
across all omics levels (Supplementary Fig. 6f, g).

Hierarchical clustering analysis of sample-wise CN, RNA, and
protein level dissimilarities (Fig. 4a) showed that most pairs co-
clustered at the CN level, while pairs were more often unmatched
at the RNA and protein levels, in line with what we observed in
our distribution analysis. As new PTs may be misdiagnosed as
IBTRs of previous malignancies3>3%, we compared the clonal
evolution of PT-IBTR pairs. Here, sample pairs with a matched
normal showed an overlap between variant allele frequencies
(Supplementary Fig. 7), thus indicating that IBTRs originated
from their respective PTs in these patients.

Overall, we observed that the matching of PT-IBTR pairs
varied in relation to data layer indicating that the changes
between each tumor pair are dependent on different mechanisms,
such as promoter methylation, histone binding, kinase activation,
or microenvironment signaling.

To determine factors associated with IBTR formation, we
assessed the relationship between dissimilarities and clinical and
histo-pathological features of the cohort. Here, weak-to-moderate
inverse and direct relationships were found with age at diagnosis
and IBTRES (Supplementary Fig. 8), respectively, with younger
patients and fast-recurring tumors displaying a higher drift from
their primaries. An inverse relationship was also observed
between dissimilarity coefficients and shared PT-IBTR muta-
tional load, indicating that a lower level of shared mutations
between PT and IBTR is related to larger dissimilarities between
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Fig. 2 Shift of mutational signature contributions. We evaluated the contribution of the 30 COSMIC mutational signatures within our samples (PT and
IBTR subsets). Contribution fractional delta was then calculated as a measure of mutational process evolution for each PT-IBTR pair. Panel a displays
hierarchical clustering of mutational contribution delta of the top 10 signatures with contribution gain and loss between paired samples (IBTR-PT; light gray
boxes represent missing values). Boxplots left of the heatmap represent value distribution for each row. Panel b shows the top 5 signatures with
contribution changes between primary and locally recurrent tumor pairs (excluding signature 17 due to contribution in only 2 samples). Significant
associations between changes in mutational signature 3 contribution and clinical variables are depicted in c-e. Number of samples included in each test
depends on availability of clinical data. Boxplots depict distribution of values as quartiles. Line at the center of each boxplot depict the median value. ER
estrogen receptor, ERBB2/Her2 receptor tyrosine-protein kinase erbB-2, Ki-67 antigen Ki-67, IBTR ipsilateral breast tumor recurrence, IBTRFS IBTR-free

survival, PgR progesterone receptor, PT primary tumor.

PT-IBTR pairs, which is turn is reflected in altered gene
expression and protein abundance patterns. Overall, these results
indicate that small changes at the genomic level are reflected by
wider alterations at the transcript and protein ones.

In line with what be observed for mutational signatures, CN,
and SNV analyses, we often observed lower PT-IBTR dissim-
ilarities in ER positive or Luminal A tumors. On the other hand,
highly proliferating tumors displayed larger dissimilarity coeffi-
cients (Fig. 4b). These results confirm our previous analyses
(Figs. 2 and 3), and indicate that more substantial changes at the
genomic, transcriptomic, and proteomic levels between PT-IBTR
pairs might directly stem from high proliferative activity and
other features typical of ER-PgR negative cancers, though no
further association was detected.

Transcriptome and proteome changes of ER positive and ER
negative tumors at IBTR formation. Having shown that ER
status was associated to genomic changes between PT-IBTR
pairs, we evaluated to what degree ER status impacted the

transcriptome and the proteome. Pathway analysis between ER
positive and ER negative PT-IBTR pairs revealed a set of over-
lapping gene sets such as mTOR signaling and immune response
pathways in IBTRs and PTs, respectively (Fig. 5a-d). The tran-
sition of PTs into IBTRs and the consequent changes in the
mutational landscape could explain the dysregulation of
proliferation-related pathways such as mTOR. Moreover, the
enrichment of inflammation and immune system-related signal-
ing in PTs might indicate changes in the relationship between the
cancer and its microenvironment, possibly geared towards
immune evasion. Transcript/protein pairs enriched in these
pathways included inflammatory cytokines such as IL6 and IL8 as
well as matrix remodeling enzymes (e.g., MMP9), indicating a
tendency towards tumor invasion of the surrounding tissue.
Gene sets that showed different trends between ER positive and
ER negative groups were related to pathways involved in splicing,
cell cycle, and proliferation, indicating that ER negative tumors
typically evolve into highly proliferative IBTRs. These were
enriched in CDKs (e.g, CDK4) and the DNA replication
machinery (e.g., MCM3-5) factors. We speculate that highly
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Fig. 3 Changes in copy number and key drivers. CN changes between paired tumors and mutational (SNV) status of COSMIC cancer genes was evaluated
in our cohort. a Heatmap of copy number changes between primary and recurrent tumors. Bottom bar charts display sample-wise frequencies of IBTR CN
gain and loss over the matched PT. b-d Association of CN gain between primary and recurrent tumors to key biomarkers. e, f Displays contingency
analyses between hormonal receptor (ER and PgR) status and TP53 mutations at the PT level. g Association of SNV status change (i.e., gain or loss in
IBTR) of cancer genes from COSMIC. h-j Association of SNV gain between primary and recurrent tumors to key biomarkers. Light gray boxes in heatmaps
represent missing values. Number of samples included in each test depends on availability of clinical data. Boxplots depict distribution of values as
quartiles. Line at the center of each boxplot depict the median value. Bar charts below each heatmap represent sample-wise counts for CN or SNV gains
and losses. CN copy number, ER estrogen receptor, Ki-67 antigen Ki-67, IBTR ipsilateral breast tumor recurrence, IBTRFS IBTR-free survival, PgR
progesterone receptor, PT primary tumor, SNV single nucleotide variant, TP53, tumor protein p53.

proliferative IBTRs have a higher degree of replication stress,
which could explain the higher mutational load in ER negative
IBTRs. The increase in mutational load could further be
accelerated by dysfunctional DNA repair mechanisms. This
analysis was supported by analysis of transcript/protein pairs
belonging to cell cycle and DNA repair terms (Gene Ontology
Biological Process) showing a higher expression of these genes in
IBTRs derived from ER negative PTs (Fig. 5e, f). As our previous
analyses showed that TP53 mutations was only sporadically
associated to genomic, transcriptomic, or proteomic changes
within our sample set, we argued that additional factors are likely
involved in the accumulation of mutational features and high
proliferation rates as indicated by high Ki-67 levels. The higher
expression of the MYC oncogene in IBTRs derived from ER
negative PTs (RNA level: fold increase 2.26, p-value < 0.001) is a

likely driver for the high proliferation rates. However, the
accumulation of genomic features (CN and SNV) was only
sporadically associated with absence of ER or high Ki-67,
suggesting that other drivers were involved in the mutational
changes in the IBTRs. Consequently, we investigated the
APOBEC protein family, which has previously been shown to
be a major mutational driver in BC3738 (Fig. 5g, h and
Supplementary Fig. 9). Here APOBEC3B significantly correlated
with Ki-67 levels (PT: Spearman Rho = 0.400, p = 0.072; IBTR:
Spearman Rho =10.674, p=0.001; Fig. 5g) and was highly
expressed in ER negative PTs and IBTRs (PT: Log2Ratio = 1.728,
p=0.007; IBTR: Log2Ratio =2.456, p<0.001; Fig. 5h). As
APOBEC proteins are Cytosine deaminases®’, we expected an
enrichment of C>X changes in ER negative tumors, which was
confirmed by a borderline enrichment of C > T transitions in this
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group (p=0.076; Fig. 5i). These results suggest that several
factors work in parallel to enact the mutational and expression
level drift of recurrent BCs from their PTs. These would comprise
enhanced replication capacity of ER negative tumors likely driven
by mechanisms outside of the ER transcriptional program as well
as the expression of mutation-inducing APOBEC proteins.

Proliferation and immune signaling are enriched in tumors
that develop ipsilateral recurrences. Having investigated the

factors that determine IBTR mutational changes and tran-
scriptome/proteome reprogramming, we compared PT from this
set (PTrec) with another set of PTs from patients that did not
experience any IBTR (PTnorec; Supplementary Data 2). Com-
parison of clinical characteristics showed an enrichment of high
grade (p =0.029), high Ki-67 expression (p <0.001), and higher
number of lymph-node positive cases (p =0.003) in the PTrec
group. On top of this, no patient in the PTnorec group received
adjuvant chemotherapy (p=0.028; Supplementary Data 3).
These differences likely stem from the fact that the PTnorec
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cohort did not experience any tumor relapse. Transcript and
protein-level GSEA comparison of these sets revealed an
enrichment of immune signaling and proliferation-related path-
ways in the PTrec group (Fig. 6a). GSVA scores for the two
most enriched gene sets pertaining proliferation and immune
signaling showed a significant relationship with IBTR-free sur-
vival (Fig. 6b, c). The GSVA scores for these pathways correlated

significantly (Fig. 6d), suggesting that increased proliferation rate
and high immune cell infiltration both contribute to IBTR
development. Mutations in genes involved in proliferative path-
ways have been associated to IBTR formation, such as PIK3CA
and AKT?°. While we observed an enrichment of such pathway
in our recurring primary tumor set, there was no significant
increased frequency in PIK3CA or AKT1 mutations when
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Fig. 5 Estrogen receptor expression-dependent drift of recurrent breast cancers. Differential expression and pathway enrichment analyses were
performed between paired IBTR and PT specimen within the ER positive and ER negative groups. Results were compared to measure the degree of
deviation in the evolution of ER positive and ER negative tumors. a-d Display pathway enrichment divergence in ER positive and negative patients at the
RNA and protein levels. Boxplots depicting enrichment of genes (significant and non-significant) belonging to Cell Cycle and DNA repair pathways between
ER positive (blue) and ER negative (red) tumors are shown in e and f. Here changes in the distribution of Log2 fold changes were assessed by Wilcoxon
test. Correlation between APOBEC3B levels and proliferation marker Ki-67 is shown in g. h Differential expression of APOBEC3B genes between ER
positive and ER negative tumors. i Assessment of nucleotide C-to-T transition frequency changes between ER positive and negative tumors. Number of
samples included in each test depends on availability of clinical data. Boxplots depict distribution of values as quartiles. Line at the center of each boxplot
depict the median value. In scatter plots linear regression is depicted in blue, while gray area represents the 95% confidence interval of the regression. ER
estrogen receptor, Ki-67 antigen Ki-67, IBTR ipsilateral breast tumor recurrence, PT primary tumor.

compared to frequencies reported in the TCGA sample set
(PIK3CA p =0.060; AKT1 no mutations detected).

Next, we tested whether immune signaling and proliferation
pathways could be evaluated by employing standard diagnostics,
specifically Ki-67 and histological evaluation, which showed
significant correlation (Spearman Rho = 0.647; Fig. 6e). Survival
analysis of combined Ki-67 and infiltrating immune cell scores
(expressed as percentage of cells; see Methods) displayed a
borderline association (p =0.059, Fig. 6f, g) to IBTRES. These
results suggest that high proliferating tumors and a leucocyte-rich
microenvironment contribute to IBTR formation, though these
findings would need verification in a larger cohort.

Discussion

In this study we employed WGS, RNAseq, and MS-based pro-
teomics to elucidate the processes underlying IBTR formation
and to define changes in transcript/protein expression between
the recurrence and its original matched PT. Overall, RNA and
protein analyses corroborated the clinical markers from IHC. In
several cases, there we observed receptor status switches for e.g.,
ER. While gain/loss of key markers is likely dependent on sub-
clonal selection within the primary tumor?®!, the sequencing
capacity was too low to effectively reconstruct the composition
and the selection of tumor sub-clones in each sample. Analysis of
previously published mutational signatures?®>30 fitted onto our
WGS data showed that the strongest contribution were from
C>G and T > C enriched signatures in our samples, where sig-
nature 3 significantly associated to lack of ER expression. These
results are consistent with previous observations in BC distant
metastases!'®. In addition, signature 3 displayed the highest
increase in IBTRs and was associated with ER negative tumors,
which are typically characterized by a higher degree of genomic
instability than ER positive cancers*?>*3. This relationship was
confirmed in our CN and mutational analyses, where a higher
number of CN and mutational gains was detected in the PT-IBTR
ER negative pairs. Although TP53 mutations were enriched in the
ER negative subset as previously reported!2, we did not observe
any significant association with CN or SNV gain/loss, suggesting
that other mechanisms might be driving the genomic changes in
this tumor subgroup.

To assess whether the changes in genomic features impacted
expression levels, paired PT-IBTR dissimilarity coefficients were
calculated based on CN, RNA, and protein levels. We here found
that CN drifts were smaller than the ones that impacted transcript
and protein abundance. Our analyses revealed that loss of hor-
monal receptors and high proliferation rates not only associated
with CN gains, but also with the reprogramming of both the
transcriptome and the proteome. Given the fact that ER positive
and negative PTs display different transcriptional programs44°
and often feature different sets of driver mutations (e.g., PIK3CA
vs TP53)12, it is reasonable to believe these features have an effect
on determining the molecular and expression features of IBTRs.
Differential gene/protein expression and pathway analyses

showed that ER negative IBTRs were enriched in cell cycle, DNA
replication, and transcription, while ER positive tumors were
geared toward metabolic pathways. ER negative breast cancer
constitutes a more aggressive and recurrence-prone disease than
ER positive tumors. Several studies investigated the association of
ER to IBTR formation, but no difference was found to date in
IBTR rates between ER positive and negative tumors36-4647, In
addition to cell cycle-related genes, an enrichment of APOBEC3B
was also detected in ER negative tumors. APOBEC3B is a known
cancer mutagen often overexpressed in BC and seemingly
responsible for ~80% of the mutational load in these tumors37-38,
APOBECS3B action in breast cancer has been shown to change in
relation to the expression of ER, of which is an interactor
recruited at binding sites, promoting DNA strand breaks*8. This
interaction is responsible for poor clinical outcomes in ER posi-
tive BCs*8-50, While ER negative tumors have been reported to
express high levels of APOBEC3B#, this has not been linked to
clinical outcome nor have its effect on the mutational landscape
of these tumor subset been characterized. ER negative tumors are
generally indicative of poor prognosis due to the fact that multiple
mechanisms are enacted to enable tumor cell proliferation outside
of the ER transcriptional program!>144°, conferring new features
to cancer cells such tissue invasion®! or immune evasion®2.
Moreover, several studies have shown that ER negative BCs
constitute a molecularly heterogeneous group>3=>¢. In the light of
this, the role and clinical association of APOBEC family members
might be either concomitant to other factors, hence the non-
significant contribution of APOBEC-related signatures (i.e., sig-
nature 2 and 13) in this subset, or confounded by the other
processes at work in these tumors.

Further investigation of the role of APOBEC family members
in ER negative BCs would entice the analysis of subtype-stratified
cohorts to better define their relationship with clinical outcomes,
mutational processes, and other key factors (e.g., immune sys-
tem). Mechanistic studies assessing the interaction of APOBEC
enzymes with cancer drivers (e.g., MYC) or other factors active in
ER negative cancers would allow to quantify the impact on these
tumors’ mutational landscape and define new drug targets or
alternative treatment regimens (e.g., PARP1-inhibitors)>’.

Comparative analysis of PTs with and without IBTRS revealed
that immune infiltration and proliferation signaling are elevated
in PTs with subsequent IBTR, which could be recapitulated by
standard pathological evaluation. Immune evasion is a key
mechanism in metastasis formation, which is directed by several
factors intrinsic and extrinsic to the tumor, such as the secretion
of immunomodulatory cytokines or the levels of tumor infil-
trating immune cells (reviewed in ref. °8). Further investigation of
infiltrating immune cell type around tumors that develop IBTRs
could pinpoint a targetable mechanism to prevent recurrent
disease formation.

Limitations to this study include the absence of normal tissue
for the majority of tumor samples analyzed by WGS, which
prevented calculation of SNV-level PT-IBTR dissimilarities and
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Fig. 6 Proliferation and immune infiltration promote IBTR formation. PTrec and PTnorec samples were compared to define possible determinants of IBTR
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e correlation between Ki-67 and infiltrating leukocytes. f Examples of tissues with high and low levels of Ki-67 (evaluated by IHC) and infiltrating leukocytes
(evaluated by hematoxylin-eosin staining). Black bars represent 100 um. Panel g represents survival analysis for the combined Ki-67+-leucocytes score (cutoff:
median). Number of samples included in each test depends on availability of clinical data. In scatter plots linear regression is depicted in blue, while gray area
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impaired variant calling and mutational signature analysis. Lack
of normal tissue was due to the fact not being part of standard
clinical practice at the time of collection. In addition, our study
could not recapitulate IBTR features due to low power or resolve
tumor clonal evolution with high resolution due to shallow
sequencing. This resulted in several borderline associations that
would require a larger dataset to be confirmed.

Despite of this, we here show how the mutational landscape of
recurrent breast cancers diversifies based on the expression of
hormonal receptors, with repercussions at the transcriptome and

proteome levels and repurposing the cell machinery towards
DNA replication and proliferation, indicating these mechanisms
should be targeted to prevent IBTR formation. Additionally, we
elucidated the biological features of tumors that form IBTRs,
which can be in turn recapitulated by standard clinical
diagnostics.

Methods
Sample cohort. Fresh frozen tumor samples (PTs and IBTRs) from 385 patients
operated with BCS with and without radiotherapy in three health care regions
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(Southern Sweden, Uppsala-Orebro, and Stockholm) were previously collected in a
multi-center cohort, previously analyzed by gene expression?%. We selected samples
based on availability for downstream DNA, RNA, and protein extraction, routine
biomarkers (Estrogen Receptor, ER; Progesterone Receptor, PgR, Heregulin 2,
Her2/ERBB2; proliferation marker Ki-67), follow-up information until formation
of IBTR (IBTR-free survival, IBTRES), and availability of formalin-fixed and
paraffin-embedded (FFPE) material for re-analysis. A total of 54 samples (27 PTs
matched by 27 IBTRs) was selected (Supplementary Data 1). Samples for germline
DNA whole genome sequencing (WGS) were available for two patients (S12 and
$18). All surgically removed PTs were evaluated for residual disease and the
margins were reported free from invasive cancer or ductal carcinoma in situ with a
minimum of 10 mm healthy tissue around the tumor, according to Swedish
national guidelines at the time of surgery.

An additional cohort of 21 primary tumors from patients who did not develop
any recurrent disease were also included in this study and analyzed by RNAseq and
MS. Clinical marker stainings were performed anew for these samples
(Supplementary Data 2). All specimens to be used for DNA, RNA, and protein
extraction were stored as fresh frozen samples. All specimens analyzed in this
project are under approval from the Ethical Review Board
(Etikprovningsndmnden) with numbers DNR LU-2010/127 and LU-2001/240.
Oral and written information was given to the patients and oral consent was
obtained according to the study protocol.

Immunohistochemical routine biomarker analysis. FFPE tissues were cut into
3-4 um sections and put on TOMO slides (MG-TOM-11/90, Histolab). Evaluation
of ER (immunohistochemistry, IHC; staining cutoff: 10% positive cells), PgR (IHC;
staining cutoff: 10% positive cells), ERBB2/Her2 (IHC and in situ hybridization for
equivocal cases) and Ki-67 (staining cutoff: 30% positive cells) were performed
according to routine clinical practice in Sweden. Briefly, antibodies used for IHC
stainings were: ER: clone SP1, 790-4324 Ventana, concentration 1 pg/mL; PgR:
clone 1E2, 790-2223 Ventana, concentration 1 ug/mL; Ki-67: clone MIB-1, M7240
DAKO (dilution 1:100), concentration 46 ug/mL; HER2: clone 4B5, 790-2991,
concentration 6 pg/mL. Slides for ER, PgR, and Ki-67 evaluation were stained on
the Discovery ULTRA (Ventana Medical System Inc., Tucson, AZ, USA).

Her2 staining was performed on the Benchmark ULTRA (Ventana Medical System
Inc., Tucson, AZ, USA). For all IHC, ULTRA cell conditioning (ULTRA CC1) pH
8-8.5, was used for heat-induced epitope retrieval. The primary antibodies were
incubated for 32 min and visualized with conventional 3,3’-diaminobenzidine IHC
detection kit. Leukocyte counts were evaluated on hematoxylin-eosin stained tis-
sues by an experienced pathologist (GP). The histo-score combining the percentage
of Ki-67 stained cells and the percentage of infiltrating leukocytes was calculated as
follows:

Ki67 — mean(Ki67)
sd(Ki67)

Leukocytes — mean (Leukocytes)
sd (Leukocytes)

Histoscore =

()]

DNA, RNA, and protein extraction. Breast tumor tissues (PTs and IBTRs) were
processed using the AllPrep DNA/RNA/Protein (Qiagen) protocol. Tissue lysis was
performed by re-suspending ~30 mg of sliced frozen tissue in a solution containing
1% B-mercaptoethanol in RLT buffer (supplemented with antifoam agent; ID
19088, Qiagen). Next, steel beads (ID 79656, Qiagen) were added and samples were
incubated in a Tissue Lyser LT (Qiagen) for 4 min at 50 Hz. Steel beads were then
removed and 400 uL of 1% B-mercaptoethanol in RLT buffer was added to samples,
which were then centrifuged at 14,000 x g for 5 min. Supernatants were transferred
to new tubes, and then frozen at —80 °C. DNA, RNA, and protein extraction were
performed according to manufacturer instructions (AllPrep DNA/RNA/Protein
minikit; Qiagen). Each spin column flowthrough (DNA, RNA, protein) was stored
at —80 °C until analysis (sequencing or mass spectrometry; MS).

Whole-genome sequencing. Sample library was performed twice for every sam-
ple, using a PCR-free method for specimens with high DNA yield, and employing a
PCR amplification step for low yield samples. PCR-free libraries were prepared
from 1 pg DNA using the TruSeq PCRfree DNA sample preparation kit (cat# FC-
121-3001/3002, Illumina) targeting an insert size of 350 bp. PCR-amplified
sequencing libraries were prepared from 100 ng DNA using the TruSeq Nano DNA
sample preparation kit (cat# FC-121-4001/4002, Illumina) targeting an insert size
of 350 bp. Both library preparations were performed according to manufacturers’
instructions. Paired-end DNA sequencing with 150 bp read length was performed
at the SNP&SEQ Technology Platform in Uppsala (Uppsala University, Uppsala,
Sweden) using an Illumina HiSeqX sequencer (Illumina, San Diego, CA) with
v2.5 sequencing chemistry.

Variant calling. Alignment to reference genome GRCh38 was performed using
bwa’s (v0.7.13) BWA-MEM algorithm, and conversion to BAM format and
coordinate sorting was performed using samtools (v1.3). Duplicates were marked
using Picard (v2.0.1). To identify all possible active regions and ensure that all
samples had their information represented comparably the tools RealignerTar-
getCreator and IndelRealigner from GATK (v3.7) were used. Samples were pro-
cessed with a scatter-gather methodology, dividing each sample by chromosome to

identify and realign any misaligned reads in active regions. Samples were then
merged using Picard MergeSamFiles. GATK 3.7 BaseRecalibrator and PrintReads
were used to identify potential systematic errors in the data and recalibrate the base
quality scores.

A panel of normal (PoN) variants was created and used as a blacklist during
variant calling. First, variants were called using GATK (v3.8) MuTect2 with only a
normal sample as input and then CombineVariants to aggregate the output for all
normal samples. Only variants observed in at least two samples were included. For
further variant calling, pairs of matched normal and tumor samples (2 out of 27
patients: S12 and S18) were called together if the patient had a matched normal
sample, otherwise the tumor sample was called alone. In either case the PoN was
used. A scatter-gather methodology was used to optimize runtimes, and
CatVariants was used to merge the variants. The variants were filtered using the
built in Mutect2 filtering (cutoff: lack of PASS annotation).

The variants were annotated using snpEff>® (v4.2) and annovar (v2017.07.16).
Information on the allele frequency of variants in population databases SweGen,
ExAC and gnomAD was also added together with COSMIC database annotation.
For the SweGen and ExAC database annotation, a lift-over of the variant files was
performed using Picard (v2.10.3) with the LiftoverVcf command to obtain GRCh38
coordinates.

We applied the TPES** (v1.0.0; https://cran.r-project.org/web/packages/TPES/
index.html) package to estimate tumor purity values for all cancer samples using
the single nucleotide variant (SNV) list as input. These estimates were used to filter
the SNVs.

The filters are applied in order as follows:

Population allelic frequency filter: the observed allelic frequency in gnomAD
and SweFreq needed to be 0 or NA (i.e., variant has never been observed in a
sample from these datasets).

Allelic Depth (Support) filter: the number of reads supporting the variant in the
tumor needed to be larger or equal to 2. Additionally, if a matched normal was
available, the number of reads supporting the variant in that sample needed to be
1 or 0.

Coverage filter: the total number of reads overlapping the position needed to be
10 or more in the tumor sample. If a matched normal sample was available, that
needed to have 10 or more reads coverage.

PoN filter: variant not present in the PoN file (i.e., it cannot have been detected
in any of the normal samples from this dataset).

TPES filter: the Log2 ratio of the probability of a given variant being observed
under the cancer vs. background model needed to be < -1 (i.e., removal of variants
where the background model is twice as likely to produce the observed variant).
Specifics on calculations are presented here:

For each sample i with a TPES?* based tumor purity estimate (t;) we define

P =051, @

meckgmund —-05 (3)

as the probabilities of a binomial distribution for the heterozygous SNV model,
analogous with 1.0 instead of 0.5 for the homozygous SNV model. If no TPES
based tumor purity estimate (¢;) existed for a given sample i, this filtering step was
skipped.

We then calculate for each variant j the ratio

j

. background
P(si6,p

i

Ratio =2

where s; is the support of variant j in sample i and ; is the coverage of that variant.
Here, P(k;n;p) is the probability of observing exactly k out of » hits (i.e. reads with
alternative allele) under a binomial distribution with probability p.

If the Log2 ratio is larger (>) than —1 for the heterozygous or the homozygous
case, the variant is kept. If it is below or at —1 in (<) both in the homo- and
heterozygous cases, indicating a higher probability in the background model, the
variant is filtered out.

The SNV list was derived by extracting the mutations contained in the union of
the COSMIC cancer gene census®, the FoundationOne® gene list®!, genes part of
the Memorial Sloan Kettering IMPACT platform®?, and the list of reported BC
driver genes!2. Variants were filtered based on impact (moderate or high were
included) and type of variant (downstream gene variant, upstream gene variant, 3’
UTR variant, 5 UTR variant, and synonymous variant cases were excluded).

Mutational signatures were determined using the MutationalPatterns package
(v3.3.0)%3 by fitting the SNV counts per 96 tri-nucleotide context to the 30
COSMIC signatures (v2; https://cancer.sanger.ac.uk/signatures/signatures_v2/)%0.
Mutational signature contributions were reported as fractions. The resulting table
was then filtered for signatures with enough contribution (signatures within the 15t
and 27 quartiles were selected based on mean contribution across samples).

We used sciClone (v1.1.0; https://github.com/genome/sciclone) to build the
clustering of SNV by their variant allele frequencies. Applying clonevol (v0.99.11;
https://github.com/hdng/clonevol) to sciClone-derived clustering did not yield any
valid model of tumor evolution.
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Copy number call. CN calls were obtained by determining total coverage across
the genome in 10 kb bins for each sample, then using the R locfit.robust function to
fit the relationship between GC content and bin coverage, then adjusting for the
differences in GC-coverage relationships across samples.

The resulting adjusted coverage values were converted into Log2 ratios by
employing either the matched normal sample (if available), or the median adjusted
coverage of the sample itself as denominator. The Log2 ratios were then centered
(median subtraction), adjusting for between-sample coverage differences.

CN segmentation was performed on the centered Log2 ratios using the circular
binary segmentation algorithm implemented in the DNAcopy R/Bioconductor
package. The resulting CN segments were then mapped to genes by finding
overlaps with annotated exons of each gene. For genes overlapping multiple copy
number segments the CN values were averaged.

To determine CN gains and losses between paired PTs and IBTRs a CN delta
was calculated with the following formula:

DeltaCN = CN(IBTR) — CN(PT) 5)

CN changes were taken into account only if they impacted genes that showed a
minimum CN of 0.5 in matched PT and IBTR samples and where DeltaCN was
above 0.75 (gain) or below —0.75 (loss).

RNA sequencing. RNAseq was performed as previously reported!. Briefly, the
amount, concentration and quality of the extracted RNA was tested using a
Bioanalyzer 2100 instrument (Agilent Technologies), a NanoDrop ND-1000
spectrophotometer (Thermo Fisher Scientific) or Caliper HT RNA LabChip
(Perkin Elmer). All samples had a RNA integrity value of 6.0 or higher.

RNAseq library preparation and analysis were conducted as previously
described®. Briefly, 100 ng of RNA input was used for cDNA library preparation
using the TruSeq® Stranded mRNA NeoPrep kit (Illumina), according to
manufacturer instructions. Concentration of cDNA was measured (QuantIT®
dsDNA HS Assay Kit; Thermo-Fisher), and libraries were then denatured and
diluted according to the NextSeq® 500 System Guide (Illumina). RNAseq was then
performed on a NextSeq 500 (Illumina) sequencer generating paired-end reads of

length 75 bp.

RNAseq data processing. De-multiplexed RNA-Seq reads were aligned to the
GRCh38 human reference genome using STAR aligner (v020201) with an over-
hang value of 75 to match the read-length. The standard GATK analysis pipeline
was then applied (GATK; v3.7-0-gcfedb67). The resulting alignment files were
processed by first generating per-gene read counts mapping to the GRCh38 GTF
file from Ensembl (v95) using the summarizeOverlaps function in “Union” mode to
count reads that uniquely mapping to exactly one exon of a gene (GenomicAligner,
v1.18.1). Next, genes with no counts in any of the samples were discarded.

Protein digestion. Protein flow-throughs from the AllPrep protocol were pre-
cipitated in ice-cold (—20 °C) methanol, as previously described®. Briefly, protein
pellets were then suspended in 100 mM Tris (pH 8.0) buffer containing 100 mM
dithiothreitol and 4% w/V sodium-dodecyl-sulphate and incubated at 95 °C for
30 min under mild agitation. Samples were then cooled to room temperature,
diluted in 8 M urea in 100 mM Tris (pH 8.0) bulffer, loaded on 30 KDa molecular
filters (Millipore) and centrifuged at 14,000 x g for 20 min. Filters were washed with
urea buffer and centrifuged at 14,000 x g for 10 min. Proteins were alkylated with
iodoacetamide in urea buffer (30 min in the dark), washed with urea buffer and tri-
ethyl-ammonium bicarbonate buffer (pH 8.0), and trypsin was added (enzyme-
protein ratio 1:50; incubation at 37 °C for 16 h, 600RPM). Filters were then cen-
trifuged at 14,000 x g for 20 min to retrieve tryptic peptides, loaded onto C18

(3 stacked layers; 66883-U, Sigma) stage tips (pretreated with methanol, 0.1%
formic acid (FA) in 80% acetonitrile solution, and 0.1% FA in ultrapure water),
washed with 0.1% FA in ultrapure water solution, and eluted with 0.1% FA in 80%
acetonitrile. Eluates were then dried and subjected to SP3 peptide purification, as
previously described®. Briefly, 2 uL of SP3 beads (1:1 ratio of Sera Mag A and Sera
Mag B re-suspended in ultrapure water; Sigma) were added to dried peptides and
incubated for 2 min under gentle agitation. A volume of 200 pL of acetonitrile was
then added and samples were incubated for 10 min under agitation. Sample vials
were then placed on a magnetic rack and washed again with acetonitrile for 10 min.
Elution was performed by adding 200 uL of 2% dimethyl sulfoxide in ultrapure
water to the bead-peptide mixtures and incubating them for 5 min under agitation.
Supernatants were then collected, dried, and stored at —80 °C until MS analysis.

Mass spectrometry analysis. Tryptic peptide mixtures were subjected to data-
independent acquisition MS analysis. Samples were eluted in a 120 min gradient
(flow: 300 nl/min; mobile phase A: 0.1% FA in ultrapure water; mobile phase B:
80% acetonitrile and 0.1% FA) on a Q-Exactive HFX (Thermo-Fisher) instrument
coupled online to an EASY-nLC 1200 system (Thermo-Fisher). Digested peptides
were separated by reverse phase HPLC (ID 75 pm x 50 cm C18 2 um 100 A resin;
Thermo-Fisher). Gradient was run as follows: 10-30% B in 90 min; 30-45% B in
20 min; 45-90% B in 30's, and 90% B for 9 min. One high resolution MS scan
(resolution: 60,000 at 200 m/z) was performed and followed by a set of 32 data
independent acquisition MS cycles with variable isolation windows (resolution:

30,000 at 200 m/z; isolation windows: 13, 14, 15, 16, 17, 18, 20, 22, 23, 25, 29, 37,
45, 51, 66, 132 m/z; overlap between windows: 0.5 m/z). Ions within each window
were fragmented by HCD (collision energy: 30). Automatic gain control target was
set to 1e6 for both MS and MS/MS scans, with ion accumulation time set to 100 ms
and 120 ms for MS and MS/MS, respectively. Protein intensities were derived by
employing our previously established computational workflow!®. A total of 4,640
proteins were identified after FDR filtering (cutoff: 0.01). Batch effect correction
was performed using the limma®” (v3.46.0) package. Raw protein intensities were
Log2 transformed and centered prior differential expression analysis.

Statistics and reproducibility. All statistical tests were performed in R (v4.0.5;
correlations, hierarchical clustering, and differential expression tests) or Graph-
PAD (v9; contingency tables for Fisher and Chi-square tests). Total sample size of
the dataset was 75 (27 PTs; 27 IBTRs; 27 PTs with no recurrence).

Differences in mutational signatures contribution across clinical variable-
grouped samples were assessed by Wilcoxon Mann-Whitney rank sum test, with
the resulting p-values adjusted for multiple comparison using the Benjamini-
Hochberg method.

Matched PT-IBTR dissimilarity coefficients were calculated on complete feature
for CN (n features: 59,100), RNA (n features: 12,750), and protein (n features:
4,640) tables using cosine similarity using the Isa package (v0.73.3) to correct for
differences based on different feature numbers. Dissimilarities were then calculated
with the following formula:

Dissimilarity = 1 — Cosine similarity (6)

Gene Set Enrichment Analysis (GSEA; v4.1.0)® was performed on scaled and
Log2 transformed RNA and protein tables. Databases: Hallmarks (v5.2), ALL (v5.2;
KEGG subset was then selected); permutation type: gene set; scoring: classic;
metric: t test; other parameters were kept at default settings; significance cutoff:
FDR < 0.25. GSVA scores were calculated for selected Hallmarks gene sets (i.e., E2F
targets and allograft rejection) derived from GSEABase (v1.52.1) using the GSVA
package (v1.38.2)%%. Survival analyses were performed using the survival package
(v3.2.10) and Kaplan-Meier curves were plotted with the survminer (v0.4.9)
package. Classes cutoffs for survival analyses were determined using median
expression (GSVA score or histo-score). For all statistical tests, p values below (<)
0.05 were considered significant. All statistical tests were two-sided.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The DNA and RNA sequencing data are not publicly available due to ethical
considerations with regards to person-identifying information (GDPR) and due to
prohibitions by Swedish law. The raw counts from the RNAseq were uploaded on
FigShare together with data referring to all included figures (https://doi.org/10.17044/
scilifelab.c.6387480.v1). Source data underlying figures is also provided in Supplementary
Data 4. Data-independent acquisition MS data, and their respective search result files
have been deposited to the ProteomeXchange Consortium via the PRIDE partner
repository’? with the dataset identifiers PXD032266 (matched PT-IBTR set) and
PXD037428 (PTnorec set).
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