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Abstract
Employing the covariant language of two-spinors, we find what conditions a
curved four-dimensional Lorentzian spacetime must satisfy for existence of
a second order symmetry operator for the massive Dirac equation. The con-
ditions are formulated as existence of a set of Killing spinors satisfying a set
of covariant linear differential equations. Using these Killing spinors, we then
state the most general form of such an operator. Partial results for the zeroth
and first order are presented and interpreted as well. Computer algebra tools
from the Mathematica package suite xAct were used for the calculations.

Keywords: Dirac equation, symmetry operators, spinors

1. Introduction

A symmetry operator is a linear differential operator mapping solutions to solutions of a differ-
ential equation. Such operators can be very useful for detailed studies of the solutions. How-
ever, the existence of such operators is not trivial and is linked to the existence of different
kinds of symmetries of the curved spacetime geometry that the differential equation is defined
on. This paper aims to elucidate this for the massive Dirac equation, which in two-spinor
notation takes the form

∇A
A ′ϕA = mχA ′ , (1a)

∗
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∇A
A ′
χA ′ =−mϕA , (1b)

where ϕA and χA ′ are spinor fields. The mass m is assumed to be nonzero.
Many partial differential equations from physics, such as the Schrödinger and Helmholtz

equations, lend themselves naturally to separation of variables, but also the Dirac equation has
been separated in some cases. This is closely related to the existence of symmetry operators.
For instance, Kalnins et al [16, section 3], explain the separation of the Dirac equation on
the Kerr spacetime in terms of the existence of symmetry operators associated with a Killing
tensor by identifying a set of separation constants as eigenvalues of said symmetry operators.

Symmetry operators also have other uses, for instance, given a conserved energy, or an
energy estimate, one can easily construct higher order versions by inserting a symmetry oper-
ator. More advanced uses have also been found. Andersson and Blue [7] used higher order
symmetry operators for the scalar wave equation on the Kerr spacetime to handle the complic-
ated trapping phenomena when proving decay estimates.

For many differential equations, a Lie derivative along a Killing vector gives a symmetry
operator, i.e. a symmetry of the spacetime gives a symmetry operator. However, in many cases
there are also other less obvious symmetries sometimes called hidden symmetries that can
give rise to symmetry operators. In general these are described in terms of Killing spinors. An
important example is a second order symmetry operator related to the Carter constant [13]
used by Andersson and Blue in [7]. This symmetry operator can not be built from Killing
vectors.

To know that all symmetry operators have been found, a systematic study is required. If
the set of symmetry operators is not large enough, the methods described above will not give
satisfactory results.

The conditions for existence of symmetry operators we present here are described as exist-
ence of a set of Killing spinors satisfying a set of covariant differential equations. This can be
interpreted as conditions on the spacetime geometry. Assuming the spacetime is a sufficiently
smooth four-dimensional Lorentzian manifold that allows for a spin structure, these conditions
are both necessary and sufficient.

The spin structure allows us to decompose tensorial objects into irreducible components.
Using the covariant two-spinor formalism described by Penrose and Rindler [19, 20], these
decompositions are used to decompose equations into independent subequations that must be
satisfied simultaneously.

It is in general a time-consuming and nontrivial task to find these irreducible decomposi-
tions. Thus, for this task, computer algebra systems such as theMathematica packages SymMa-
nipulator [8] and SymSpin [2] have been developed.While there is considerable power in basic
Mathematica, SymManipulator lets the user handle abstract symmetrized tensor expressions,
and automatically decompose spinors into irreducible symmetric spinors. SymSpin allows the
user to handle complicated expressions with such spinors in an efficient way.

If one would attempt the corresponding decompositions in tensor language, one would need
Young tableaux and trace decompositions. This would make the calculations much more com-
plicated. Furthermore, in this paper we study the Dirac equation, which can only be described
using some form of spinors.

The first result in this article is that there are no nontrivial zeroth order symmetry operators
for the massive Dirac equation. The second result is that there exists a first order symmetry
operator if and only if there exist Killing spinors satisfying auxiliary condition A.
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Definition 1. Let SAA ′ , TA ′B ′ , UAB, and RAA ′ be Killing spinors on a four-dimensional
Lorentzian manifold. They satisfy auxiliary condition A if

∇(A
A ′
SB)A ′ = 0, (2a)

∇A
(A ′S|A|B ′) = 0, (2b)

∇AA ′RAA
′
= 0, (2c)

∇AB ′TA ′
B ′

+∇BA ′UA
B = 0. (2d)

The third result is that there exists a second order symmetry operator if and only if there
exist Killing spinors satisfying auxiliary condition B, which we will state later in definition 21
after some notation has been introduced.

For this article, we have used Mathematica version 13.1.0, xTensor version 1.2.0, Spinors
version 1.0.6, SymManipulator version 0.9.5, SymSpin version 0.1.1, and TexAct version 0.4.3.
A notebook used for creating all of the results presented in the following sections are available
in a GitHub repository [15].

1.1. Previous work

Michel et al [18] analysed the symmetry operators for the conformal wave equation.
In [5] amethodwas developed to find all second order symmetry operators for the conformal

wave equation, the Dirac–Weyl equation, and the Maxwell equation. Their results are also
formulated as existence of a set of Killing spinors satisfying a set of covariant differential
equations.We use the samemethod here. As we are dealing with a more complicated system of
equations, we will however take advantage of the recent development of the SymSpin package.

The conditions (2a)–(2d) for the existence of a first order symmetry operator and the
form of that operator, presented in theorem 20, is a reformulation of a result by Kamran
and McLenaghan [17, theorem II] into covariant spinor language. Benn and Kress [10] have
showed that this result is the most general one of the first order in the sense that it extends to
arbitrary spin manifolds.

A special case of the second order symmetry operator presented in this article has been
derived by Fels and Kamran [14, theorem 4.1].

Auxiliary condition A can be interpreted very geometrically. In section 3.2.1, we show
that (2d) implies the existence of a Killing–Yano tensor field. If an operator commutes with
the Dirac operator, then it is a symmetry operator, and so the set of operators commutating
with the Dirac equation is a subset of the symmetry operators. Previous work has been able to
relate such operators to Killing–Yano tensors [11, 12]. But also general symmetry operators
have been studied in terms of Killing–Yano tensors [1, 9].

2. Preliminaries

In this section, the notation and concepts used in this article are presented. Abstract index
notation [19, chapter 2] is used throughout and conventions are consistent with Penrose and
Rindler [19, 20]. Lowercase latin letters are used for Lorentzian tensor indices while upper-
case latin letters are used for spinorial tensor indices, with a prime to indicate indices in the
conjugate space.
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2.1. Killing tensors

A Killing vector is a vector field Kc such that taking the Lie derivative of the metric with
respect to it is zero, which can be written as ∇(aKb) = 0. The following definitions are then
natural generalizations,

Definition 2. A vector Kc is a conformal Killing vector if

∇(aKb) = λgab (3)

for some scalar field λ.

Definition 3. A totally symmetric tensor Kb...q is a Killing tensor if

∇(aKb...q) = 0. (4)

Definition 4. A totally symmetric spinor SB...QB
′...Q ′

is a Killing spinor if

∇(A
(A ′
SB...Q)

B ′...Q ′) = 0. (5)

Another type of geometrical quantity of interest is Killing–Yano tensors. They are used
to construct valence 2 Killing tensors and sometimes they are easier to find than the Killing
tensors they correspond to.

Definition 5. A totally antisymmetric tensor fb0...bn is a Killing–Yano tensor if

∇(a fb0)b1...bn = 0. (6)

Lastly for this subsection, we will define the conformally weighted Lie derivative [4, (15)],
[5, (2.5)]. It will be used to interpret some of the terms in the symmetry operators.

Definition 6. If ξ A ′

A is a Killing vector, andφA1...Ak is a totally symmetric valence (k,0) spinor,
then

L̂ξφA1...Ak = ξBB
′
∇BB ′φA1...Ak +

k
2
φB(A2...Ak∇A1)B ′ξBB

′
+

2− k
8

φA1...Ak∇BB ′
ξBB ′ . (7)

If φ is instead of valence (0,k), then L̂ξφ is defined as L̂ξφ.

2.2. Decomposing spinors

We formulated the Dirac equation in (1a) and (1b) using two-spinors. Two-spinors transform
under the universal covering group, SL(2, C), of the proper Lorentz group. Something that
greatly simplifies discussions about two-spinors is that, when working over SL(2, C), the only
spinorial tensor that is antisymmetric in more than two indices is 0 and the only spinorial tensor
antisymmetric in two indices is the spin-metric ϵAB and its multiples. From this follows a very
useful result, proved in Penrose and Rindler [19, proposition 3.3.54].

Theorem 7. Any spinor TA1...Ap
A ′
1 ...A

′
q is the sum of T(A1...Ap)

(A ′
1 ...A

′
q ) and linear combinations

of outer products of symmetric spinors of lower valence with spin-metrics.

As an example of this theorem, the spinorial Riemann tensor, RAA ′BB ′CC ′DD ′ , can be
decomposed as [21, (13.2.25)]

RAA ′BB ′CC ′DD ′ =ΨABCDϵA ′B ′ϵC ′D ′ +Λ(ϵACϵBD+ ϵBCϵAD)ϵA ′B ′ϵC ′D ′

+ΦABC ′D ′ϵA ′B ′ϵCD+ complex conjugate. (8)

ΨABCD = 1
4R(ABCD)X ′

X ′
Y ′Y

′
is the Weyl spinor, Λ = 1

24RX
Y
X ′X

′
Y
X
Y ′Y

′
is the Ricci scalar, and

ΦABC ′D ′ = 1
4R(AB)X ′

X ′
X
X
(C ′D ′) is the Ricci spinor.

4
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2.3. Index-free notation

Theorem 7 allows us to decompose spinors into sums of outer products of symmetric spinors
and ϵ:s, but if an expression is symmetric in all of its free indices, then, after applying theorem
7, every ϵ will have at least one index contracted. So the expression may be written only in
terms of partially contracted outer products of symmetric spinors. If two symmetric spinors
are multiplied and partially contracted, it does not matter which indices are contracted, only
how many.

To take full advantage of this a calculus for symmetric spinors, including a computer algebra
implementation, was developed by Aksteiner and the second author in [3]. This included the
following symmetric product.

Definition 8 ([3] definition 1). Let Sk,l denote the space of smooth symmetric spinor fields of
valence (k, l). Let k, l,n,m, i, j be integers with i⩽ min(k,n) and j⩽ min(l,m). The symmetric
product is a bilinear form

i,j
� : Sk,l×Sn,m →Sk+n−2i,l+m−2j. (9)

For ϕ ∈ Sk,l,ψ ∈ Sn,m, it is given by

(ϕ
i,j
�ψ)

A ′
1 ...A

′
l+m−2j

A1...Ak+n−2i
= ϕ

(A ′
1 ...A

′
l−j−1|B1...BiB

′
1 ...B

′
j |

(A1...Ak−i−1
ψ
A ′
l−j...A

′
l+m−2j)

Ak−i...Ak+n−2i)B1...BiB ′
1 ...B

′
j

(10)

With this operator, we do not need to write out the indices in partially contracted outer
products of symmetric spinors. We will call this index-free notation.

2.4. Fundamental derivatives

Another application of theorem 7 is to the covariant spinor derivative of a totally symmetric
spinor. Such an expression has four irreducible parts and we will name them as follows.

Definition 9 ([5] definition 13). Let Sk,l denote the space of smooth symmetric spinor fields
of valence (k, l) and let ψA1...Ak

A ′
1 ...A

′
l ∈ Sk,l. Then there are four fundamental derivatives: the

divergence D : Sk,l →Sk−1,l−1 which acts by

(Dψ)A1...Ak−1
A ′
1 ...A

′
l−1 =∇BB ′ψA1...Ak−1B

A ′
1 ...A

′
l−1

B ′ for k⩾ 1, l⩾ 1, (11a)

the curl C : Sk,l →Sk−1,l+1 which acts by

(Cψ)
A ′
1 ...A

′
l−1

A1...Ak+1
=∇(A1

B ′
ψA2...Ak+1)

A ′
1 ...A

′
l−1

B ′ for k⩾ 0, l⩾ 1, (11b)

the curl-dagger C † : Sk,l →Sk+1,l−1 which acts by

(C †ψ)A1...Ak−1
A ′
1 ...A

′
l+1 =∇B(A ′

1ψA1...Ak−1B
A ′
2 ...A

′
l+1) for k⩾ 1, l⩾ 0, (11c)

and the twist T : Sk,l →Sk+1,l+1 which acts by

(T ψ)A1...Ak+1
A ′
1 ...A

′
l+1 =∇(A1

(A ′
1ψA2...Ak+1)

A ′
2 ...A

′
l+1) for k⩾ 0, l⩾ 0. (11d)

To make precise the statement that the fundamental derivatives are the irreducible parts of
the spinor derivative, we state the following lemma.

Lemma 10 ([5] lemma 15). Let ψA1...Ak
A ′
1 ...A

′
l be totally symmetric. Then

∇A1
A ′
1ψA2...Ak+1

A ′
2 ...A

′
l+1 = (T ψ)A1...Ak+1

A ′
1 ...A

′
l+1

5
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− l
l+ 1

ϵA
′
1 (A

′
2 (Cψ)A1...Ak+1

A ′
3 ...A

′
l+1)

− k
k+ 1

ϵA1(A2
(C †ψ)A3...Ak+1)

A ′
1 ...A

′
k+1

+
kl

(k+ 1)(l+ 1)
ϵA1(A2

ϵA
′
1 (A

′
2 (Dψ)A3...Ak+1)

A ′
3 ...A

′
l+1). (12)

The spinorial Bianchi identity may be formulated in terms of fundamental derivatives.

Lemma 11. The Bianchi identity for the spinorial Riemann tensor is

(DΦ)A
A ′

= − 3(T Λ)A
A ′
, (13a)

(C †Ψ)ABC
A ′

= (CΦ)ABC
A ′
. (13b)

We will use this identity along with its complex conjugate to simplify and canonicalize expres-
sions containing derivatives of the spinorial Riemann tensor.

Another observation that will later form the bridge between spinor algebra and spacetime
geometry is that definition 4 may be reformulated as

Proposition 12. A totally symmetric valence (k, l) spinor ψB...QB
′...Q ′

is a Killing spinor if
and only if

(T ψ)AB...Q
A ′B ′...Q ′

= 0. (14)

2.5. Commutators of fundamental derivatives

Definition 13. The spinor box operators are

□AB =∇(A|A ′|∇B)
A ′
, (15a)

□A ′B ′ =∇(A|A ′|∇A
B). (15b)

Note that both are contractions of the expression

∇AA′∇BB′ −∇BB′∇AA′ .

Hence any box operator acting on a spinor may be re-expressed as some partial contraction
between that spinor and the spinorial Riemann tensor. Importantly, the spinor box operators
can be rewritten to be order 0 in derivative:

Lemma 14. Let ψ be a valence (k, l) spinor. Then

□
0,0
� ψ = − kΨ

1,0
� ψ− lΦ

0,1
� ψ, (16a)

□
1,0
� ψ = − (k− 1)Ψ

2,0
� ψ− lΦ

1,1
� ψ− (k+ 2)Λ

0,0
� ψ, (16b)

□
2,0
� ψ = − (k− 2)Ψ

3,0
� ψ− lΦ

2,1
� ψ. (16c)

Box operators appear when commuting fundamental derivatives.

Lemma 15 ([5] lemma 18). Let ψ be a valence (k, l) spinor. Then the fundamental derivatives
satisfy the following relations

DCψ =
k

k+ 1
C Dψ−□

0,2
� ψ, (17a)

6
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DC †ψ =
k

l+ 1
C †Dψ−□

2,0
� ψ (17b)

C T ψ =
l

l+ 1
T Cψ−□

0,0
� ψ (17c)

C †T ψ =
k

k+ 1
T C †ψ−□

0,0
� ψ (17d)

DT ψ = −
(

1
k+ 1

+
1

l+ 1

)
C C †ψ+

l(l+ 2)
(l+ 1)2

T Dψ− l+ 2
l+ 1

□
1,0
� ψ− l

l+ 1
□

0,1
� ψ (17e)

DT ψ = −
(

1
k+ 1

+
1

l+ 1

)
C †Cψ+

k(k+ 2)
(k+ 1)2

T Dψ− k+ 2
k+ 1

□
0,1
� ψ− k

k+ 1
□

1,0
� ψ (17f )

C C †ψ = C †Cψ+

(
1

k+ 1
− 1
l+ 1

)
T Dψ−□

1,0
� ψ+□

0,1
� ψ (17g)

2.6. Leibniz rules for fundamental derivatives

The following lemma is formulated and proved by Aksteiner and the second author.

Lemma 16 ([3] lemma 10). For symmetric spinors ϕ ∈ Si,j,φ ∈ Sk,l we have the following
Leibniz rules.

T (ϕ
m,n
�φ) = (−1)m+nφ

m,n
�T ϕ+ (−1)m+nn

j+1 φ
m,n−1
� Cϕ+ (−1)m+nm

i+1 φ
m−1,n
� C †ϕ

+ (−1)m+nmn
(i+1)( j+1)φ

m−1,n−1
� Dϕ+ϕ

m,n
�T φ+ n

l+1ϕ
m,n−1
� Cφ

+ m
k+1ϕ

m−1,n
� C †φ+ mn

kl+k+l+1ϕ
m−1,n−1

� Dφ, (18a)

C (ϕ
m,n
�φ) = (−1)m+n+1(l−n)

j+l−2n φ
m,n+1
� T ϕ+ (−1)m+n( j−n)( j+l−n+1)

( j+1)( j+l−2n) φ
m,n
�Cϕ

+ (−1)m+n+1m(l−n)
(i+1)( j+l−2n) φ

m−1,n+1
� C †ϕ

+ (−1)m+nm( j−n)( j+l−n+1)
(i+1)( j+1)( j+l−2n) φ

m−1,n
� Dϕ− j−n

j+l−2nϕ
m,n+1
� T φ

+ (l−n)( j+l−n+1)
(l+1)( j+l−2n) ϕ

m,n
�Cφ+ m(−j+n)

(k+1)( j+l−2n)ϕ
m−1,n+1

� C †φ

+ m(l−n)( j+l−n+1)
(k+1)(l+1)( j+l−2n)ϕ

m−1,n
� Dφ, (18b)

7
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C †(ϕ
m,n
�φ) = (−1)m+n+1(k−m)

i+k−2m φ
m+1,n
� T ϕ+ (−1)m+n+1n(k−m)

( j+1)(i+k−2m) φ
m+1,n−1

� Cϕ

+ (−1)m+n(i−m)(i+k−m+1)
(i+1)(i+k−2m) φ

m,n
�C †ϕ

+ (−1)m+nn(i−m)(i+k−m+1)
(i+1)( j+1)(i+k−2m) φ

m,n−1
� Dϕ− i−m

i+k−2mϕ
m+1,n
� T φ

+ n(−i+m)
(l+1)(i+k−2m)ϕ

m+1,n−1
� Cφ+ (k−m)(i+k−m+1)

(k+1)(i+k−2m) ϕ
m,n
�C †φ

+ n(k−m)(i+k−m+1)
(k+1)(l+1)(i+k−2m)ϕ

m,n−1
� Dφ, (18c)

D(ϕ
m,n
�φ) = (−1)m+n(k−m)(l−n)

(i+k−2m)( j+l−2n) φ
m+1,n+1

� T ϕ

+ (−1)m+n+1( j−n)(k−m)( j+l−n+1)
( j+1)(i+k−2m)( j+l−2n) φ

m+1,n
� Cϕ

+ (−1)m+n+1(i−m)(l−n)(i+k−m+1)
(i+1)(i+k−2m)( j+l−2n) φ

m,n+1
� C †ϕ

+ (−1)m+n(i−m)( j−n)(i+k−m+1)( j+l−n+1)
(i+1)( j+1)(i+k−2m)( j+l−2n) φ

m,n
�Dϕ

+ (i−m)( j−n)
(i+k−2m)( j+l−2n)ϕ

m+1,n+1
� T φ

+ (−i+m)(l−n)( j+l−n+1)
(l+1)(i+k−2m)( j+l−2n)ϕ

m+1,n
� Cφ

+ ( j−n)(−k+m)(i+k−m+1)
(k+1)(i+k−2m)( j+l−2n) ϕ

m,n+1
� C †φ

+ (k−m)(l−n)(i+k−m+1)( j+l−n+1)
(k+1)(l+1)(i+k−2m)( j+l−2n) ϕ

m,n
�Dφ. (18d)

2.7. Reduced ansatz

The Dirac equation is

(C †ϕ)A ′ = mχA ′ , (19a)

(Cχ)A =−mϕA. (19b)

The condition that a differential operator L̂ : (ϕA,χA ′) 7→ (λA,γA ′) is a symmetry operator
for the Dirac equation is that

(C †λ)A ′ = mγA ′ , (20a)

(C γ)A =−mλA. (20b)

for all (ϕA,χA ′) satisfying (19a) and (19b).

Lemma 17. Any symmetry operator L̂ of the Dirac equation may be written only in terms of
twists.

Proof. We will show this by induction on the order of the differential operator.
For the base case, consider that by lemma 10,

∇A
A ′
ϕB = (T ϕ)AB

A ′
− 1

2
ϵAB(C

†ϕ)A
′

(19a)
= (T ϕ)AB

A ′
− 1

2
ϵABmχ

A ′
(21)

8
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and

∇A
A ′
χB

′
= (T χ)A

A ′B ′
− 1

2
ϵA

′B ′
(Cχ)A

(19b)
= (T χ)A

A ′B ′
+

1
2
ϵA

′B ′
mϕA. (22)

For the induction step, we need only consider three cases. Let# stand for ‘some coefficient’,
S for either ϕ or χ, andH for the induction hypothesis. We will also use that whenever a spinor
box operator appears we may write it as a partial contraction with the Riemann spinor. Then

C T . . .T︸ ︷︷ ︸
×n

S
(17c)
= #T C T . . .T︸ ︷︷ ︸

×(n−1)

S+#□T . . .T︸ ︷︷ ︸
×(n−1)

S

=#T C T . . .T︸ ︷︷ ︸
×(n−1)

S+ lower order terms

H
=#T . . .T︸ ︷︷ ︸

×n

S+ lower order terms, (23)

C †T . . .T︸ ︷︷ ︸
×n

S
(17d)
= #T C †T . . .T︸ ︷︷ ︸

×(n−1)

S+#□T . . .T︸ ︷︷ ︸
×(n−1)

S

=#T C †T . . .T︸ ︷︷ ︸
×(n−1)

S+ lower order terms

H
=#T . . .T︸ ︷︷ ︸

×n

S+ lower order terms, (24)

D T . . .T︸ ︷︷ ︸
×n

S
(17e)
= #C C †T . . .T︸ ︷︷ ︸

×(n−1)

S+#T D T . . .T︸ ︷︷ ︸
×(n−1)

S+#□T . . .T︸ ︷︷ ︸
×(n−1)

S

=#C C †T . . .T︸ ︷︷ ︸
×(n−1)

S+#T D T . . .T︸ ︷︷ ︸
×(n−1)

S+ lower order terms

H
=#C T . . .T︸ ︷︷ ︸

×n

S+#T . . .T︸ ︷︷ ︸
×n

S+ lower order terms

(23)
= #T . . .T︸ ︷︷ ︸

×n

S+ lower order terms. (25)

Note that the right-most sides of (23)–(25) all have one less order than the left-most sides.

This means that the only derivative operator we need in an ansatz for a symmetry operator
is the twist operator. It is to great advantage that the proof is constructive. It allows the first
orders to be calculated explicitly. Order one was shown as the base case. The second order
comes out to

DT ϕ= ( 32m
2 − 6Λ)ϕ, (26a)

DT χ= ( 32m
2 − 6Λ)χ, (26b)

C T ϕ=Ψ
1,0
�ϕ, (26c)

C T χ=− 1
2mT ϕ+Φ

0,1
�χ, (26d)

C †T ϕ= 1
2mT χ+Φ

1,0
�ϕ, (26e)

9
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C †T χ= Ψ̄
0,1
�χ, (26f )

and the third order comes out to

DT T ϕ= ( 43m
2 − 12Λ)T ϕ− 5

6 (CΦ)
1,0
�ϕ+ 5

18 (DΦ)
0,0
�ϕ+ 10

3 Φ
1,1
�T ϕ− 9

2 (T Λ)
0,0
�ϕ

+ 3
2Ψ

2,0
�T ϕ, (27a)

DT T χ= ( 43m
2 − 12Λ)T χ− 5

6 (C
†Φ)

0,1
�χ+ 5

18 (DΦ)
0,0
�χ+ 10

3 Φ
1,1
�T χ

− 9
2 (T Λ)

0,0
�χ+ 3

2 Ψ̄
0,2
�T χ, (27b)

C T T ϕ= 1
2 (T Ψ)

1,0
�ϕ− 1

10 (C
†Ψ)

0,0
�ϕ+ 5

2Ψ
1,0
�T ϕ+ 1

4mΨ
0,0
�χ+Φ

0,1
�T ϕ, (27c)

C T T χ= − 1
3mT T ϕ+ 2

3 (T Φ)
0,1
�χ− 2

9 (CΦ)
0,0
�χ+ 8

3Φ
0,1
�T χ− 1

3mΦ
0,0
�ϕ

+Ψ
1,0
�T χ, (27d)

C †T T ϕ= 1
3mT T χ+ 2

3 (T Φ)
1,0
�ϕ− 2

9 (C
†Φ)

0,0
�ϕ+ 8

3Φ
1,0
�T ϕ+ 1

3mΦ
0,0
�χ

+Ψ̄
0,1
�T ϕ, (27e)

C †T T χ= 1
2 (T Ψ̄)

0,1
�χ− 1

10 (C Ψ̄)
0,0
�χ+ 5

2 Ψ̄
0,1
�T χ− 1

4mΨ̄
0,0
�ϕ+Φ

1,0
�T χ. (27f )

These are shown in our Mathematica notebook [15].

2.8. Decomposing equations

A set {(ϕi)B...QB
′...Q ′

, i= 1,2, . . .} of spinor fields subject to a differential equation is an exact
set of fields [19, section 5.10] if, at each spacetime point P,

(a) the symmetrized derivatives ∇(A1
(A ′

1 (ϕi)B...Q)
B ′...Q ′), ∇(A2

(A ′
2∇A1

A ′
1 (ϕi)B...Q)

B ′...Q ′), etc
can take arbitrary values, and

(b) the unsymmetrized derivatives are determined by the symmetrized derivatives.

The Dirac fields form an exact set of fields. This is a consequence of lemma 17. For this
reason, we will encounter equations of the types

SA1...Ak+1B
A ′
1 ...A

′
k
(T T . . .T︸ ︷︷ ︸

×k

ϕ)A1...Ak+1
A ′
1 ...A

′
k = 0, (28a)

SA1...Ak+1
A ′
1 ...A

′
k

B ′
(T T . . .T︸ ︷︷ ︸

×k

ϕ)A1...Ak+1
A ′
1 ...A

′
k = 0, (28b)

SA1...AkB
A ′
1 ...A

′
k+1

(T T . . .T︸ ︷︷ ︸
×k

χ)A1...Ak
A ′
1 ...A

′
k+1 = 0, (28c)

SA1...Ak
A ′
1 ...A

′
k+1

B ′
(T T . . .T︸ ︷︷ ︸

×k

χ)A1...Ak
A ′
1 ...A

′
k+1 = 0, (28d)

where ϕA and χA ′ are the Dirac fields and S is a spinor field. S may without loss of generality
be taken to be symmetric in the indices that are contracted since they are contracted with a
symmetric spinor.

10
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By (a), the twists can take arbitrary values at P. Contracting, for example, (28a) with a test
field TB yields the scalar equation

SA1...Ak+1B
A ′
1 ...A

′
k
(T T . . .T︸ ︷︷ ︸

×k

ϕ)A1...Ak+1
A ′
1 ...A

′
k TB = 0. (29)

But since the test field also may take arbitrary values, spinors of the form

WA1...Ak+1
A ′
1 ...A

′
k B := (T T . . .T︸ ︷︷ ︸

×k

ϕ)A1...Ak+1
A ′
1 ...A

′
k TB (30)

span C(A1...Ak+1)B
(A ′

1 ...A
′
k ). By theorem 7, WA1...Ak+1

A ′
1 ...A

′
k B has two independent parts:

W(A1...Ak+1
(A ′

1 ...A
′
k )B) and W(A1...Ak

CA ′
1 ...A

′
k |C|ϵAk+1)B. Hence (29) splits into

0= S(A1...Ak+1B)
(A ′

1 ...A
′
k )
W(A1...Ak+1

(A ′
1 ...A

′
k )
B)

− k
k+ 1

S(A1...Ak)B
B(A ′

1 ...A
′
k )
WA1...Ak

CA ′
1 ...A

′
k C. (31)

The two independent parts of WA1...Ak+1
A ′
1 ...A

′
k B may take arbitrary and independent values, so

S(A1...Ak+1B)
A ′
1 ...A

′
k
= 0, (32a)

SA1...AkB
BA ′

1 ...A
′
k
= 0. (32b)

This technique is used abundantly when analyzing the equations for the symmetry
operators.

3. Conditions for and form of the symmetry operators

There is a general method that we can follow to derive conditions for the existence of an nth
order symmetry operator L̂. Firstly, we make an ansatz for L̂ and substitute with this in the
Dirac equation. Secondly, we rewrite the equations to only contain twists using lemma 17. We
then decompose the resulting equations into irreducible parts as in section 2.8 and lastly we
simplify.

In this section, we first demonstrate this method by applying it to the zeroth order symmetry
operator. Then the results for the first and second order symmetry operators are stated directly
and interpreted.

The main results are theorems 18, 20, 22.

3.1. Zeroth order symmetry operator

Let L̂ : (ϕA,χA ′) 7→ (λA,γA ′) be of the form

λA = KA
BϕB+LA

A ′
χA ′ , (33a)

γA ′ =MA
A ′ϕA+NA ′

B ′
χB ′ . (33b)

LAA
′
and MA

A ′
are already irreducible, but

KAB = − 1
2
KC

CϵAB+K(AB), (34a)

NA
′B ′

= − 1
2
NC

′

C ′ϵA
′B ′

+N(A ′B ′), (34b)

11
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so we will name these irreducible parts

K
0,0

= KAA, K
2,0

AB = K(AB),

N
0,0

= NA
′

A′ , N
0,2

A′B′
= N(A′B′),

where the underscript indicates the valence numbers for totally symmetric spinors. Substituting
this into (20a) and (20b), we have that

C †
(
−L

0,1
�χ+

1
2
K
0,0

0,0
�ϕ+ K

2,0

1,0
�ϕ

)
=

1
2
mN

0,0

0,0
�χ−mN

0,2

0,1
�χ−mM

1,0
�ϕ, (35a)

C

(
1
2
N
0,0

0,0
�χ− N

0,2

0,1
�χ−M

1,0
�ϕ

)
= mL

0,1
�χ− 1

2
mK

0,0

0,0
�ϕ+mK

2,0

1,0
�ϕ. (35b)

Applying the Leibniz rules from lemma 16 yields

0= −L
1,1
�T χ+

1
2
L
1,0
�Cχ+(C †L)

0,1
�χ− 1

2
(DL)

0,0
�χ− 1

2
(T K

0,0
)
1,0
�ϕ− 1

2
K
0,0

0,0
�C †ϕ

− K
2,0

2,0
�T ϕ+(C †K

2,0
)
1,0
�ϕ+ 1

2
mN

0,0

0,0
�χ−mN

0,2

0,1
�χ−mM

1,0
�ϕ, (36a)

0= − 1
2
(T N

0,0
)
0,1
�χ− 1

2
N
0,0

0,0
�Cχ− N

0,2

0,2
�T χ+(C N

0,2
)
0,1
�χ−M

1,1
�T ϕ− 1

2
M

0,1
�C †ϕ

× (CM)
1,0
�ϕ− 1

2
(DM)

0,0
�ϕ+mL

0,1
�χ− 1

2
mK

0,0

0,0
�ϕ+mK

2,0

1,0
�ϕ. (36b)

Using lemma 17, this can be rewritten in terms of only twists:

0= −L
1,1
�T χ+

1
2
mL

1,0
�ϕ+L

0,1
�C †χ− 1

2
(DL)

0,0
�χ− 1

2
(T K

0,0
)
1,0
�ϕ− 1

2
mK

0,0

0,0
�χ

− K
2,0

2,0
�T ϕ+(C †K

2,0
)
1,0
�ϕ+ 1

2
mN

0,0

0,0
�χ+m(N

0,2
)
0,1
�χ−mM

1,0
�ϕ, (37a)

0= − 1
2
(T N

0,0
)
0,1
�χ+

1
2
mN

0,0

0,0
�ϕ− N

0,2

0,2
�T χ+(C N

0,2
)
0,1
�χ−M

1,1
�T ϕ− 1

2
mM

0,1
�χ

+(CM)
1,0
�ϕ− 1

2
(DM)

0,0
�ϕ+mL

0,1
�χ− 1

2
mK

0,0

0,0
�ϕ+mK

2,0

1,0
�ϕ. (37b)

Now, since each order of derivative is independent by section 2.8, and since each field is
independent and free, (37a) and (37b) splits into eight equations.

3.1.1. Collecting first order terms. Isolating the T ϕ-terms of (37a) yields

0= K
2,0

2,0
�T ϕ. (38a)

Isolating the T χ-terms of (37a) yields

0= L
1,1
�T χ. (38b)

Isolating the T ϕ-terms of (37b) yields

0=M
1,1
�T ϕ. (38c)

12
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Isolating the T χ-terms of (37b) yields

0= N
0,2

0,2
�T χ. (38d)

The reason for introducing K
2,0

and N
0,2

is that (38a)–(38d) are irreducible in the sense of

section 2.8. It follows that

K
2,0

= 0, (39a)

L= 0, (39b)

M= 0, (39c)

N
0,2

= 0. (39d)

3.1.2. Collecting zeroth order terms. Isolating the ϕ-terms of (37a) yields

0=
1
2
mL

1,0
�ϕ− 1

2
(T K

0,0
)
1,0
�ϕ+ K

2,0

1,0
�C †ϕ−mM

1,0
�ϕ. (40a)

Isolating the χ-terms of (37a) yields

0= (C †L)
0,1
�χ+

1
2
(DL)

0,0
�χ− 1

2
mK

0,0

0,0
�χ+

1
2
mN

0,0

0,0
�χ−mN

0,2

0,1
�χ. (40b)

Isolating the ϕ-terms of (37b) yields

0=
1
2
mN

0,0

0,0
�ϕ+(CM)

1,0
�ϕ− 1

2
(DM)

0,0
�ϕ− 1

2
mK

0,0

0,0
�ϕ+mK

2,0

1,0
�ϕ. (40c)

Isolating the χ-terms of (37b) yields

0= − 1
2
(T N

0,0
)
0,1
�χ+(C N

0,2
)
0,1
�χ− 1

2
mM

0,1
�χ−mL

0,1
�χ. (40d)

Using (39a)–(39d), (40a)–(40d) reduce to

T K
0,0

= 0, (41a)

−1
2
mK

0,0
+

1
2
mN

0,0
= 0, (41b)

T N
0,0

= 0. (41c)

3.1.3. Interpretation and discussion. To interpret these equations, note that (39b) and (39c)
imply that there is nomixing between ϕA andχA ′ . (39a) and (39d) imply that the only non-zero
parts of KAB and NA

′B ′
are the trace parts. That is, they are proportional to the identity. The

twists in (41a) and (41c) act on valence (0,0) spinors, so they are just covariant derivatives.
Hence K

0,0
and N

0,0
must be constant. Since we assume that m 6= 0, we may divide by it in (41a)

and deduce that K
0,0

and N
0,0

are equal.

Substituting this into the ansatz, (33a) and (33b), that we made for L̂, we get that

Theorem 18. The only zeroth order symmetry operators for the Dirac equation are multiples
of the identity.

13
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In the following sections, the same general method is scaled up by the use of computer
algebra and applied to first and second order symmetry operators.

3.2. First order symmetry operator

Let L̂ : (ϕA,χA ′) 7→ (λA,γA ′) be of the form

λA = K1A
BCA ′

(T ϕ)BCA ′ +L1A
BA ′B ′

(T χ)BA ′B ′ +K0A
BϕB+L0A

A ′
χA ′ , (42a)

γA ′ =M1ABA ′
B ′
(T ϕ)ABB ′ +N1AA ′

B ′C ′
(T χ)AB ′C ′ +M0AA ′ϕA+N0A ′

B ′
χB ′ . (42b)

By lemma 17, this is the most general form of a first order symmetry operator.
As before, we substitute this into (20a) and (20b), collect each order of derivative, and

decompose the resulting equations. There are then in total 18 equations and 12 variables. They
are not stated here since they are terribly complicated while adding nothing conceptually dif-
ferent from section 3.1. The calculations are, in their entirety, available on Github [15]. After
simplification, they may be expressed as theorem 20.

Definition 19. Let SAA
′
, TA

′B ′
,UAB, andRAA

′
beKilling spinors on a four-dimensional Lorent-

zian manifold M. They satisfy auxiliary condition A if

C S= 0, (43a)

C †S= 0, (43b)

DR= 0, (43c)

C T+C †U= 0. (43d)

Theorem 20. The massive Dirac equation has a first order symmetry operator if and only if
there exist Killing spinors (not all zero) satisfying auxiliary condition A. The symmetry oper-
ator then takes the form

λ= R
1,1
�T ϕ+ S

1,1
�T ϕ+

(
O+ 3

8 (DS)
)
ϕ− 1

2 (CR)
1,0
�ϕ−mU

1,0
�ϕ+T

0,2
�T χ

+ 2
3 (C

†U)
0,1
�χ− 1

2mR
0,1
�χ+ 3

2mS
0,1
�χ, (44a)

γ = U
2,0
�T ϕ− 2

3 (C
†U)

1,0
�ϕ+ 1

2mR
1,0
�ϕ+ 3

2mS
1,0
�ϕ− S

1,1
�T χ+R

1,1
�T χ

+
(
O− 3

8 (DS)
)
χ− 1

2 (C
†R)

0,1
�χ+mT

0,1
�χ, (44b)

for some constant scalar O.

3.2.1. Interpretation and discussion. The geometric interpretation of (43a) and (43b) is that
SAA

′
is a closed vector field. The geometric interpretation of (43c) is that RAA

′
is a Killing

vector. Observe that if Φ= 0, then C T is a Killing vector because T C T= 0 and DC T= 0
due to (17c) and (17a). Similarly, C †U is then also a Killing vector.

The different possible algebraic types of theWeyl spinor are commonly classified by Petrov
type. The existence of a nontrivial valence (2,0) spinor implies that the spacetime is of type
D, N, or O [6, section 4.7]. The geometric interpretation of (43d) is that f A ′ B ′

A B := UABϵ
A ′B ′

+

ϵABTA
′B ′

is a Killing–Yano tensor. This is shown in our Mathematica notebook [15].
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Kamran and McLenaghan [17, theorem II] have derived the form of the most general first
order symmetry operator for the massive Dirac equation using the Dirac basis. Theorem 20 is
a covariant reformulation of their result.

Lastly for this subsection, let us look at (44a) and (44b) in terms of Lie derivatives. In
section 2.1, we stated that Killing vectors generate infinitesimal isometries, so one might
expect that taking a Lie derivative with respect to R is a symmetry operation. This is true
if one takes the conformally weighted Lie derivative. (44a) and (44b) may be written

λ= L̂Rϕ+ L̂Sϕ+Oϕ−mU
1,0
�ϕ+T

0,2
�T χ+ 2

3 (C
†U)

0,1
�χ+ 2mS

0,1
�χ, (45a)

γ = U
2,0
�T ϕ− 2

3 (C
†U)

1,0
�ϕ+ 2mS

1,0
�ϕ+ L̂Rχ−L̂Sχ+Oχ+mT

0,1
�χ. (45b)

This is shown in Mathematica [15].

3.3. Second order symmetry operator

Let L̂ : (ϕA,χA ′) 7→ (λA,γA ′) be of the form

λA = K2A
BCDA ′B ′

(T T ϕ)BCDA ′B ′ +L2A
BCA ′B ′C ′

(T T χ)BCA ′B ′C ′

+K1A
BCA ′

(T ϕ)BCA ′ +L1A
BA ′B ′

(T χ)BA ′B ′

+K0A
BϕB+L0A

A ′
χA ′ , (46a)

γA ′ = N2ABA ′
B ′C ′D ′

(T T χ)ABB ′C ′D ′ +M2ABCA ′
B ′C ′

(T T ϕ)ABCB ′C ′

+N1AA ′
B ′C ′

(T χ)AB ′C ′ +M1ABA ′
B ′
(T ϕ)ABB ′

+M0AA ′ϕA+χB
′
N0A ′B ′ . (46b)

As before, we substitute this into (20a) and (20b), collect each order of derivative, and
decompose the resulting equations. There are then in total 26 equations and 20 variables. Sim-
plifying those gives us theorem 22.

Definition 21. Let VABA
′B ′

, WAB
A ′B ′

, XABCA
′
, and YAA

′B ′C ′
be Killing spinors on a four-

dimensional Lorentzian manifold. They satisfy auxiliary condition B if there exist spinors
RAA

′
, TA

′B ′
, UAB, SAA

′
, and a scalar O such that

T S= 1
3 Ψ̄

0,2
�V− 1

3Ψ
2,0
�V+ 1

4mC Y+ 1
4mC †X, (47a)

C S=− 2
5m

X
3,1
�T Ψ+

9
25m

X
2,1
�CΦ− 9

40m
Ψ

2,0
�DX− 1

2m
Ψ

3,0
�CX

− 1
2mDX+ 1

3DCV− 4
3Φ

1,2
�V, (47b)

C †S=− 1
2m

Ψ̄
0,3
�C †Y+

9
25m

Y
1,2
�C †Φ− 2

5m
Y
1,3
�T Ψ̄− 9

40m
Ψ̄

0,2
�DY

− 1
2mDY− 1

3DC †V+ 4
3Φ

2,1
�V, (47c)

T O= 3
10V

2,1
�CΦ+ 3

10V
1,2
�C †Φ− 2

3m
2DV+ 1

8mDC Y− 1
2mΨ̄

0,3
�Y

− 1
2mΦ

1,2
�Y+ 1

2mΦ
2,1
�X− 1

10Ψ
3,0
�CV− 1

10 Ψ̄
0,3
�C †V+ 1

2mΨ
3,0
�X

− 1
8mDC †X, (47d)
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T R= 1
3 Ψ̄

0,2
�W− 1

3Ψ
2,0
�W, (48a)

DR= 0, (48b)

T T=− 2
3mC †W, (48c)

T U=− 2
3mCW, (48d)

C T+C †U=− 1
2m

W
2,1
�CΦ+

3
5m

W
2,2
�T Φ− 1

2m
W

1,2
�C †Φ− 4

5m
W

1,1
�T Λ

+
2
5m

Φ
2,1
�CW+

2
5m

Φ
1,2
�C †W+

4
15m

Φ
1,1
�DW− 1

15m
T DDW

+ 4
3mDW+

3
10m

Ψ
3,0
�CW+

3
10m

Ψ̄
0,3
�C †W. (48e)

Theorem 22. The massive Dirac equation has a second order symmetry operator if and only
if there exist Killing spinors (not all zero) satisfying auxiliary condition B. The symmetry oper-
ator is then a linear combination of a symmetry operator of the first kind,

λ= V
2,2
�T T ϕ− 2

3 (CV)
2,1
�T ϕ+ 8

9 (DV)
1,1
�T ϕ−mX

2,1
�T ϕ+ S

1,1
�T ϕ

− 1
3 (C DV)

1,0
�ϕ+ 1

3 (Φ
1,2
�V)

1,0
�ϕ− 9

50m
(X

2,1
�CΦ)

1,0
�ϕ+ 9

80m
(Ψ

2,0
�DX)

1,0
�ϕ

+
1
5m

(X
3,1
�T Ψ)

1,0
�ϕ+ 1

4m
(Ψ

3,0
�CX)

1,0
�ϕ

+
(
O+ 3

8 (DS)+ 2
15 (DDV)− 8

15 (Φ
2,2
�V)

)
ϕ+Y

1,3
�T T χ− 3

4 (C Y)
1,2
�T χ

+ 3
4 (DY)

0,2
�T χ− 2

3mV
1,2
�T χ− 1

4 (C DY)
0,1
�χ+ 1

2 (Φ
1,2
�Y)

0,1
�χ+ 3

2mS
0,1
�χ, (49a)

γ = X
3,1
�T T ϕ− 3

4 (C
†X)

2,1
�T ϕ+ 3

4 (DX)
2,0
�T ϕ+ 2

3mV
2,1
�T ϕ− 1

4 (C
†DX)

1,0
�ϕ

+ 1
2 (Φ

2,1
�X)

1,0
�ϕ+ 3

2mS
1,0
�ϕ+V

2,2
�T T χ− S

1,1
�T χ− 2

3 (C
†V)

1,2
�T χ

+ 8
9 (DV)

1,1
�T χ+mY

1,2
�T χ− 1

3 (C
†DV)

0,1
�χ+ 1

3 (Φ
2,1
�V)

0,1
�χ

− 1
4m

(Ψ̄
0,3
�C †Y)

0,1
�χ− 1

5m
(Y

1,3
�T Ψ̄)

0,1
�χ− 9

80m
(Ψ̄

0,2
�DY)

0,1
�χ

+
9

50m
(Y

1,2
�C †Φ)

0,1
�χ+

(
O− 3

8 (DS)+ 2
15 (DDV)− 8

15 (Φ
2,2
�V)

)
χ, (49b)

and a symmetry operator of the second kind,

λ=W
2,2
�T T ϕ− 2

3 (CW)
2,1
�T ϕ+ 8

9 (DW)
1,1
�T ϕ+R

1,1
�T ϕ− 1

2 (CR)
1,0
�ϕ

− 2
9 (C DW)

1,0
�ϕ−mU

1,0
�ϕ+

(
1
9 (DDW)− 1

3 (Φ
2,2
�W)

)
ϕ+ 4

3mW
1,2
�T χ+T

0,2
�T χ

− 2
3 (C T)

0,1
�χ− 1

2mR
0,1
�χ+ 4

9m(DW)
0,1
�χ, (50a)
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γ = 4
3mW

2,1
�T ϕ+U

2,0
�T ϕ− 2

3 (C
†U)

1,0
�ϕ+ 4

9m(DW)
1,0
�ϕ+ 1

2mR
1,0
�ϕ−W

2,2
�T T χ

− 8
9 (DW)

1,1
�T χ+ 2

3 (C
†W)

1,2
�T χ+R

1,1
�T χ− 1

2 (C
†R)

0,1
�χ+ 2

9 (C
†DW)

0,1
�χ

+mT
0,1
�χ+

(
− 1

9 (DDW)+ 1
3 (Φ

2,2
�W)

)
χ. (50b)

3.3.1. Interpretation and discussion. While these equations are much longer and ungainlier
than auxiliary condition A, it is worth to note that (47a)–(47d) and (48a)–(48e) are completely
decoupled. They contain different variables from each other. Hence dividing the symmetry
operator into first and second kind.

Also, if V,W, X and Y are set to zero, we get back auxiliary condition A, since then (48a),
(48c), (48d) and (47a) are the condition that S, R, U, and T are Killing spinors, while (48b),
(48e), (47b) and (47c) are precisely auxiliary condition A, and (47d) is just the existence of
constant scalar field, so it adds no restrictions.

Fels and Kamran derived in 1990 a subset of the second order symmetry operators for the
massive Dirac equation that can be defined on a curved spacetime [14, theorem 4.1]. Their
ansatz (4.2) for L̂ is less general than (46a) and (46b) due to a special form of the second order
term. In terms of our covariant language, it can be expressed as

λ=K2
2,2

2,2
�T T ϕ+K1

3,1

2,1
�T ϕ− 2

3K1
1,1

1,1
�T ϕ+K0

2,0

1,0
�ϕ− 1

3K2
2,2

1,2
�Φ

1,0
�ϕ

+(2m2L2
0,0

− 6L2
0,0

Λ− 1
2K0
0,0

)ϕ+L1
2,2

1,2
�T χ− 1

2L10,2
0,2
�T χ− 2

3mK2
2,2

1,2
�T χ+L0

1,1

0,1
�χ, (51a)

γ =M1
2,2

2,1
�T ϕ− 1

2M1
2,0

2,0
�T ϕ+ 2

3mK2
2,2

2,1
�T ϕ+M0

1,1

1,0
�ϕ+(2m2L2

0,0
− 6L2

0,0
Λ− 1

2N00,0
)χ

+K2
2,2

2,2
�T T χ+N1

1,3

1,2
�T χ− 2

3N11,1

1,1
�T χ+N0

0,2

0,1
�χ− 1

3K2
2,2

2,1
�Φ

0,1
�χ, (51b)

As in section 3.1, the underscript indicates the valence numbers for totally symmetric spinors.
These coefficients can then be matched with the ones in our ansatz to obtain a translation
from (51a) and (51b) to (46a) and (46b). The most immediate part of this translation is

W= Y= X= 0, (52)

Hence the symmetry operators presented in [14] are a special case of the symmetry operators in
theorem 22. We also remark that Fels and Kamran derived commuting operators, which gives
stronger conditions than symmetry operators. For reference, the full translation is available in
our Mathematica notebook [15].

4. Conclusion

In conclusion, the problem of finding symmetry operators to the massive Dirac equation is
well-suited for applying computer algebra.

While we have found that there are no nontrivial zeroth order symmetry operators, auxili-
ary condition A and auxiliary condition B are covariant differential equations involving Killing
spinors whose solvability are equivalent to the existence of first and second order symmetry
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operators respectively. We managed to interpret auxiliary condition A in fairly direct geo-
metrical terms and auxiliary condition B was found to comprise two decoupled systems of
equations that reduced to auxiliary condition A in the case of setting the second order coeffi-
cients to zero.
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