Provided by University of Lincoln Institutional Repository

Metadata, citation and similar papers at core.ac.uk

Application of the Self-Organising Map to Trajectory Classification

Jonathan Owens* and Andrew Hunter
School of Computing and Engineering Technology
University of Sunderland
England
email: {jonathan.owens, andrew.hunter} @sunderland.ac.uk
*telephone: +44 (0)191 515 3293

Abstract

This paper presents an approach to the problem
of automatically classifying events detected by
video surveillance systems, specifically, of
detecting unusual or suspicious movements.
Approaches to this problem typically involve
building complex 3D-models in real-world co-
ordinates to provide trajectory information for
the classifier. In this paper we show that analysis
of trajectories may be carried out in a model-free
fashion, using self-organising feature map neural
networks to learn the characteristics of normal
trajectories, and to detect novel ones.
Trajectories are represented in 2D image co-
ordinates. First and second order motion
information is also generated, with moving-
average smoothing. This allows novelty detection
to be applied on a point-by-point basis in real
time, and permits both instantaneous motion and
whole trajectory motion to be subjected to novelty
detection.

1. Introduction

This paper addresses the issue of detecting
suspicious behaviour of pedestrians using a
computerised grey-scale video surveillance
system. The ultimate objective of the system is to
act as a filter, detecting behaviour that appears out

of the ordinary and drawing the attention of a
human operator to such events.

The visual surveillance task is usually broken
down into a modular pipeline, as illustrated in
figure 1. This paper is primarily concerned with
the implementation of the Decision Maker
module, although our approach to the earlier
stages in the pipeline is also briefly described.

The input to the Decision Maker module is the
trajectory of an object, which consists of a series
of centroid positions. The trajectory sequence is
recoded into a trajectory description vector, which
is used as input to a Self Organising Feature Map
neural network [4]. The neural network is trained
to recognise normal trajectories, using video
footage of the target site (a car park) in normal
use. During surveillance, the neural network
identifies abnormal behaviour (that is, object
trajectories unlike those encountered during the
training phase) and highlights these. Abnormal
trajectories may include those that enter areas that
are not usually traversed, or those moving at
unusual speeds or moving unusually erratically.
A key aspect of the approach is that it is largely
"model-free" — there is no explicit modelling of
normal or abnormal behaviour, which is instead
learned by the neural network. The system may
also be used on a point-by-point basis, detecting
any unusual structure in the partially complete
trajectories.

Preliminary results indicate that the approach

Input Background Object Object Object Classification / Decision
Image Estimation Extraction Tracking Model Fitting Maker
Figure 1. Typical visual surveillance processing pipeline
1

0-7695-0698-04/00 $10.00 © 2000 IEEE

https://core.ac.uk/display/55626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is able to detect unusual behaviour with an
acceptable level of accuracy, although we also
find that it erroneously classifies some normal
behaviour as suspicious. Further analysis
demonstrates that those normal trajectories
classified as abnormal are in fact not represented
in the original training data, demonstrating that
the approach requires comprehensive training
data, and probably therefore on-line updating in a
practical setting. This sensitivity to training data
is a drawback of the model-free approach.

2. Pre-Processing Stages

This section discusses our approach to the
Background Estimation, Object Extraction,
Object Tracking and Object Classification/Model
Fitting stages in the pipeline.

First, moving objects are identified by
subtraction from a background image, but
changes in lighting condition, movement of
foliage and so forth imply that it is difficult to
identify a static background; consequently, the
background image needs to be adapted over time.
We generate the reference image using an
algorithm described by Makarov, A. [5]. The
update operation performs a kind of temporal
low-pass filtering of the input image pixels,
where only slow changes that fall below a
threshold are inserted into the background. It
cannot cope with very rapid background changes,
such as clouds moving across the sun. However,
it is computationally light enough to be applied at
real-time frame rates on a standard PC.

Stauffer, C. and Grimson, W. E. L. [9],
describe a more complicated, but more robust,
method. Each pixel is modelled by a mixture of
Gaussians that are continuously updated. This
method allows a multimodal representation of the
reference image where, for example, moving
foliage may result in a switching between two
luminance levels, with both belonging to the
background. Skifstad, K. and Jain, A. [8] give
two methods for illumination independent object
detection; however, these algorithms apply to
pairwise image comparisons, rather than to the
generation of an explicit reference image.

Object extraction is performed using standard
techniques. The pixels in the difference image
not belonging to the background are assigned to
labelled, connected components. As the objective
of this paper is to demonstrate classification of
pedestrian motion, cars were rejected at this stage
based upon measurements of size and aspect ratio.
Very small objects are also rejected, and the

0-7695-0698-04/00 $10.00 © 2000 IEEE

properties of the remaining objects, including the
centroids, are calculated.

In real-world scenes, a passive object tracker
may produce partial, noisy trajectories due to
environmental interaction. For example, a person
may be partially or completely occluded by
walking behind parked vehicles. Object tracking
deals with these issues. A common approach is to
use predictive tracking. The parameters of the
object (e.g. size and location) are predicted for the
next frame (using Kalman filters [1, 2, 9] or
similar approaches), and the prediction is refined
using the observed object. Therefore, even if an
object is temporarily occluded, an estimate of its
position is still given using the parameter values
in the last step. This maintains a smooth
trajectory and is able to cope with object
fusion/separation when tracking multiple objects.

Our system actually uses a very naive
approach (objects are matched to the nearest
object in the next frame) which is suitable only
for low activity images without significant
occlusion. If two or more objects merge, for
example, the system will only maintain the
tracking of one of the merged objects. However,
the technique is simple enough to allow the
tracker to be implemented along with the
background generator on a standard PC.

Most model-based systems translate the object
position into world co-ordinates and track
trajectories in that space, whereas our system uses
image co-ordinates (the camera is located high
above the car park, so that we still get reasonable
results). However, our approach to trajectory
novelty detection is compatible with the motion
data produced by more sophisticated tracking
algorithms.

In some cases, an object needs to be classified
before having model parameters matched to it.
Remagnino, P. et al [6] fit a 3D model to cars and
a 2D model to people. The 3D model aids in
trajectory classification, by assigning stable
orientation and dimensions to the tracked object.
A 2D contour is fit to each pedestrian, and
although the contour does not include orientation
information, the centroid can be reliably tracked
even when only part of the person is visible.
Stauffer, C. and Grimson, W. E. L. [9] use a
binary threshold of the time-averaged aspect ratio
of an object to classify it as a pedestrian or
vehicle. In this case, classification is a post-
processing step that is used to annotate the
database of recorded trajectories, rather than
guiding a decision as to the model to fit to the
object. Foresti, G. L. [1] uses a transformation
invariant shape description to classify tracked

objects by comparing them with a large database
of pre-classified vehicles.

Again, our system does not include these more
sophisticated modelling approaches, but is
compatible with the trajectory data produced by
them.

3. Trajectory Classification

The Decision Maker module uses the
trajectories generated by the Object Tracker to
classify the behaviour observed in the image
sequences. We are particularly interested in
classifying behaviour that is suspicious, and may
be indicative of criminal intent (e.g. pedestrians
examining cars, speeding) or just unusual (e.g.
parking in a non-parking area).

A variety of approaches have been suggested
in the literature. Remagnino, P. et al [7] use
Bayesian belief networks. For each object
tracked, a belief network is assigned to examine
the location, heading, speed and trajectory, using
the image evidence to produce the most likely
description of the object’s behaviour. When the
distance between two objects falls below a
threshold, a belief network is instantiated to
examine the interaction of the two objects, using
the behaviour of each object to give an
interpretation of the situation. The belief
networks provide a textual description of the
scene (such as “Pedestrian 2 passing by Vehicle
43”) which may be classified by an operator, or a
separate automated system.

Alternatively, a trajectory is commonly
encoded by sequences of flow vectors, which
describe the position and instantaneous velocity
of the tracked object, f =[x, y, dx, dy].

Grimson, W. E. L. et al [2] cluster trajectories
based on the flow vector, f, and object size. The
vectors are clustered by a K-means algorithm.
The input data is replaced by the flow vector
assigned to the nearest cluster centre, giving a
discrete description of the feature vector. The co-
occurrence of these descriptor states is then used
to classify future sequences as familiar or novel.

Johnson, N. and Hogg, D. [3] describe a
model-free method for representing trajectory
distributions. ~ Flow vectors, generated from
recorded trajectories, are used to train the
distribution prototype vectors of a competitive
neural network. Sequences of prototype flow
vectors are fed to a network of neurons with
short-term memory (STM), which retain traces of
previous activations, capturing the recent history
of each flow vector in the sequence. These time-
smoothed vector sequences are used to train

0-7695-0698-04/00 $10.00 © 2000 IEEE

another competitive network, which can be used
to classify future instances of learned trajectories.
As the traces held in the short-term memory are
trajectory specific, the activations must be reset to
zero during learning to avoid interference
between trajectory representations. This implies
that, during classification, a separate network
must be instantiated for each trajectory under
consideration, to prevent the memory traces from
interfering in STM.

We present a novel approach to model-free
novelty detection, based on converting trajectories
to a fixed length trajectory vector, which can be
submitted to a Self-Organising Feature Map [4].
This is similar to the approach of Johnson, N. and
Hogg, D. [3] in that the neural network in essence
learns the distribution of training trajectories, and
classifies outlying trajectories as novel. The key
difference is that in our network, smoothing is
performed as a pre-processing step, resulting in a
simpler network structure, which is optimised to
work with partial trajectories, allowing real-time
novelty detection. In contrast, Johnson and
Hogg’s model is primarily designed to work with
complete trajectories represented in STM.

4. Trajectory Encoding

The information recorded by the object tracker
is a sequence of centroid points for each tracked
object, as illustrated in figures 2 and 3. A number
of video sequences were recorded and divided
into two sub-sets. The training sequences were
captured during normal use at the test site. The
test sequences were a deliberately produced
mixture of normal and abnormal sequences.
Figure 2 shows an example of a normal trajectory,
characterised by relatively smooth, uni-directional
motion. Figure 3 gives an example of the kind of
erratic, unusual behaviour that we would like the
system to classify as abnormal. The trajectory
has the unusual characteristics of highly non-
uniform velocity, with large direction changes.

For real-time use, the system needs to monitor
trajectories as they are generated, rather than
waiting until a complete path is created. We
therefore seek a scheme that encodes any partial
or complete trajectory as a fixed length vector,
suitable for novelty detection.

Starting with the flow vector, f =[x, y, dx. dy],
we added second order information, intuitively
motivated by the concept that the rate of velocity
change could provide additional discrimination
between normal and unusual behaviour. For
example, relatively low rates of velocity change
are seen in normal pedestrian motion, while a

0-7695-0698-04/00 $10.00 © 2000 IEEE

Figure 2. An example of
a normal trajectory,
overlaid on a frame
from the sequence.

Figure 3. (a) An unusual
trajectory. The unusual
points are shown in
black (see section 6).

Figure 3. (b) The same
trajectory as in (a) with
novel points detected
using flow vectors only.

pedestrian moving in between parked vehicles
shows high rates of velocity change as the path
reverses direction. The position, first and second
order elements in the vector give the
instantaneous characteristics of the object motion,
so in an effort to build a vector that contains
information regarding previous behaviour of the
object, a time-smoothing function was applied to
the elements in the vector.

It is possible to construct the vector using all
instantaneous elements with a smoothed value for
each. However, the feature vector used in the
following experiments was made up of a subset of
these elements,

F =[xy, 5(x), 5(y), s(dx), s(dy), s(ld’x]), s(|d’y])]

where the function s(.) indicates a time smoothed
average of the quantity, and the first and second
order differences, dx and d’x, are given by the
following:

dx = x, — X1, and
d’x = X¢ — 2X] T Xeo.

The smoothing function s(.) implements a
moving average window, and is defined as

$i(%) = (W(s5e1(x)) + (1I-W(X) ,

where [controls the update rate of the smoothed
variable, and is between 0 and 1. The feature
vector F contains the (x, y) position together with
a “short-term memory” of the recent position, and
the first and second order motion of the object.
Therefore, even if an unusual trajectory falls in a
well-traversed location, the feature vector should
differ substantially to normal vectors along the
dimensions that have a memory of the recent
motion of the object (for example, the ‘doubling-
back’ that is seen as the pedestrian in figure 3
moves in between parked vehicles will rarely be
seen in normal pedestrian motion). Each
individual point in the trajectory is translated into
a feature vector, and as the feature vector is of
fixed length, it is suitable for classification by the
neural network.

5. The Self-Organising Feature Map

The self-organising feature map (SOFM), or
Kohonen network, is a two layer neural network
that is able to “learn” to represent distributions of
the data presented to it.

A schematic of the network is shown in figure
4.

0-7695-0698-04/00 $10.00 © 2000 IEEE

2D Output Layer

Input

Figure 4.. The basic self-organising map
(for clarity, only connections from the first
unit in the input layer are shown).

The input layer has one unit for each element
of the feature vector. Each unit in the output
layer is joined to the input units by a set of
connections, which store an exemplar vector.
During training, the ‘winning’ neuron is the one
whose weight vector is the smallest Euclidean
distance to the input vector.

The weight vector for the winning neuron is
updated using the following rule,

m(t+1) = m(t) + 1 [x(t) -m(t)],

where x(t) is the training example, m(t) is the
current weight vector, m(t+1) is the new weight
vector and 1) is a learning rate. In addition to the
winning neuron, a number of units in its
neighbourhood (i.e. close in position on the two
dimensional topological grid) are also updated
using the above rule.

Training progresses through a number of
epochs, during which the learning rate and
neighbourhood are progressively reduced.
Training falls roughly into two phases: a rough
ordering phase, during which neurons in discrete
areas of the network learn to correspond to coarse
clusters in the data, and a fine tuning phase during
which individual neurons adjust to reflect fine
distinctions.

Self-organising features maps are widely used
for novelty detection [10]. Advantages over
clustering techniques include: robustness, the
ability to be used in on-line mode (i.e. learning
additional new normal cases when they arise), and
the ability to use the topological map for

visualisation purposes (cluster discovery and
identification).

During surveillance, the feature vector is
submitted to the SOFM, the winning neuron is
identified, and the Euclidean distance between the
feature vector and the winning neuron's exemplar
vector is calculated. If this distance exceeds a
threshold value then the feature vector is
considered novel, and the trajectory is identified
as suspicious.

The threshold value is calculated at the end of
the training process, by determining the
maximum distance of the training vectors from
winning neurons. We set the threshold to half
this value. Adjusting the threshold alters the
balance between false positive and false negative
errors. Maintaining a threshold which would
classify all training data correctly may lead to
genuinely unusual points being classified as
normal. This occurs because, after training, there
may be normal points that have not become well
represented by the network and are a significant
distance from the closest neuron centre.
Enlarging the accept threshold to encompass
these outlying points would expand the boundary
of normality into the regions that we would
typically like to classify as unusual. Setting the
threshold to a fraction of the maximum value will
ensure that the network maintains sensitivity to
new novel data.

6. Experimental Results

The feature vector F was generated from the
trajectory data with the following | values for the
smoothing functions:

e Position, L =0.9
e First order difference, L = 0.96
e Second order difference, L = 0.96

The higher update rate for the positional
information was used to eliminate the noise
generated by the tracker (cf. figs. 2 & 3) whilst
retaining the essential shape of the trajectory.
The training data consisted of 206 normal
trajectories, containing 7,482 points. The test set
included 23 unusual trajectories and 16 normal
trajectories, containing 2,174 and 694 points
respectively.

The self-organising map had eight input units,
connected to a grid of 11x10 output units. The
results can be summarised as follows:

0-7695-0698-04/00 $10.00 © 2000 IEEE

Correct classifications:
36/39 = 92%

Unusual trajectories correctly classified:
23/23 =100%

Normal trajectories correctly classified:
13/16 = 81%

It should be noted that a complete trajectory
was classified as unusual if it contained two or
more points classified as unusual.

This classification rate of 92% is good given
that the training set was rather small. The effect
of the small training set can be illustrated by
examining more closely one of the misclassified
normal trajectories.

One of the three normal trajectories classified
as unusual, traced a pedestrian moving from the
car in the bottom left of the image to the car-park
exit at the bottom of the image (cf. fig. 3). Upon
examination of the training set, it was found that a
trajectory in this location and direction was only
represented once in the training set. Given the
nature of SOFM training, the representation of a
single instance of a trajectory can be
overwhelmed by the more numerous training
examples. This is indicative of the largest
problem with the model-free approach to novelty
detection — if the training data is not sufficiently
comprehensive, then novel but actually acceptable
behaviour will be classified as suspicious. This
implies a requirement to update the neural
network online with newly-detected normal
trajectories when they occur.

What features are being used by the system
when detecting novel behaviour? To examine
more closely the mechanism of classification, a
separate network was trained using the flow
vectors, f =[x, y, dx, dy], with no time smoothing
or second order information.

Figure 3 shows one of the unusual trajectories
in the test set. Figure 3(b) shows the sixteen
points (out of 158 points) detected as novel when
only the flow vectors were used. As most of the
trajectories in the training set typically traced
vertical motion, the flow vectors describing
lateral movement were detected as novel, and in
particular, lateral motion of large magnitude (fig.
3(b)). In other words, novel points are instances
in which a trajectory segment was either in an
unfamiliar orientation, or of an unfamiliar
magnitude (i.e. unusual speed). However, global
features of the trajectory were not well
represented using the flow vectors. For example,
the erratic direction changes in between the
parked vehicles of figure 3 was not detected to a
significant degree.

To capture the global properties of object
motion, we added second order information and a
moving average function to the feature elements,
as described in section 4. Figure 3(a) shows the
novel points (marked in black) as detected using
the full feature vector. A total of 131 out of 158
points were classified as novel for this trajectory.
The first two unusual points occur after the
pedestrian deviates slightly from his original
course, but at this point the trajectory is not
overly suspicious. However, more points are
classified as unusual when the pedestrian doubles
back on his path while moving between the
parked vehicles. It should be noted that the
absolute value of the second order changes was
used so that the smoothed value would be
cumulative, avoiding the possibility that an erratic
zigzag motion could cancel out over time and
produce a smoothed value that tended to zero.

As shown in figure 3(b), if instantaneous
motion alone is used for classification, most
individual flow vectors will have been
encountered in the training set and will therefore
be seen as normal. However, the sequence in
which the flow vectors occur, the global
properties of the object motion, should be
considered to properly classify the trajectory.

7. Conclusion

We have demonstrated that trajectory
classification is possible using a model-free
neural network approach, provided that the
training data is sufficiently representative of the
full range of normal behaviour. Applying a
moving average window to the motion
information allows the classifier to examine
global information, such as the object’s present
motion in relation to motion in the past. This
allows the system to detect globally unusual
behaviour, such as erratic direction changes
occurring at an otherwise normal speed.
Moreover, the system is computationally simple
enough to be used in real-time on a standard PC.

The major limitation of the approach is that
prior knowledge is difficult to build into self-
organising networks, and the system is unable to
differentiate between normal paths that have not
been previously seen and genuinely suspicious
behaviour.

Future work will involve integration of the
Trajectory Classifier with existing systems we
have developed to update a neural network based
novelty detector on-line, as "unusual" events are
processed and labelled as normal by the user.

0-7695-0698-04/00 $10.00 © 2000 IEEE

In addition, we may attempt to add a predictive
element to the trajectory classification. This
would entail using a partial trajectory to generate
a pool of potential normal trajectories that would
satisfactorily complete the path being traced.
This set of normal paths could be refined using
evidence obtained from the actual object motion.
Such a scheme would allow more robust event
detection. For example, the pool of normal
trajectories available to the system could be
subject to short-term heuristic changes; a
trajectory considered normal during working
hours could be removed from the normal set
during the hours of darkness. In other words,
“normality” is subject to the environment. The
pool of normal trajectories could also evolve over
the long-term, with trajectories that have not been
used for some time being removed from the
normality set.

8. References

1. Foresti, G. L. “A Real-Time System for Video
Surveillance of Unattended Outdoor
Environments,” IEEE Trans. Circuits and Systems
for Video Technology, vol. 8, no. 6, 1998.

2. Grimson, W. E. L., Stauffer, C., Romano, R. and
Lee, L. “Using Adaptive Tracking to Classify and
Monitor Activities in a Site,” Proc. of CVPR,
1998.

3. Johnson, N. and Hogg, D. “Learning the
Distribution of Object Trajectories for Event
Recognition,” Proc. BMVC, vol. 2, 1995.

4. Kohonen, T. “Self-Organising Maps,” Springer-
Verlag, 1995.

5. Makarov, A. “Comparison of Background
Extraction Based Intrusion Detection Algorithms,”
IEEE Int. Conf. Image Processing, 1996.

6. Remagnino, P., Bumberg, A., Grove, T., Hogg,
D., Tan, T., Worral, A. and Baker, K. “An
Integrated Traffic and Pedestrian Model-Based
Vision System,” Proc. BMVC, vol. 2, 1997.

7. Remagnino, P., Tan, T., and Baker, K. “Agent
Orientated Annotation in Model Based Visual
Surveillance,” Proc. of ICCV, 1998.

8. Skifstad, K. and Jain, A. “Illumination
Independent Change Detection for Real World
Sequences,” Computer Vision, Graphics, and
Image Processing, vol. 46, 1989.

9. Stauffer, C. and Grimson, W. E. L. “Adaptive
Background Mixture Models for Real-Time
Tracking,” Proc. of CVPR, 1999.

10. Taylor, O., Tait, J. and MaclIntyre, J. “Improved
Classification for a Data Fusing Kohonen Self-
Organising Map Using a Dynamic Thresholding
Technique,” Proc. of IJCAL vol. 2, 1999.

	Application of the Self-Organising Map to Trajectory Classification
	1. Introduction
	3. Trajectory Classification
	6. Experimental Results
	7. Conclusion

