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Significance

The metabolic reactions active 
in a cell can vary substantially 
across cell types and organs in 
the body. While bulk 
measurements from biopsies 
do not provide resolution at 
cell-type level, the arrival of 
single-cell RNA-Seq holds 
promise to make this possible. 
Here, we developed a method to 
determine the active reactions in 
single-cell clusters and showed 
that the active reactions differed 
substantially across cell types, 
both in the brain and the tumor 
microenvironment. To reach a 
broader audience, we also made 
the active reaction networks of 
202 single-cell clusters from 19 
human organs available in the 
web portal Metabolic Atlas.
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Single-cell RNA sequencing combined with genome-scale metabolic models (GEMs) 
has the potential to unravel the differences in metabolism across both cell types and 
cell states but requires new computational methods. Here, we present a method for 
generating cell-type-specific genome-scale models from clusters of single-cell RNA-Seq 
profiles. Specifically, we developed a method to estimate the minimum number of cells 
required to pool to obtain stable models, a bootstrapping strategy for estimating statis-
tical inference, and a faster version of the task-driven integrative network inference for 
tissues algorithm for generating context-specific GEMs. In addition, we evaluated the 
effect of different RNA-Seq normalization methods on model topology and differences 
in models generated from single-cell and bulk RNA-Seq data. We applied our methods 
on data from mouse cortex neurons and cells from the tumor microenvironment of lung 
cancer and in both cases found that almost every cell subtype had a unique metabolic 
profile. In addition, our approach was able to detect cancer-associated metabolic differ-
ences between cancer cells and healthy cells, showcasing its utility. We also contextualized 
models from 202 single-cell clusters across 19 human organs using data from Human 
Protein Atlas and made these available in the web portal Metabolic Atlas, thereby provid-
ing a valuable resource to the scientific community. With the ever-increasing availability 
of single-cell RNA-Seq datasets and continuously improved GEMs, their combination 
holds promise to become an important approach in the study of human metabolism.

GEM | single-cell | RNA-Seq | modeling

Genome-scale metabolic models (GEMs) have been extensively used to further our under-
standing of metabolism in both unicellular organisms such as yeast and bacteria (1–3) 
and multicellular species such as humans (4–6). For multicellular species, the existence 
of many different cell types and tissues poses a challenge for metabolic modeling since the 
full reaction network encoded by the genome is typically not present in individual tissues 
or cell types. To remedy this, several methods have been developed that utilize RNA 
sequencing or proteomics data to estimate the active subnetwork in a sample (7–9), such 
as the task-driven integrative network inference for tissues (tINIT) algorithm. Such meth-
ods start with a full model and generate context-specific models, containing only the active 
portion of the network within a given tissue or cell type.

Each tissue in the human body contains many cell types and cell subtypes, where each 
of these often has several transcriptional states. Bulk RNA-Seq measurements are useful 
for generating context-specific models that describe the collective metabolism of the cell 
types in a tissue. Moreover, if used with for example fluorescence-activated cell sorting 
(FACS), bulk measurements can be used to target individual cell types. However, the 
technique is limited to cell types and states that can be separated by cell surface markers, 
which must be decided beforehand. The availability of single-cell RNA-Seq (scRNA-Seq) 
presents a new opportunity to generate context-specific models at the level of individual 
cell types and cell states.

Obtaining a representative gene expression profile for a cell type can be challenging. 
Due to technical variation in the data (10, 11), data sparsity in particular is a substantial 
challenge when generating context-specific models from scRNA-Seq data. The variation 
in the data, particularly in single-cell data from droplet-based methods, is dominated by 
sampling effects, often requiring averaging (pooling) the individual profiles of hundreds 
or thousands of cells to obtain the same expected variation as observed between bulk 
RNA-Seq samples (12). Previously reported methods for generating context-specific mod-
els for single cells either focus on small simplified models targeting highly expressed 
enzymes (13) or use different strategies to integrate data from neighboring cells, also 
focusing on highly expressed pathways (14). While these methods are useful for finding 
differences in metabolism, they do not focus on capturing the entire metabolic network 
of a cell type, with the purpose of using these networks for further simulation. Others 
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have generated context-specific models from pooled scRNA-Seq 
data (15, 16), but do not fully address the statistical uncertainties 
introduced by the data sparsity. Therefore, new methods should 
aim to address these shortcomings.

In this work, we developed methods for generating context-spe-
cific GEMs from pools (often clusters) of scRNA-Seq profiles. The 
methods include an estimation of the required pool size and a boot-
strapping strategy to estimate uncertainties in the ensuing reaction 
subnetwork. Since the bootstrapping strategy requires the genera-
tion of many models, we developed a new optimized version of 
tINIT called fast tINIT (ftINIT), which is substantially faster than 
the previous versions. We applied our methods on a mouse brain 
scRNA-Seq dataset, showcasing the ability of the methods to iden-
tify differences in metabolic capabilities across neurons. Furthermore, 
we used our methods to investigate a dataset from the tumor 
microenvironment of lung cancer and found unique metabolic 
capabilities of cells known to be associated with cancer. Finally, we 
extended the web portal Metabolic Atlas with the ability to visualize 
enzyme presence for 202 human cell populations from 19 organs, 
based on context-specific models generated using ftINIT.

Results

Generation of Cell-Type-Specific Models. To investigate the 
difference in active metabolic network between cell types, we 
generated context-specific genome-scale models by reducing the 
generic GEM Human1 (4) based on scRNA-Seq data (Fig. 1A). 
The process starts with generating clusters of single cells by cell 
type. To enable comparison across cell types, it is desirable to 
estimate the uncertainty in modeling results and apply statistical 
inference. For scRNA-Seq data, we propose to generate GEMs 
from multiple bootstrapped (randomly sampled) cell populations 
from each cluster to assess the robustness of the modeling results. 
This procedure is required since the total number of unique 

molecular identifiers (UMIs) or reads is usually too small to apply 
statistics across models generated from separate biological samples 
(SI Appendix, Note S1). Each bootstrapped cell population is then 
pooled into an RNA-Seq profile, and context-specific models 
are generated for each such profile, henceforth called bootstrap 
models. Further analyses, such as the evaluation of metabolic tasks, 
are performed for each individual model and statistical methods 
can be applied across cell types, where each cell type is represented 
by a group of bootstrap models.

The tINIT (9) algorithm was previously developed to generate 
context-specific GEMs based on either transcriptomic or pro-
teomic data. A drawback of the method is the computation time, 
which for more complex models such as Human1 can range from 
15 min to 3 h on a standard laptop computer for a single model. 
Since the bootstrapping strategy requires generation of large quan-
tities of context-specific GEMs, we sought to optimize the method, 
yielding ftINIT (SI Appendix, Note S2). The results from ftINIT 
are different from that of previous versions. For example, ftINIT 
employs a different strategy for reactions lacking gene associations, 
where if desired many such reactions can be included rather than 
excluded, and the ftINIT optimization is divided into two steps 
to reduce computation time. ftINIT supports two modes: Mode 
“1+0” only runs the first step, with the result that most reactions 
without Gene-Protein-Reaction (GPR) associations are included 
in the final model, while the mode “1+1” runs both steps. The 
“1+0” mode is suitable for structural comparisons, while the “1+1” 
mode can be useful to generate a smaller model. We evaluated the 
performance of the previous and new version of tINIT using gene 
essentiality analysis on 891 cell lines from DepMap (17, 18), 
which showed a similar ability of the produced models to predict 
gene essentiality (Fig. 1B). We compared ftINIT with the previous 
version and models generated from transcriptomic data from the 
Genotype-Tissue Expression (GTEx) project (19) grouped by 
tissue type in a comparable way as the original tINIT method 

Fig. 1. Generation of context-specific models from scRNA-Seq data. A. Overview of model generation and analysis. Cells are first clustered in the scRNA-Seq 
data. Bootstraps of single cells are then generated from each cluster, followed by pooling the single cells to form a transcriptomic profile, which together with 
the template model Human1 is used as input to ftINIT to generate context-specific models for each bootstrap of each cell type. Network analyses in the form of 
metabolic task analysis are then performed for each bootstrap model, and statistical analysis is applied across bootstraps to decide if a reaction or metabolic 
task is available (black), unavailable (white), or uncertain (gray) in each cell type. B. Evaluation of the ability to predict essential genes by the models created 
using tINIT and ftINIT (run in the two modes “1+0” and “1+1”), respectively, for 891 cell lines from DepMap. The performance was measured using the Matthews 
correlation coefficient (MCC). C. Execution times for tINIT and ftINIT applied on 10 samples from GTEx.D
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(SI Appendix, Figs. S1 and S2). We likewise evaluated the reduc-
tion in execution time, which exceeded an order of magnitude 
(Fig. 1C).

Due to performance reasons, tINIT needs to be run with 
parameters that simplify the original problem when using large 
models such as Human1, which can cause gaps in the extracted 
model. To evaluate this effect, we ran both tINIT and ftINIT on 
a small test model, resulting in undesired gaps when using tINIT 
(SI Appendix, Figs. S3 and S4), whereas ftINIT produced no such 
gaps, suggesting that ftINIT may generate models of higher qual-
ity (SI Appendix, Fig. S5). We further investigated model statistics 
for models generated by the different methods. ftINIT generated 
larger models, where the major increase in size can be attributed 
to the inclusion of more reactions without GPR associations 
(SI Appendix, Fig. S6). However, ftINIT has tunable parameters 
that can be used to reduce the model size should that be desired 
(SI Appendix, Note S2).

Technical Evaluation of Modeling from scRNA-Seq Data. To 
evaluate the technical limitations of scRNA-Seq data, we first 
investigated the reproducibility of context-specific GEMs generated 
from such data. Specifically, we compared models generated from 
non-overlapping randomly selected cell subpopulations from the 
same cell-type cluster (Fig. 2A). Surprisingly, thousands of cells 
were typically needed for droplet-based single-cell data to generate 
models with the same variation as observed between bulk samples, 
and increasing the pool size beyond 10,000 cells continues to 
reduce the variation of the cell-type-specific GEMs. Furthermore, 
the number of cells required for stable model generation varied 
across datasets, where datasets with more UMIs per cell generally 
required fewer cells, emphasizing the need to evaluate the required 
pool size per dataset, as illustrated by the cell population “HCA 
CB T” in Fig. 2A. Direct model comparison, as shown in Fig. 2A, 
is impractical due to the large computational cost required for 
such a method. We therefore investigated the use of our previously 
developed scRNA-Seq variation estimation method Down-
SAmpling based Variation Estimation (DSAVE) (12) to quantify 
the variation between pools of cells, which takes less than a minute 
to run on a standard laptop computer. DSAVE demonstrated 
reasonable agreement in the estimated required pool size (Fig. 2B). 
Based on our results, when generating context-specific models we 
recommend pooling at least the number of cells required to reach 
the DSAVE total variation score of the bulk reference.

The presence of misclassified cells is a common problem in 
scRNA-Seq data, especially when dividing the cells into cell sub-
type populations, and there are tools available for detecting such 
cells (12). We investigated to what extent such cells affected the 
generation of context-specific GEMs by comparing models gen-
erated from pure T cell populations to models generated from 
populations contaminated with varying fractions of cancer cells 
(Fig. 2C). Seemingly, a few percent of misclassified cells have 
only a negligible effect on model generation compared to other 
sources of variation (such as data sparsity), while levels of 10 to 
20% of misclassified cells have a clear negative effect (P = 2.0 
× 10−4 and P = 3.0 × 10−13, respectively, at 5,000 cells, Wilcoxon 
rank sum test).

A structural comparison of models generated for both bulk and 
scRNA-Seq profiles from different tissues showed good agreement 
between models originating from the same tissue and technology 
(Fig. 2D). However, models generated from similar tissues and 
different technologies only partly clustered together, suggesting 
that a combination of technical batch effects and differences in 
cell-type composition between single-cell and bulk have a sub-
stantial effect on model generation. Interestingly, immune cells 

from single-cell lung datasets clustered with GTEx blood samples, 
which can be expected to have a high immune cell content. We 
quantified the differences within and across different groups of 
tissue and technology, which showed that both these variables 
have a substantial effect on model generation (Fig. 2E).

For practical reasons, context-specific models are often gener-
ated from bulk data normalized to transcript per million (TPM) 
since many other normalization methods are designed to operate 
on gene counts and hence do not compensate for gene length. For 
droplet-based single-cell data, this is not a problem, as such data 
do not need to be normalized by gene length, although such data 
is still normalized to counts per million (CPM) (11). We have 
previously shown that trimmed mean of M values (TMM) (20) 
can be applied on TPM data by scaling the TPM values to produce 
pseudo-counts (11), and we therefore investigated the impact of 
different normalization methods (Fig. 2F). While it is difficult to 
draw any general conclusions from just a few datasets, TMM 
normalization seems to generally have a small effect compared to 
library normalization. However, models seem to become more 
similar across technologies for both TMM and quantile normal-
ization, and TMM may be a good option for such cases, since the 
samples still group as expected (SI Appendix, Fig. S7). While quan-
tile normalization (21) yields models with even greater similarity, 
it worsens the grouping on tissue (SI Appendix, Fig. S8) and is 
therefore not recommended.

Another source of variation in scRNA-Seq data that has recently 
received much attention is variation across samples (SI Appendix, 
Note S1). For example, differential expression analysis with sin-
gle-cell data is known to produce false positives if the variation is 
measured across cells when not accounting for sample origin (22). 
In such an approach, the variation across samples is not accounted 
for, and pooling cells per sample to pseudo-bulk samples followed 
by applying methods such as DESeq2 (23), which was originally 
designed for bulk data, remedies the problem. The same problem 
is faced when trying to estimate the uncertainty in context-specific 
models generated from single-cell data. The variation across sam-
ples is high in single-cell data (SI Appendix, Fig. S9) and ideally 
procedures that estimate uncertainty should take this into account. 
In practice, datasets seldom have enough cells to generate reliable 
models per cell type and sample, and in such cases, we recommend 
our bootstrapping strategy, although it does not fully account for 
variation across samples.

Metabolism across Neuron Subtypes in the Mouse Cortex. To 
assess the utility of our method, we generated context-specific 
models for different neuron subtypes in the mouse primary motor 
cortex from a deeply sequenced publicly available dataset (24). 
Analysis with Seurat (25) yielded a good agreement between the 
cell subtype definition by Booeshaghi et  al. and the Uniform 
Manifold Approximation and Projection (UMAP) projection 
(Fig. 3A). We selected 17 neuron subtypes for further analysis, 
each with more than 450 cells in the dataset, consistent with 
our recommendation based on the DSAVE total variation scores 
(SI Appendix, Figs. S10–S12). When using only metabolic genes, 
the UMAP was still able to separate the dataset per cell subtype 
(Fig.  3B), suggesting that the neuron subtypes exhibit distinct 
metabolic gene expression signatures that vary more across cell 
subtypes than within cells of the same subtype.

To investigate the metabolic networks of the neuron subtypes, 
we generated 100 bootstrapped single-cell populations from each 
neuron subtype and generated context-specific models for each 
bootstrap, yielding in total 1,700 models. Since the dataset con-
tains mouse data, we used the Mouse-GEM, which is derived from 
Human1 by gene orthology (26). The bootstrap models were then D
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pooled together for structural comparison, where each reaction 
was scored between 0 and 100 representing the number of boot-
strap models in which the reaction was present. A Principal 
Component Analysis (PCA) revealed structural grouping of neu-
ron subtypes (inferior temporal (IT), near-projecting (NP), cor-
ticothalamic (CT), and Lamp5-expressing neurons) when using 
Principal Component (PC) 1 and PC3 (Fig. 3C and SI Appendix, 
Fig. S13A). We could not find any clear grouping of cell types 
from PC 1 and PC 2, and we could not identify any other cell-type 

property that was related to PC 2 (explained variance 16.6%) 
(SI Appendix, Fig. S13B). We also could not see any clear grouping 
from cortex layer (L2, L5, or L6) (SI Appendix, Fig. S13 C and D), 
suggesting that the neuron metabolism is likely defined more by 
cell function than location, although PC2 may also represent an 
important factor. To quantify the number of reactions that were 
present in some subtypes but not in others, we defined reactions 
to be “on” in a subtype if it was present in at least 99 out of 100 
bootstrap models, and likewise to be “off” if it was missing in at 

Fig. 2. Technical evaluation of generating context-specific models from scRNA-Seq data. A. Reproducibility of context-specific model generation per single-cell 
pool size, using ftINIT. Pairs of two non-overlapping sets of single cells were pooled from the same cell type (T cells) and dataset, followed by GEM generation by 
ftINIT and reaction content comparison (Jaccard index per pool pair, mean of 20 repetitions per pool size). The bulk reference value represents a comparison of 
bulk T cells (FACS-sorted). B. DSAVE total variation score per pool size. C. Structural variation of ftINIT-generated models from contaminating cell pools (T cells, 
LC dataset) to a varying degree with cells of another cell type (tumor cells, from the same patient). D. Structural comparison of models generated by ftINIT from 
various sources, both GTEx bulk samples from 53 tissue types (eight samples per tissue) and different single-cell datasets: 2 models (pooled cells from spleen 
and lung) from the L4 dataset and 16 different cell-type models from the LC3 dataset (10 from the tumor microenvironment and 6 from healthy tissue). “GTEx 
other” consist of the tissues from GTEx that were not expected to overlap with other datasets. Normalization: TPM/CPM. E. Investigation of structural variation 
across and within different model groups (Materials and Methods). F. The effect of different RNA-Seq normalization strategies on model similarity across and 
within model groups.
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least 99 out of 100 bootstraps (P < 2.2 × 10−16 against the null 
hypothesis that two reactions, where one is considered on and the 
other off, should be equally available; exact Fisher’s test. For sta-
tistical considerations regarding multiple testing, see SI Appendix, 
Note S1). A total of 387 reactions (out of 10,376 total reactions) 
were defined as on in at least one cell subtype, and at the same 
time off in at least one other, suggesting a clear distinction between 
the available reaction networks in the different neuron subtypes. 
It is also possible to pairwise compare if a reaction statistically has 
a higher tendency to be on in one cell type compared to another, 
even for reactions that are not considered on or off (SI Appendix, 
Note S1).

What metabolic capabilities are available to a cell is an interesting 
property of a cell that can be evaluated by its ability to carry out 
different metabolic tasks such as de novo synthesis or catabolism of 
important metabolites. We again used our bootstrapped models to 
perform an analysis of 257 tasks defined in Human1, where we 
similarly defined on if at least 99 out of 100 bootstraps successfully 
completed the task and off if 99 out of 100 models failed. We found 
a total of 13 tasks that were considered on for at least one cell sub-
type while off for another (Fig. 3D). Most of these differentiating 

tasks were related to de novo synthesis of fatty acids, phospholipids 
(phosphoinositides (PI) and phosphatidylethanolamines (PE)), and 
cardiolipin. Interestingly, the importance of fatty acids as signaling 
molecules in neurons has recently been emphasized, and deficiencies 
in lipid metabolism have been associated with cognitive problems 
and neurodegenerative diseases (27). The variation of homocysteine 
synthesis capabilities across neuron subtypes is also interesting. High 
homocysteine levels in blood are associated with neurological dis-
orders (28, 29), and although homocysteine regulation is mainly 
managed by the liver (28), the ability of some neuron subtypes to 
synthesize this metabolite suggests that they could play a role in 
neurological disease. The diversity in homocysteine production 
capacity among neurons has not been studied, and potential dys-
regulation of this biosynthetic pathway could therefore be of interest 
to investigate further.

Metabolism across Cell Types in the Tumor Microenvironment. 
As a second application, we investigated the diversity in metabolism 
across cell types in the tumor microenvironment. We downloaded 
a publicly available lung adenocarcinoma dataset (30) containing 
RNA-Seq data from more than 200,000 cells from both healthy 

Fig. 3. Generation of context-specific GEMs for mouse primary motor cortex cell types. A. Single-cell UMAP projection using all genes, colored by neuron subtype 
classifications published together with the data. The data displayed are a subset of all cells; only the selected clusters are shown, and only for one batch of 
the data (with date 4/26/2019). B. Similar to A, but only using the subset of genes present in the Mouse-GEM metabolic model. C. Structural comparison of the 
context-specific models derived from each neuron subtype. Each reaction is scored based on its presence in 100 bootstrap models, which is used as input to 
the PCA. D. Metabolic task analysis of 100 bootstrap models from each cell subtype. The colors indicate the fraction of the bootstrap models that could perform 
each task. Only tasks where at least one cell type had more than 98% success rate and at least one had less than 2% such rate are shown. All tasks presented 
here represent de novo synthesis of the compounds.
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lung tissue and tumors originating from 44 patients. The data were 
first processed using Seurat and the UMAP projections matched 
well with the cell-type classifications provided with the dataset for 
both cells from healthy lung tissue (Fig. 4A) and cells originating 
from the tumor (Fig. 4B). The number of UMIs per cell varied 
substantially across the clusters (SI Appendix, Fig. S14A). Using 
DSAVE, we estimated the minimum required cluster size to 
be between 800 and 2,000 cells (SI Appendix, Fig.  S14B) and 
therefore included the 16 clusters with more than 1,600 cells in 
the analysis. As expected, the cancer cells showed more diversity 
than the healthy cell types, since cancers from different patients 
can have varying transcriptional programs (Fig. 4C). Reprocessing 
the datasets using only metabolic genes yielded similar results, 
although slightly less separated per cell type, suggesting that each 
cell type has a unique metabolic program (SI Appendix, Fig. S15).

The diversity in metabolism across cell types was first investi-
gated by a structural comparison (Fig. 4D and SI Appendix, 
Fig. S16). The cell types roughly clustered into a few groups: epi-
thelial cells (alveolar cells and cancer cells), myeloid cells (mac-
rophages and monocytes), and lymphocytes (T, natural killer 

(NK), and B cells) together with mast cells, while we could not 
observe that cell types grouped by tissue of origin (tumor/healthy 
tissue). In total, 1,104 reactions were identified as on in at least 
one cell type and off in at least one other type, yielding a diverse 
set of metabolic networks.

To investigate the differences in metabolic capabilities between 
cell types, we performed a task analysis on the bootstrap models 
from all cell types, resulting in 14 tasks that could be confidently 
completed for at least one cell type while being absent in another 
(Fig. 4E). At least some tumor cells (tS2) had the ability to gen-
erate several types of fatty acids, which has been linked to tumor 
progression (31). In healthy tissues, de novo lipid production is 
normally limited to adipocytes and hepatocytes. However, cancer 
cells have been reported to be capable of lipogenesis of fatty acids 
from cytoplasmic acetyl-CoA (32). While even-chain fatty acids 
are produced from acetyl-CoA, the mechanism for production of 
odd-chain fatty acids (to which all fatty acids identified by the 
task analysis belong) was elongation of propionyl-CoA (verified 
in the model) but could also be supported by α-oxidation of even-
chain fatty acids (33–35).

Fig. 4. Analysis of the cell types of the tumor microenvironment in lung cancer. A. UMAP projection of cells from healthy lung tissue. The cells originate from 
multiple patients and only cell clusters with at least 1,600 cells are included. The cell-type classification used was published together with the dataset. B. Similar 
to A, but for tumor tissue. C. Similar to B but showing sample origin per cell instead of cell subtype. D. Structural comparison of the context-specific models 
derived from clusters from both the cancer and healthy tissues. Each reaction was scored based on its presence in 100 bootstrap models, which was used as 
input to the PCA. The symbol indicates type of cell. E. Metabolic task analysis of 100 bootstrap models from each cluster. The colors indicate the fraction of 
the bootstrap models that could perform each task. Only tasks where at least one cell type had more than 98% success rate and at least one had less than 2% 
such rate are shown.
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The capacity of the cancer cells to synthesize heme is another 
interesting observation. Cancer cells have been shown to display 
high heme levels, increased activity of heme containing proteins, 
and enhanced expression of heme exporters (36–41), suggesting 
that the entire heme biosynthetic pathway is frequently expressed 
in tumors. However, the reason why tumors enhance heme syn-
thesis is largely unknown. One possibility is that heme together 
with iron–sulfur complexes is needed for oxygen-utilizing hemo-
proteins (e.g., mitochondrial cytochromes), which are essential for 
both the tricarboxylic acid (TCA) cycle and the electron transport 
chain (37, 41–43). Controversially, some studies showed that sup-
pression of oxidative phosphorylation (OXPHOS) and enhanced 
glycolysis in tumors could be associated with increased heme bio-
synthesis, suggesting that heme can mediate additional functions 
in cancer (39). For example, heme synthesis followed by heme 

degradation and secretion of bilirubin provides means to dispose 
of succinyl-CoA from mitochondria, and this pathway was proven 
essential for cell lines with dysfunctional fumarate hydratase, where 
it can be used to keep part of the TCA cycle running (42, 44). In 
addition, a recent study showed that heme synthesis and export 
regulate the TCA cycle and OXPHOS in proliferating cells with 
high-energy demand (39).

Interestingly, the two different transcriptional states tS1 and 
tS2 of the tumor cells exhibited a distinct difference in bile acid 
metabolism (taurochenodeoxycholate and taurocholate synthesis 
and excretion), despite that each state was composed of cells from 
different patients with substantial transcriptional differences. The 
importance of bile acid metabolism is a topic of recent investiga-
tion (45), but its role in lung cancer is not clear and may be of 
interest for further research.

Fig. 5. Presentation of context-specific cell population models from the human body in Metabolic Atlas. A. t-distributed stochastic neighbor embedding (t-SNE) 
projection of 202 cell population reaction networks colored by tissue of origin. B. t-SNE projection of 202 cell population reaction networks colored by cell type. 
C. Visualization of reaction presence in the 2-dimensional maps in Metabolic Atlas, here showing phenylalanine metabolism in mitochondria for excitatory 
neurons (cluster 0). The color of each reaction indicates for a certain cell population the number of bootstrap models in which the reaction is present, where 
white represents reaction presence in zero bootstrap models and red represents presence in all models.D
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Presentation of Reaction Availability in Cell Types in Metabolic 
Atlas. Human Protein Atlas (46) has recently been extended with 
single-cell data (47), and we used this resource to generate context-
specific models for the cell populations that were estimated to 
have enough cells (using DSAVE). We generated context-specific 
models for 202 different cell populations from 19 tissues where 
100 bootstrap models were generated for each cell population, 
resulting in 20,200 context-specific models. The models from the 
cell populations cluster to some extent by organ (Fig. 5A) and 
by cell type (Fig. 5B). The data contain clusters from different 
datasets, and it is therefore difficult to determine if differences 
between organs originate from technical batch effects or actual 
differences between organs. Methods for correction of batch 
effects usually require cell-type overlaps between datasets, which 
is largely not available here, and we therefore did not apply any 
such method. However, while some similarities within organs can 
likely be attributed to batch effects, it is biologically feasible that 
different cell types within an organ share properties that can be 
attributed to an adaptation to the metabolic environment in that 
organ. Furthermore, cell types that exist in multiple organs, such 
as immune cells and endothelial cells, tend to cluster together.

Metabolic Atlas (https://metabolicatlas.org/) is a visualization 
web portal for GEMs. To make the reaction network of individual 
cell types easily accessible, we added functionality for visualizing 
reaction presence in context-specific models (Fig. 5C). Metabolic 
Atlas enables switching between cell types, making it possible to 
investigate differences in metabolism between cell types and 
organs.

Discussion

In this work, we developed methods for generating reliable con-
text-specific models from cell populations of scRNA-Seq data. 
Specifically, we developed a method to estimate the required num-
ber of cells per population, a bootstrapping strategy to assess mod-
eling results statistically, and a substantially faster version of tINIT 
to facilitate the bootstrapping strategy. In addition, we evaluated 
the effect of normalization methods for the RNA-Seq data and 
differences in models generated from single-cell and bulk RNA-
Seq data. We found that metabolism differs substantially across 
cell types and subtypes, motivating our approach, and supporting 
that our methods were useful for finding differences across cell 
types and could identify metabolic properties known to be asso-
ciated with the phenotype of interest.

There are many possible ways to investigate metabolism from 
scRNA-Seq data using GEMs. Reporter metabolites (48) is one 
method, whereby gene sets are defined based on which metabolites 
participate in the encoded reaction(s) and used in gene set analysis 
(GSA). The input to the GSA can for example be P-values obtained 
from differential expression analysis between clusters of single cells 
as input. Another approach is to penalize reactions based on gene 
expression and for different cell populations estimate the total 
penalty for carrying flux through the reaction network, which is 
implemented in the COMPASS method (14). The gene expression 
in COMPASS is estimated per cell by integration over nearby cells, 
which makes it possible to detect a metabolic switch in either a 
cell continuum or between clusters. While these methods were 
proven useful (14, 48, 49), they are designed to directly detect 
up-regulated pathways, while our method generates a model that 
can be used for further simulations, which enables the investigation 
of other questions. In this study, we showcased our method using 
metabolic task analysis, but it also allows for more advanced mod-
eling approaches. Such methods could involve the use of metab-
olite uptake constraints (e.g., based on diffusion), constraints on 

enzyme usage, or simulations involving the interplay between 
several cell types (50, 51).

Statistical inference is often a challenge when using scRNA-Seq 
data. Single-cell datasets often do not contain enough samples, or 
enough cells per sample, to apply statistics in a similar way as for bulk 
RNA-Seq samples. While our method partly suffers from the same 
weakness, our bootstrapping approach provides some statistical assur-
ance, although subject to certain assumptions (SI Appendix, Note S1). 
It is important to realize that applying our method over cell popula-
tions collected from several samples requires that the cell-type pro-
portions are reasonably similar across samples, since batch effects 
between patients could otherwise bias the results, and a prefiltering 
of cells to ensure cell-type proportions may be necessary.

Although some methods have recently emerged (14, 16), the 
use of GEMs together with scRNA-Seq data to study disease is 
still in its infancy. However, such analyses hold great potential—
scRNA-Seq enables characterization of all cell types in the human 
body (52). In addition, each cell type can come in various states, 
and sometimes continuums, and such aspects are difficult to cap-
ture in bulk data, even for FACS-sorted cell populations. We have 
shown that the metabolic transcriptional program varies substan-
tially across cell types, suggesting that study of individual cell types 
will provide further detail when studying metabolism in complex 
organs. With further development of both scRNA-Seq and GEMs, 
the combination of the two holds promise for a substantial con-
tribution in unraveling the key metabolic features in human health 
and disease.

Materials and Methods

Datasets. We downloaded eight different scRNA-Seq datasets (30, 52–58), 
bulk RNA-Seq data from GTEx (19) and DepMap (also including gene essen-
tiality data) (17, 18), and FACS-sorted T cell samples from the BLUEPRINT 
epigenome project (12, 59) previously assembled for DSAVE. Single-cell data 
from Human Protein Atlas were used for presentation of reaction presence for 
cell types in Metabolic Atlas (47). Some of the datasets were accessed through 
SingleCellToolbox (https://github.com/SysBioChalmers/SingleCellToolbox) 
(12), which provides single-cell datasets with cell-type classifications through 
a MATLAB-friendly interface. Detailed information about the datasets is available 
in SI Appendix, Table S1.

ftINIT. The ftINIT method is described in detail in SI Appendix, Note S2. In 
short, ftINIT runs in two steps: 1) Simplified run where many reactions without 
gene associations are omitted from the problem. 2) Run where the reactions 
turned on in step 1 are treated as essential and all reactions are included in the 
problem. Step 2 is optional and was omitted for the generation of all models 
used in this work except for the data presented in Metabolic Atlas. The “rxns to 
ignore mask” in step 1 was set to [1 1 1 1 1 1 1 0], which effectively means that 
a collection of reactions without gene rules, including spontaneous reactions, 
exchange reactions, transport reactions, and custom reactions are omitted from 
the optimization problem and are always included in the final model (except in 
the Metabolic Atlas data). The custom reactions were in this study selected to 
include reactions for protein generation and reactions that pool metabolites, 
in total 52 reactions. None of the custom reactions had gene rules.

ftINIT is designed to work with the Gurobi solver (60).
Like its predecessor tINIT, ftINIT supports both a fixed gene expression threshold 

value for all genes or individual gene thresholds that can be based for example 
on the mean expression of the gene in all samples. We did not seek to specifically 
evaluate gene expression thresholds here since such parameters have previously 
been evaluated (61) and therefore settled on a threshold value of 1 TPM/CPM.

ftINIT was implemented in Reconstruction, Analysis and Visualization of 
Metabolic Networks (RAVEN) Toolbox (62). All figures were generated using the 
version implemented in version 2.7.4.

Detailed Methods Description. A detailed description of the methods used to 
produce the results in this work is available in SI Appendix, Note S3.D
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Software. The data were analyzed using MATLAB R2019b and R version 4.1.1. 
To ensure the quality of our analyses, we verified and validated the code using 
a combination of test cases, reasoning around expected outcome of a function, 
and code review. The details of this activity are available in the verification matrix 
available with the code.

Data, Materials, and Software Availability. All the datasets used in this 
manuscript are available in public repositories, and references are given Table 
S1 in SI Appendix . The ftINIT method is implemented in RAVEN Toolbox (62) 
and is open source and publicly available on GitHub (https://github.com/
SysBioChalmers/RAVEN). The Human1 model together with model-specific 
code for ftINIT is available on GitHub (https://github.com/SysBioChalmers/
Human-GEM). The processed data and source code, including the used ver-
sions of RAVEN and SingleCellToolbox, are available on Zenodo (https://doi.
org/10.5281/zenodo.7469969). The source code is also available on GitHub 
(https://github.com/SysBioChalmers/SingleCellModeling). Instructions on 
how to use ftINIT together with single-cell data can be found at https://sys-
biochalmers.github.io/Human-GEM-guide/. The ftINIT code is planned to be 

moved to a new GitHub location, at which it should be accessed for future 
use at https://github.com/SysBioChalmers/ftINIT.
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