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ABSTRACT

When analyzing complex scenes, humans often focus their attention on an object at a

particular spatial location in the presence of background noises and irrelevant visual ob-

jects. The ability to decode the attended spatial location would facilitate brain computer

interfaces (BCI) for complex scene analysis. Here, we tested two different neuroimaging

technologies and investigated their capability to decode audio-visual spatial attention in

the presence of competing stimuli from multiple locations. For functional near-infrared

spectroscopy (fNIRS), we targeted dorsal frontoparietal network including frontal eye field

(FEF) and intra-parietal sulcus (IPS) as well as superior temporal gyrus/planum tempo-

ral (STG/PT). They all were shown in previous functional magnetic resonance imaging

(fMRI) studies to be activated by auditory, visual, or audio-visual spatial tasks. We found

that fNIRS provides robust decoding of attended spatial locations for most participants and

correlates with behavioral performance. Moreover, we found that FEF makes a large con-

tribution to decoding performance. Surprisingly, the performance was significantly above

chance level 1s after cue onset, which is well before the peak of the fNIRS response.
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For electroencephalography (EEG), while there are several successful EEG-based al-

gorithms, to date, all of them focused exclusively on auditory modality where eye-related

artifacts are minimized or controlled. Successful integration into a more ecological typi-

cal usage requires careful consideration for eye-related artifacts which are inevitable. We

showed that fast and reliable decoding can be done with or without ocular-removal al-

gorithm. Our results show that EEG and fNIRS are promising platforms for compact,

wearable technologies that could be applied to decode attended spatial location and reveal

contributions of specific brain regions during complex scene analysis.
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1

Chapter 1

Introduction

1.1 Background

One important ability of the human brain that allows rich communication, interaction

and more importantly, connections between humans is known as complex scene analy-

sis (CSA). CSA is defined as selectively attending to specific objects in a complex scene

with multiple objects. For example, at a shopping mall on a busy day, a normal-hearing in-

dividual is able to look at a friend and hear what they are saying in the midst of background

noises and moving shoppers. Although this ability is usually taken for granted, there are

still millions of people worldwide with varying degrees of hearing loss, autism spectrum

disorder and ADHD that struggle with CSA. Thus, there is a need to design brain-computer

interfaces (BCIs) and assistive devices that would address deficiency in CSA ability.

Complex scene analysis can be broken down into distinct processes: determining the

spatial location of a target stimulus, segregating the target stimulus from the competing

or background stimuli, and reconstructing the target stimulus from the mixture forming

a perceptual object. There are already several algorithms that cover the segregation and

reconstruction processes. For a review, see (Szabó, Denham, and Winkler 2016). However,

all of them lack a critical information needed to complete the process: localization of spatial

attention. We will use neuroimaging technologies with the goal of decoding the spatial

attention. The five major types of functional and non-invasive neuroimaging technologies

are EEG, MEG, fMRI, fNIRS and PET and will be briefly summarized here.
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1.2 Comparison Between Neuroimaging Technologies

Electroencephalography (EEG) records electrical activities from the scalp with the main

intent of recording electrical activities of the brain. Specifically, the main signal of inter-

est in EEG recordings arises from extracellular currents which, in turn, arise mainly from

synaptic currents. Electrical activities generated by an individual neuron are too small to be

reliably detected by EEG. Thus EEG recordings likely reflect summation of synchronous

activities from thousand to million of neurons with similar spatial orientation. Due to

high conductivity, EEG recordings also capture signals not of interest and include elec-

troocoulogram (EOG) and electromyogram (EMG) such as auricular and cardiac activities.

EEG typically also captures electronics from the vicinity and power line noise from power

source, resulting in degraded signal-to-noise ratio (SNR). It is also due to high conductivity

that the spatial resolution is smeared and thus represents electrical activity at the macro-

scopic level. This effect is commonly known as volume conduction effect. Additionally,

since the electric field gradient is inversely proportional to the square of distance, EEG sig-

nals from deep sources are sharply attenuated. The main advantages of EEG are the high

temporal resolution, cost relative to other neuroimaging technologies, and portability. Its

greater portability also allows EEG to be used in a wider range of experimental designs.

Magnetoencephalography (MEG) is intended to record the magnetic field of the brain.

The main source of magnetic activity of neural origin is the net effect of ionic currents

in dendrites that collectively act as current dipoles (Hämäläinen et al. 1993). MEG suf-

fers from the same artifacts that EEG faces. However, since the magnetism generated by

neuronal activities (usually measured in femtotesla) is smaller than the earth’s magnetic

field (usually measured in microtesla) roughly by the order of magnitude 9, two methods

are employed to deal with this issue. Arrays of highly sensitive magnetometers, known

as SQUID, short for superconducting quantum interference devices and immersed in liquid

helium, are used. In addition, magnetic shielding is needed to reduce magnetic interference
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from both the Earth and the surrounding. These two renders MEG as the most expensive

out of 5 neuroimaging technologies listed. It is also due to SQUID and magnetic shielding

that MEG is tied with fMRI and PET as the least portable neuroimaging technologies.

While EEG and MEG signals originate from the same underlying processes, there are

still important distinctions to be made. First, due to difference in conductivity and perme-

ability properties, magnetic fields are less distorted by the scalp and skull, thereby provid-

ing MEG slightly better spatial resolution. Second, MEG is more sensitive to tangential

component of the detected current whereas EEG can detect both tangential and radial com-

ponents of the detected current. Therefore, MEG usually detects neuronal activities from

the sulci whereas EEG can detects neuronal activities from both sulci and gyri. Unlike elec-

tric field, magnetic dipole field diminish inversely proportional to the cube of the distance.

Thus, MEG has better localization than EEG at the cost of more limited coverage area.

In addition, MEG primarily detects intracellular currents whereas EEG primarily detect

extracellular currents (S. Singh 2014).

CW-fNIRS, short for continuous-wave functional near-infrared spectroscopy, is an opti-

cal imaging technique that can be used to measure change in concentration of two different

tissue chromophores: oxygenated and deoxygenated hemoglobin. Continuous-wave fNIRS

emits light sources at fixed wavelengths and amplitudes and detect the same light scattered

or reflected at detector sites. As its name implies, it adopts near-infrared lights (between

690 nm and 900 nm) due to their relatively high transmission in skin, bones and biolog-

ical tissues. Among the few biological chromophores that absorb near-infrared light is

hemoglobin, both oxygenated and deoxygenated. Since absorption spectra of oxygenated

and deoxygenated hemoglobins differs, their relative concentration can be inferred. In the

case of continuous wave fNIRS, modified Beer-Lambert law is used to approximately de-

rive the change in concentration of hemoglobin (Delpy, 1988). Thus fNIRS measures the

hemodynamic activities of the brain. The main drawback of CW-fNIRS is its differential
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sensitivity to hair and skin pigmentation, making sampling subjects biased toward those

with greater transmission to near-infrared light (less melanin). Its main advantages are

lower cost and greater portability relative to the other hemodynamic-based neuroimaging

technology, fMRI.

Functional magnetic resonance imaging (fMRI) is simply the application of nuclear

magnetic resonance imaging to study the cortical activities. Very briefly, nuclear mag-

netic resonance operates by exciting and recording the energy (almost exclusively radio

frequency in clinical and biomedical research setting) absorbed and emitted by a popula-

tion of nuclei with nuclear spin property. Hydrogen is the conventional choice of targeted

nuclei (although there exists carbon-based MRI). Thus, fMRI recordings represent the rel-

ative density of hydrogen nuclei, which are abundant in both water and fat. Blood oxy-

genation level dependent (BOLD)-fMRI, the most popular type of fMRI, is used to capture

the hemodynamic response. During the hemodynamic response, there is a shift in the rela-

tive volume of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) in respond to an event

or an activity. Since HbO and HbR have different magnetic susceptibility, BOLD-fMRI

can exploit these differential paramagnetic properties. Just like every other neuroimaging

technologies, fMRI recordings come with its own suite of artifacts. These include driftings

induced by the instability of the applied magnetic field, spikes induced by motion-related

artifacts and periodic signals induced by systemic physiological activities such as heart

beating and respiration. Lastly, fMRI suffers from high cost and immobility relative to

EEG and fNIRS.

fNIRS captures hemodynamic activities in all vascular compartments including arte-

rioles, venules and capillaries (H. Liu et al. 1995) whereas BOLD-fMRI signals usually

captures hemodynamic activities in both veins and capillaries (Drew 2019). In the case of

both fNIRS and BOLD-fMRI, since they measure cerebral blood flow (CBF), their mea-

surement of neural activities is indirect. The relationship between CBF and neural activities
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is called neurovascular coupling. A canonical description of the neurovascular coupling is

presented: when a region of the brain is engaged in a task, there is an associated increase

in the demand for metabolic activities, including increase in CBF needed to supply neu-

rons with oxygen and glucose (Heeger and Ress 2002). However, the oxygen consumption

is much less than the oxygen supply delivered by CBF, resulting in net increase in oxy-

genation. This is being exploited by BOLD-fMRI, which detects change in deoxygenated

hemoglobin. Later researches by (Logothetis 2002; Logothetis et al. 2001) demonstrated

that BOLD increase reflects synaptic activities and intracortical processing rather than ac-

tion potentials. Unlike fMRI, fNIRS has the advantage of being able to distinguish between

oxy- and deoxygenated hemoglobin changes.

In addition, both fNIRS and fMRI suffer from periodic systemic physiological signals

including cardiac pulsation and respiration which usually occur above 0.5 Hz and Mayer

waves, which has a characteristic frequency of around 0.1 Hz.

PET, short for positron emission tomography, is an optical imaging technique. The

patients are given radioactive substance (usually injected into the veins of the arms), called

radiotracer, which eventually builds up in areas with high metabolic or biochemical activity

and binds to test molecules. Upon binding, these radioactive substance emits gamma rays,

which mainly arise from positrons. These gamma rays are eventually recorded by PET.

PET is more commonly used in clinical settings, especially in the diagnosis of cancers and

diseases. Ingestion of radioactive substance poses a small health risk. Thus it’s considered

to be minimally invasive. Like MEG and fMRI, it is very expensive and immobile. Its

application in basic science remains restricted.

Lastly, for safety reason, cochlear implant (CI) users are not allowed to participate in

fMRI and MEG experiments.

A comparison of the spatial and temporal resolution among 5 different neuroimaging

technologies is shown in Figure 1·1
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Figure 1·1: Spatial-temporal resolution of 5 different neuroimaging
technologies. The axes are not drawn to scale.

Another factor to consider when comparing different neuroimaging technologies is the

preparation time. fMRI and MEG have relatively fast preparation time whereas EEG and

fNIRS have very slow preparation time because EEG and fNIRS require electrodes and

optodes positioning, respectively. PET has the slowest preparation due to the time it takes

for the radiotracer to reach to the targeted system and bind to test molecules. Finally,

regarding penetration depth, fMRI and PET has the best penetration depth, followed by

EEG. MEG and fNIRS are more sensitive to superficial layer of the cortex.

Since our priorities are cost and portability, we will test EEG and fNIRS separately for

proof-of-concept.

1.3 EEG

There are several existing algorithms that can localize the spatial attention (Geirnaert, Van-

decappelle, et al. 2021). Many of these studies employ electroencephalography (EEG).

One important class of EEG-based auditory attention decoding (AAD) algorithms is the

stimulus-reconstruction method (not to be confused with the reconstruction step of CSA),

which uses the envelopes of EEG signals to reconstruct the attended speech envelope.
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Briefly, the stimulus-reconstruction method calculated the correlation coefficients of the

reconstructed speech envelope with the speech envelopes of individual speakers and select

the one with the highest correlation coefficient as the attended speaker (Alickovic et al.

2019; Aroudi et al. 2019; Cheveigné et al. 2018; Mirkovic et al. 2015; Narayanan and A.

Bertrand 2020; J. A. O’Sullivan et al. 2015; Taillez, Kollmeier, and Meyer 2020; Wong et

al. 2018). Requiring access to the original speech envelopes presents an obvious problem

to designing a real-time brain-computer interface (BCI) for AAD. A different class of AAD

algorithms is based on EEG signals themselves and encompasses common spatial pattern

(Geirnaert, Francart, and A. Bertrand 2021) and convolutional neural network (Ciccarelli

et al. 2019; Su et al. 2022; Vandecappelle et al. 2021) and have demonstrated considerable

successes. Specifically, they have shown them to be capable of fast and accurate decoding.

However, all of these AAD algorithms only employ auditory stimuli. Successful inte-

gration of EEG-based AAD into everyday usage requires careful consideration for ocular-

related activities, which are inevitable. While there are several algorithms to deal with

ocular-related activities, they can only reduce and not completely eliminate them. In addi-

tion, both visual and auditory cues play an important role in CSA. Psychophysical, neuro-

physiological and neuroimaging studies all have previously showed that visual and auditory

modalities can influence each other. These studies suggest that a single auditory-visual ob-

ject can be formed by drawing and merging features from visual and auditory stimuli (Biz-

ley, Nodal, et al. 2007; Bizley, Maddox, and Lee 2016). Specifically, previous psychophys-

ical studies showed that auditory features can be used to enhance visual object formation,

which in turn, can enhance attention operating on visual object. This is known as cross-

modal influence (Busse et al. 2005; Serences et al. 2005; Shomstein 2006). Cross-modal

influence also entails visual features operating on auditory object and hence, attention on

auditory object (Desimone and Duncan 1995; Knudsen 2007; Maddox et al. 2015). Cross-

modal influences have been demonstrated via activation or modulation in primary visual
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cortex by auditory stimuli (Petro, Paton, and Muckli 2017), single-unit and local field po-

tential modulation in primary auditory cortex by visual stimuli (Bizley, Maddox, and Lee

2016; Kayser, Petkov, and Logothetis 2008) and functional magnetic resonance imaging

(fMRI) studies on humans (Calvert, Brammer, et al. 1999; Calvert, Hansen, et al. 2001;

Laurienti et al. 2002; Martuzzi et al. 2007). Thus, employing auditory-visual objects has

the potential to enhance the brain’s perception of the attended auditory-visual object and

consequently, improve discriminability of spatial location of attended said objects.

In addition, the high temporal resolution of EEG enables us to study neural activities in

the frequency domain. In particular, the six frequency bands (expressed in term of passband

edge frequency) commonly recognized by EEG studies are delta (1.5-3 Hz), theta (4-7 Hz),

alpha (8-12 Hz), low-beta (13-17 Hz), high-beta (18-30 Hz) and gamma-low (30-40 Hz).

In addition, we tested two additional frequency bands: gamma-medium (60-80 Hz) and

gamma-high (100-150 Hz). Summary of each frequency band’s roles will be discussed

below:

Delta and theta. Delta and theta frequency-bands are linked to features of temporal

structure of both auditory and visual stimuli during multimodal speech perception in var-

ious studies (Arnal and Giraud 2012; Lakatos et al. 2008; Park et al. 2015) For example,

Gross et al., 2013 used MEG to show that the quasi-rhythmic components of speech en-

trains the phase of low-frequency (delta and theta) and the amplitude of high-frequency

(gamma) oscillations in the auditory cortex (Gross et al. 2013). For a review, see (Biau and

Kotz 2018).

Alpha. Previous EEG and MEG studies suggest alpha frequency-band to be involved

in spatial attention in both auditory (Deng, Choi, and Shinn-Cunningham 2020; Frey et

al. 2014; Klatt et al. 2018; N. Müller and Weisz 2012; Strauab, Wostmann, and Obleser

2014; Tune, Wöstmann, and Obleser 2018; Weisz et al. 2014) and visual modalities (Kelly,

Lalor, et al. 2006; Thut 2006; Worden et al. 2000; Wöstmann et al. 2016). Anatomical
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and physiological study on macaque and source reconstruction from MEG signals on hu-

man brain both show alpha and beta bands to be involved in feedback signaling pathway of

both dorsal and ventral visual areas (Michalareas et al. 2016). This is further supported by

alpha desynchronization observed in primary and secondary visual cortices of non-human

primates (Buffalo et al. 2011; Kerkoerle et al. 2014; Xing et al. 2012), as well as stud-

ies on laminar projection patterns in non-human primate visual cortical areas (Barone et

al. 2000; Goldman-Rakic and Rakic 1991; Markov et al. 2014). In addition, when sub-

jects focus cued attention to a visual stimulus at the left or right spatial location, alpha

power exhibits lateralized spatial pattern, with stronger suppression over the hemisphere

contralateral to the attended location (Bengson, Mangun, and Mazaheri 2012; Capotosto

et al. 2009; Grent-’t-Jong et al. 2011; Kelly, Gomez-Ramirez, and Foxe 2009; Y. Liu et al.

2014; Rajagovindan and Ding 2011; T. Rihs, C. Michel, and Thut 2009; T. A. Rihs, C. M.

Michel, and Thut 2007; Sauseng, Klimesch, et al. 2005; Sauseng, Feldheim, et al. 2011;

Thut 2006; Worden et al. 2000). Similar lateralization for both alpha and beta powers was

also observed in auditory spatial top-down attention study (Thorpe, D’Zmura, and Srini-

vasan 2012). One study shows lateralization of alpha and beta powers of auditory spatial

attention to be dependent on the relative spatial distance between the target and masker

stimuli (Mock et al. 2015). However, several auditory spatial cueing studies show alpha

lateralization over posterior regions, a spatial distribution pattern that is remarkably similar

to those observed in visual attention studies (Ahveninen et al. 2013; Banerjee et al. 2011;

Kerlin, Shahin, and Miller 2010; Thorpe, D’Zmura, and Srinivasan 2012). One possible

explanation is that the absence of visual stimuli or the instruction to maintain fixed gaze

do not necessarily prevent the eyes and the visual system from engaging or responding

(Braga et al. 2016; Popov et al. 2022). Another proposed hypothesis is the existence of a

higher-order and potentially supramodal central control system that function in regulating

and delegating attention to sensory-specific system (auditory, visual, somatosensory, etc)
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(Farah et al. 1989; Spagna, Mackie, and Fan 2015).

Beta. While alpha and beta are implicated in several shared roles including spatial

attention, their spectral characteristics and modulation differ. In two ERP studies on visual

attention by (Cómez et al. 1998; Vázquez Marrufo et al. 2001), power spectral density

plots reveal a prominent peak in the alpha range and follow a sharp decay at frequency

above alpha. Furthermore, interaction between attention and location factors induced a

statistically significant decrease in alpha power and an increase in lower beta power during

attention. Like alpha, beta also exhibited lateralization pattern in auditory spatial and top-

down attention study by (Thorpe, D’Zmura, and Srinivasan 2012). Similar EEG and MEG

studies were conducted for the beta frequency-band and showed them to be involved in

top-down goal-driven but non-spatial attention in various tasks (Bressler and Richter 2015;

Donner and Siegel 2011; Gao et al. 2017; Hanslmayr et al. 2007; Saarinen et al. 2015;

Todorovic et al. 2015; Womelsdorf and Fries 2007). For a review on lower-beta, see (Biau

and Kotz 2018). Finally, there are conflicting studies that inquire the necessity of further

refinement of the beta frequency-band into high and low-beta. A big part of the variety

in the specific ranges within beta lies in the differences in the stimuli presented, the tasks

performed, the type of attention or perception studied, the measurement tools employed,

the signal processing steps applied, the behavioral conditions being compared, using phase-

locked vs non-phase-locked, etc. Another major factor is using the a priori definition of

the beta range before the start of the experiment instead of looking at the entire spectral

range. For studies specifically on visual spatial attention, (Vázquez Marrufo et al. 2001)

defined the beta range a priori to be 15-17 Hz in their EEG study whereas (Cómez et al.

1998) measured the observed beta modulation to be around 15-17 Hz. Variability in the

specific beta ranges extended to non-spatial attention studies. For example, in a “paired

stimulus” sensory gating experimental paradigm, which was designed to evoke bottom-

up stimulus-driven attention, the a priori beta range investigated is 12-20 Hz (Kisley and
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Cornwell 2006). However, in a MEG study on auditory temporal prediction conducted

by (Arnal, Doelling, and Poeppel 2015), they used time-frequency analysis to look at a

broad range of frequency and the ranges of alpha-beta and beta bands observed are 10-

14 Hz and 18-22 Hz, respectively. Similarly, two MEG studies by (Fujioka et al. 2012;

Fujioka et al. 2009) investigated a broad range of frequency using time-frequency analysis

and found modulation mainly in 20-22 Hz during presentation of auditory tone sequence.

(Yamagishi et al. 2003) also used time-frequency analysis tool and reported modulation to

be 13-21 Hz range in their MEG study. Studies with frequency above 22 Hz are rarely

reported and even so, are usually reported together with the low beta. For example, EEG

study that showed statistically significant differences between selective and non-selective

attention during CSA looked at the entire pre-defined beta range (12-30 Hz) (Gao et al.

2017). However, an EEG study (Giannitrapani 1971) specifically found increase in high-

beta activity (21-33 Hz) during presentation of unstructured stimuli (diffused visual pattern

in occipital area and white noise in prefrontal area). Similarly, increase in high-beta activity

(roughly 20-24 Hz) was observed in trials with faster reaction time compared with slower

reaction time during presentation of either auditory or visual stimuli (Kamiński et al. 2012).

With no perfect and fully scientific method to reconcile differences in reported frequency

ranges of the beta frequency band, we simply divided the beta frequency-band into low-

beta (13-17 Hz) and high-beta (18-30 Hz). Lastly, we hypothesized the low-beta frequency

band to be the most intact from both ocular-related activities and EMG.

Gamma-Low. Both EEG (Gruber 1999) and MEG (Bauer, Stenner, et al. 2014; Bauer,

Kluge, et al. 2012; Magazzini and K. D. Singh 2018; T. R. Marshall, O’Shea, et al. 2015;

T. R. Marshall, Bergmann, and Jensen 2015; Siegel et al. 2008) studies show gamma fre-

quency band to be involved in visual spatial attention, typically with increased power in

the occipital lobe contralateral to the attended visual hemifield. For auditory spatial atten-

tion, while EEG (Senkowski et al. 2005) and MEG (Tiitinen et al. 1993) studies show that
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gamma frequency band response is greater in attended versus unattended condition, later

EEG study show weak evidence of lateralization of the gamma frequency band (Thorpe,

D’Zmura, and Srinivasan 2012). However, multisensory studies on spatial attention sug-

gest that audio-visual stimuli will elicit greater response in gamma frequency band than

audio-alone or visual-alone stimuli (Sakowitz et al. 2001; Senkowski et al. 2005). Gamma

is also shown to play a role in other types of attention to or perception of auditory or vi-

sual stimulus. For example, MEG study reported transient (100 ms) evoked modulation in

neural activity at around 40 Hz in response to a train of auditory stimuli (Joliot, Ribary,

and Llinás 1994). Similarly, combined EEG and MEG study using visual stimulus on hu-

mans showed phase-locked 40 Hz magnetic response in the occipital lobe and non-phase

locked 40 Hz electrical response in several sites, with the maximum responses in the an-

terior (around Cz) and bilateral posterior (around T5 and T6) (Tallon-Baudry et al. 1997).

Several more ERP studies corresponding to the gamma frequency band show conflicting

results in the specific nature of modulation, with increase in gamma power in (Gurtubay

et al. 2001; Haig, De Pascalis, and Gordon 1999; Watanabe et al. 2002) and decrease in

gamma power in (O. Bertrand et al. 1998; Fell, Hinrichs, and Röschke 1997; L. Marshall,

Mölle, and Bartsch 1996). Several authors suggest that these attention are specifically

bottom-up stimulus-driven (Chalk et al. 2010; Fries 2015; Jia, Tanabe, and Kohn 2013;

Michalareas et al. 2016; Richter et al. 2017). A full review on gamma activities can be

found in (Kaiser and Lutzenberger 2003; Muthukumaraswamy 2013; Pulvermüller et al.

1997; Tallon-Baudry 1999). Regardless of the specific nature of modulation, gamma is an

excellent candidate for our decoding algorithm.

Gamma-Medium and High. EEG/MEG literature on oscillation frequency beyond 40

Hz related to auditory or visual attention is rather sparse. For example, when subjects are

tasked to attend to visual stimuli with specific features such as color, Muller and Keil ob-

served broadband response in 55-70 Hz range (M. M. Müller and Keil 2004). When studies
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with focus on attention are not available, studies on perception will be used instead. For

example, one auditory perception and short-term memory-based ERP study using Go/No-

Go task showed statistically significant task-effect in high frequency range (> 90 Hz) but

not in the 30-90 Hz range (Lenz et al. 2008). One example of human EEG study on visual

perception that attempted to control for EMG presented a single moving bar to the left vi-

sual hemifield and compared it with a control condition that consisted of two moving bars

moving in the opposite direction (Muller et al. 1996). They found stronger response in the

hemisphere contralateral to the side of visual stimulation and the response is rather broad-

band (40-100 Hz). Instead, VHF are more often studied with intracranial EEG (iEEG) or

electrocorticography (ECoG), both of which are invasive (Crone et al. 2001; Sinai et al.

2009; Towle et al. 2008). Unlike the low gamma frequency band, which tend to show

modulation specifically at 40 HZ, modulation at medium and high gamma frequency bands

tend to be broadband. For example, an ECoG study by (Ray et al. 2008) show that the

auditory cortical response to auditory stimuli was enhanced under selective attention in the

80-150 Hz range. While these (iEEG or ECoG) studies show correlations between very

high frequency oscillation and auditory-related tasks, these signals tend to be sharply at-

tenuated by the scalp and corrupted by noise in scalp EEG recordings (Crone et al. 2001;

Jerbi et al. 2009). To the best of our ability, we didn’t find any EEG study on auditory or

visual spatial attention that show modulation in >40 Hz range. For literature reviews on

gamma frequency band, see (Kaiser and Lutzenberger 2005) or Chapter 37 of (Schomer

and Niedermeyer 2011).

While the electric field generated by corneo-retinal dipole can propagate to EEG record-

ings, the propagation and distortion of ocular artifact (saccade and blinkings) on EEG is

mainly symmetrical. Hagemann and Naumann reported that the differential and asym-

metrical effects are largely confined to delta and theta frequency bands. Except for the

frontopolar sites, differential EEG signals in alpha frequency band are negligible and even
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when detected, are likely to be of neural origin. Differential EEG signals in beta frequency

band and above are virtually absent. Other studies (Gasser, Sroka, and Möcks 1985; Whit-

ton, Lue, and Moldofsky 1978) are in good agreement on the neural origin of alpha and

beta differential signals during eye movements. Furthermore, saccade can generate cortical

response in the visual cortex, known as visual lambda response (Yagi 1981). In addition,

signals from saccade and blinking are transient in nature.

After eye movement, fixed gaze at off-center points induced mainly DC offset primarily

in frontopolar sites as shown by (Ai et al. 2016). In contrast, the DC offset is practically

invisible in electrodes located medially, including Fz and Cz channels. Since eye gaze at

off-center points mainly induced DC offset, the asymmetrical effect is practically invisible

in frequency domain.

Electromyographic (EMG) activities have prominent peak between 50 and 150 Hz but

overall have spectral activities in 20-200 Hz range (Pulvermüller et al. 1997).
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Chapter 2

Decoding Attended Spatial Location during
Complex Scene Analysis with fNIRS.

2.1 Introduction.

Due to the slow temporal dynamic of hemodynamic activities, fNIRS signals have signif-

icantly lower temporal resolution than EEG. Thus investigating fNIRS signals from fre-

quency domain is likely limited. However, due to limited light scattering distance, fNIRS

has better spatial resolution than EEG and thus enables better localization of the brain re-

gions.

fMRI has provided insights into brain regions involved in auditory-spatial short-term

memory (Michalka, Kong, et al. 2015). Specifically, auditory short-term memory tasks

elicited bilateral hemodynamic responses in the transverse gyrus intersecting precentral

sulcus (Michalka, Kong, et al. 2015; Michalka, Rosen, et al. 2016). fMRI also showed

that with demanding auditory spatial short-term memory tasks visuospatial regions, e.g.,

intraparietal sulcus 2-4 and superior parietal lobule 1, can also be activated. In addition,

non-visuospatial regions near these regions, e.g., anterior intraparietal sulcus (antIPS), lat-

eral intraparietal sulcus (latIPS), and medial superior parietal areas, were also activated by

the same tasks (Michalka, Kong, et al. 2015; Michalka, Rosen, et al. 2016). In separate

studies, fMRI also showed STG/PT to be activated in sound-localization tasks (Deouell et

al. 2007; Zwaag et al. 2011). In addition, dorsal frontoparietal region, including frontal eye

field in the frontal cortex and posterior parietal cortex and intraparietal sulcus, are shown
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to be activated by both audio-spatial and visuospatial tasks in fMRI studies (Shomstein

2006; Smith et al. 2010; C.-T. Wu et al. 2007) and simultaneous magnetoencephalography

(MEG)/EEG study (Larson and Lee 2013). Although fMRI has revealed a wealth of infor-

mation regarding brain regions activated during a wide variety of tasks, one limitation of

fMRI is that it not portable, making it difficult to apply in BCIs and assistive devices.

An alternative technology that is both portable and has good spatial resolution is fNIRS,

making it well suited for applications in BCIs and assistive devices, as well as revealing

specific brain regions activated during tasks. Previously, fNIRS has been applied to classify

different sound categories (Hong and Santosa 2016), to identify spatial locations of noise

stimuli (Tian et al. 2021), characterize hemodynamic responses to varying auditory stimuli

(Luke et al. 2021; Pollonini et al. 2014; Steinmetzger et al. 2020) and investigate infor-

mational masking (Zhang, Alamatsaz, and Ihlefeld 2021; Zhang, Mary Ying, and Ihlefeld

2018). However, to the best of our knowledge at the time of the writing, to date fNIRS has

not been applied to decode auditory-visual spatial attention during CSA. Here we investi-

gate the capability of fNIRS in such a decoding task. We find that fNIRS provides a robust

(≥ 70% cross-validated accuracy for 2-class classification) platform for decoding attended

spatial location. Surprisingly, improvement in decoding performance is faster than antici-

pated given the time-scales of the underlying fNIRS signals. Finally, we also find that FEF

is a critical brain region for decoding attended spatial location during CSA.

2.2 Materials and Methods.

This study employs continuous wave fNIRS (CW6, Techen System) using 690nm and

830nm wavelengths, with 50 Hz sampling rate. We used a size 56cm Landmark Cap (Easy-

Cap, Herrsching, Germany) for all subjects. By fitting the cap on a head model marked with

EEG 10-20 reference points, we positioned and secured rubber grommets with panel holes

to the cap to hold both source and detector optodes. Multiple channels are supported with
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frequency multiplexing. The fNIRS recording software is synched to the stimulus presen-

tation with Neurospec MMB70-817 triggerbox (Neurospec AG, Switzerland).

Dataset. The videos used in the experiment are from AVSpeech, a publicly available

dataset (https://looking-to-listen.github.io/avspeech/index.html). For target

stimuli, each subject was shown 6 different speakers, each speaker having 5 different clips,

all showing the speakers’ faces clearly. Each clip was shown at all spatial locations at equal

frequencies. For masker stimuli, each subject was shown 12 different speakers which are

separated from the pool of speakers designated for target stimuli. These 12 speakers also

have 5 different clips. For both pools of targets and maskers, all are English speakers. Each

subject was presented with different pools of speakers and maskers. For each video clip, the

audio clip was extracted and passed through three different head-related transfer functions

(HRTF) to create auditory virtualization, one for each location (center, 45° to the left, and

45° to the right). The HRTF filters are based on measurements using the KEMAR head

model (https://sound.media.mit.edu/resources/KEMAR.html). For each location,

the HRTF-filtered audio clip replaced the original audio waveform in the video clip. Thus,

there is a total of 90 trials, 30 for each location. Stimuli delivery software was written with

Psychtoolbox-3 library.

Participants. 12 adults with normal hearing (age 19-48) were recruited for this study

in accordance with the Institutional Review Board of Boston University. A COVID-19

protocol was developed and strictly adhered to. Participants were screened to exclude those

with neurological disorders. Participants were briefed and consented before partaking in

this study and were compensated for their time.

Experiment. A computer with three monitors was used for the experiment. The mon-

itors were located at the three locations: center, 45° to the left, and 45° to the right (Fig.

2·1). They all are equidistant from the center where the subject is sitting upright. The

auditory stimuli were delivered via earphone (ER-1 Etymotic Research Inc.) with eartips

https://looking-to-listen.github.io/avspeech/index.html
https://sound.media.mit.edu/resources/KEMAR.html
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(E-A-RLink 3A Insert Eartips). This study adopted event-related design. For each trial, a

2 seconds long audio-visual cue was delivered in the form of a white cross against a black

background and a 2 kHz pure tone linearly ramped in the first 0.5 s. This audio-visual

cue appeared randomly at one of the 3 spatial locations, indicating the location of the target

speaker. The cue was followed by 3 videos, one for each location, one of which is the target

speaker and the 2 remaining are the maskers. It’s followed by two multiple-choice ques-

tions, each question containing 5 possible choices. These multiple-choice questions are

always displayed at the center location. The two questions are related to face identification

and words identification, presented in that order. In the face identification task, the subjects

are presented five different faces and is tasked with correctly identifying the face of the tar-

get speaker shown in the video. In the word identification task, the subjects are presented

five different transcripts and is tasked with correctly identifying the words spoken by the

target speaker in the video. Upon the completion of two questions, a blank black screen of

jittered duration with uniform distribution between 14 and 16 seconds appeared. This is to

increase the statistical power of general linear model (GLM) fitting by preventing fNIRS

signals from synching with the timing of the trial. Thereafter, an instruction to press the

space bar to begin the next trial is displayed at the center location. While the audio-visual

cue and the video clip last 2 and 3 seconds respectively, the subjects have 20 seconds in

total to answer both multiple-choice questions but can move on to the space bar instruction

immediately after the questions are done. Lastly, the subjects are provided with chin rest

in order to discourage head movements.

fNIRS probe design. The probe was designed in AtlasViewer (https://github.

com/BUNPC/AtlasViewer), an open-sourced MATLAB software and is shown in Fig-

ure 2·2. The probe contains 12 sources and 17 regular-separation detectors and 6 short-

separation detectors, for a total of 30 regular channels (30 mm) and 6 short-separation (SS)

channels (8 mm). The probe covers the following regions: intraparietal sulcus (IPS) 2, 3

https://github.com/BUNPC/AtlasViewer
https://github.com/BUNPC/AtlasViewer
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Figure 2·1: Schematic diagram of the experiment and trial. (a)
Schematic diagram of experimental setup. Subject is seated in front of 3
spatially separated monitors, one at -45°to the left, one at 45°to the right,
and one at 0°at the center. Audio is delivered via earphone. (b) Timeline of
trial. The time at the right indicates the length of different parts of trial. A
cue in the form of a white cross accompanied by a pure ramping tone of 2
kHz randomly appears at one of the three locations to indicate the location
of the target stimuli at the start of the trial. Next, 3 video clips are displayed
simultaneously for 3 seconds. Next, two multiple-choice questions are dis-
played at the center monitor, to be answered with keyboard. 1st question
is to identify the face of the speaker, 2nd question is to identify the words
spoken by the target speaker. Subject has up to 25 seconds to answer both
questions. Upon the completion of the questions, it’s immediately followed
by a blank screen of jittered duration between 14-16 seconds. Next, instruc-
tion to press the space bar is displayed at the center monitor to begin the
next trial. Pink box in 3 ≤ t ≤ 4 is the decision window used in Figure 2·5,
2·6, 2·8
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and 4, superior precentral sulcus (sPCS), inferior precentral sulcus (iPCS), dorsolateral pre-

frontal cortex (dlPFC), frontal eye field (FEF), posterior superior temporal gyrus/planum

temporale (STG/PT), anterior intraparietal sulcus (antIPS), superior parietal lobule (SPL1)

including medial superior parietal lobule (mSPL), and transverse gyrus intersecting pre-

central sulcus (tgPSC). The probe was designed with multiple channels to cover variation

in reported MNI coordinates of FEF.

SNR. We excluded subjects that had at least 20 channels pruned using a cutoff of SNR

= 1.5, where SNR is estimated as the mean divided by the standard deviation of the fNIRS

signal.

Grouping by Task Performance. We divided subjects into 2 groups, the high-

performing group consisted of subjects that scored at least 80% correct on trials, and the

low-performing group consisted of subjects that scored less than 80%. A trial is counted

as correct if the participant correctly identified both the faces of speakers and the words

spoken by the targeted speakers.

fNIRS processing. For Fig. 2·3-2·9, raw light intensities were converted to optical

densities using the mean of the signal as the arbitrary reference point. Next, motion artifacts

in optical density (OD) were identified and corrected with targeted PCA before applying

criteria for automatic rejection of stimulus trials (Yücel et al. 2014). Next, OD signals were

band-pass filtered between 0.01 Hz and 0.5 Hz with a 3rd order zero-phase Butterworth

filter. Next, the filtered OD were converted to chromophore concentration changes. The

differential path length factor is held fixed at 1 and the concentration unit is Molar*mm

(Scholkmann and Wolf 2013). Finally, systemic physiological signal clutter was regressed

out using a GLM with short-separation channels modeling the signal clutter. Each regular

channel was assigned a SS channel with the highest correlation Gagnon et al. 2011. All

were done using the Homer3 open source fNIRS analysis package and custom MATLAB

scripts.
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Figure 2·2: Probe Design. (a) 2D layout of probe design. The probe is
subdivided into 5 regions: left frontal eye field (L FEF), right frontal eye
field (R FEF), left posterior superior temporal gyrus (L STG), right posterior
superior temporal gyrus (R STG), left intraparietal sulcus (L IPS) and right
intraparietal sulcus (R IPS). Top side of the probe corresponds to the anterior
side of the head, bottom is posterior. Red numbers represent source optoces,
blue numbers represent detector optodes (b) 3D layout of probe design. Red
circles represent source optodes, blue circles represent detector optodes, and
turquoise lines represent channels.
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For Fig. (Fig. 2·10), in order to accurately assess the latency of the classification

accuracy, the OD signals were band-pass filtered between 0.01 Hz and 10 Hz with a 3rd

order zero-phase Butterworth filter.

GLM. For hemodynamic response function (HRF) modeling, we fitted the GLM model

to each subject. The GLM fitting here uses two classes of regressors: HRF for each condi-

tion and the systemic signal clutter. The temporal basis functions used to model the HRF

is a sequence of 16 Gaussian functions (bConditioni
1 , . . . ,bConditioni

H ,H = 16), spaced 1 second

apart (∆t=1s) and each with a width of 1 sec as we typically use (Gagnon et al. 2011) (σ =

1s). This flexible model offers better fitting of the HRF shape at the expense of more pa-

rameter estimations than the typical canonical hemodynamic response function (Lindquist

et al. 2009). Short-separation (SS) fNIRS signals are used as physiological regressors. The

usual assumptions of the GLM are held. For each short-separation channel ySSi , the GLM

formulation in matrix format is as followed:

Y = Aβ+E (2.1)

where Y ∈ RT×NSSi represents fNIRS recordings from all T time points and NSSi channels

using ySSi channel, β ∈ RM×NSSi is the coefficient matrix with M regressors and NSSi chan-

nels, E ∈ RT×NSSi represents the residual/noise term and A ∈ RT×M is the design matrix

and is defined as followed:

A =
[
bCondition 1 bCondition 2 ySSi

]
(2.2)

where bCondition 1 ∈ RT×H ,Condition i ∈ {1,2} is a submatrix composed of the following

column time vectors:

bCondition i =
[
bCondition i

1 . . . bCondition i
H

]
(2.3)



23

and each column vector bCondition i
1 ∈ RT×1,h ∈ {1, . . . ,H} is defined as followed:

bCondition i =
K

∑
k=1

b(t −δ
Condition i
k −∆t ·h,σ) (2.4)

where K is the total number of trials in Condition i and δCondition i
k represents the timing of

the onset of kth stimulus. The Gaussian function b(µ,σ) is defined as followed:

b(µ,σ) = exp
(−(x−µ)2

2σ2

)
, (2.5)

where both µ and σ are in seconds. Letting A⊤ be the transpose of A. The β coefficients in

the GLM equation are solved using ordinary least squares (OLS) method Ye et al. 2009:

β̂ = (A⊤A)−1A⊤Y (2.6)

For the group-level HRFs, we average HRFs of all subjects for each channel and spatial

location.

For the classification, fitting the GLM regression model to the entire data first before

cross-validating the trials would result in information leakage (Lühmann et al. 2020). In

order to avoid leakage, we cross-validated both the GLM regression and classification steps.

In each fold of the cross-validation, we fit the GLM model to the training dataset and

estimated the coefficients using the OLS method. Then the SS coefficients β̂SS estimated

from the training set are used for the test set where the individual trials are the difference

between the measured fNIRS signals and the systemic physiological regressor weighted by

the SS coefficients.

ŷtest
n (t) = ytest

n (t)− β̂SS · ytest
SSi

(t) (2.7)

Statistical Tests for GLM. For subject-level statistical test, to determine whether the

hemodynamic activation significantly differed from 0, a one-tailed t-test was used on the

estimated β-weights for the Gaussian temporal functions. We restricted ourselves to the
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β-weights with peaks between 1 and 8 seconds from the stimulus onset. The t-statistic

was computed using the ratio of the sum of β-weight estimators to the square root of the

variance of the sum of β-weights estimators. To determine whether the activations between

two different conditions (e.g., left vs right) differed, the t-statistic was computed using the

following contrast vector:

t
β̂
=

c⊤β̂√
Var(εn)c⊤(A†A†⊤)c

(2.8)

where εn is the error term for the nth channel, c ∈ RM×1 is a contrast vector for two

different conditions, A† ∈ RM×T is the Moore-Penrose inverse of the design matrix, β̂n ∈

RM×1 are the estimated β weights for channel n. The Moore-Penrose inverse of the design

matrix A assuming full column rank is:

A† =
(
A⊤A

)−1A⊤ (2.9)

Let Var(β̂Condition i,n) ∈RH×H be the submatrix of Var(εn)A†A†⊤ belonging to Condition i

and channel n. Then Var(β̂Condition i,n) represents the covariance matrix for the HRF re-

gressors for Condition i and channel n.

The 95% confidence intervals of the HRF for each condition and channel were com-

puted as:

ˆHRFCondition i,n ± t97.5%,T−(M+1)

√
diag

(
ϕVar(β̂Condition i,n)ϕ⊤

)
, (2.10)

where we explicitly modeled independence between regressors by using only the diag-

onal elements of the matrix. ϕ ∈ RTHRF×H is the matrix of the standard Gaussian temporal

basis functions with THRF as the time vector for the HRF. Then ϕ is constructed as followed:

ϕ =
[
b(∆t ·1,1) . . . b(∆t ·H,1)

]
(2.11)



25

tα,ν is the t-value of a student’s t-distribution parameterized by the critical value α and

the degree of freedom ν.

For group-level statistical test, one-sample two-tailed t-test is used to determine whether

the activation differed from 0 and two-sample two-tailed t-test is used to determine whether

the activations between two conditions differed. Instead of using β-weights estimators, we

defined the average of the HRF values over the range [1,8] seconds as a single observa-

tion for each subject, channel and condition. Then a t-test is performed over a sample

of averaged HRF values for each channel. Independence between β-weight estimators is

assumed.

To account for the large variation in the shapes of the HRFs, we provide an alternative

group-level statistical test. We call this the aggregation method and will be described as

followed. For each channel and condition, we count the percentage of subjects that are sta-

tistically significant at significance level α = 0.05, where equation (8) is used for statistical

tests.

fNIRS classification. In this study, to test the cross-validation (CV) accuracy of the

classifier trained with the entire probe, we tested 2-class classification between left (-45°)

and right (45°) spatial locations as well as 3-class classification between all 3 spatial loca-

tions. This classification will be termed all-channel classification. The features used are

the area under curve of one-second-long segment of fNIRS signals. The classifier used is

linear discriminant analysis with linear shrinkage of covariance matrix (Ledoit and Wolf

2004). 5 other classifiers were also tested and their CV accuracies are reported in (Fig.

2·7). These are linear discriminant with non-linear estimator of covariance matrix using

nuclear norm penalty (Chi and Lange 2014), K-Nearest Neighbors (Fix and Hodges 1989)

with the distance metric defined as 1 minus cosine similarity and 10 nearest neighbors, sup-

port vector machine (Boser, Guyon, and V. N. Vapnik 1992; Cortes and V. Vapnik 1995;

V. N. Vapnik 1997) using cubic polynomial kernel, regularized with ridge penalty, random
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forest ensemble using 200 unpruned decision trees as weak learners, sampling
√

N out of

N channels for predictors and nonparametric bootstrapping (Tin Kam Ho 1995), and gentle

adaptive boosting using 200 unpruned decision trees as weak learners (Friedman, Hastie,

and Tibshirani 2000). First, we tested [∆HbO], [∆HbR] and [∆HbT] on all subjects and

reported the grand average of CV accuracies. Next, we focused on [∆HbT] and divided the

subjects into two groups based on their task performance and reported their CV accuracies.

The CV accuracies are reported for the interval 3-4 s after the cue onset in (Fig. 2·5). We

also plotted the correlations between subjects’ task performance and individual subjects’

CV accuracies using [∆HbT] over interval 3-4 s after the cue onset (Fig. 2·6).

To assess the tradeoff between the number of channels, latency, and cross-validation

accuracies, we plotted the CV accuracies of classifiers trained with different regions of

the probe as a function of window length in Fig 2·10. All intervals tested started at cue

onset. To account for the variation in reported MNI locations of different ROIs, as well

as the variation in head and brain sizes and ROIs’ actual locations, neighboring channels

are aggregated to form 5 different subsets. For example, a subset named left FEF (L FEF)

has 10 channels and covers FEF and the following nearby ROIs: iPCS, dlPFC, tgPCS, and

sPCS in the left hemisphere. Similarly, right FEF (R FEF) has 10 channels and covers

FEF and nearby ROIs in the right hemisphere, left STG subset has 1 channel and covers

left STG region, right STG subset has one channel and covers right STG region, left IPS

subset has 4 channels and covers IPS2-4, mSPL, antIPS and SPL1 in the left hemisphere

and similarly for right IPS (Fig. 2·2).

To quantify the contribution of each channel, we excluded it from the all-channel clas-

sification and then used it to train a classifier and retrieve its CV accuracy. This will be

called leave-one-feature-out (LOFO) classification. Specifically, we took the difference in

CV accuracies between all-channel classification and LOFO classification and defined it

as the LOFO impact (Dingcheng Feng, Feng Chen, and Wenli Xu 2013). Finally, we ran



27

single-channel classification where a single channel is used to train a classifier (Fig. 2·8).

This is done for all channels. We used 10 repetitions of 5-fold cross validation in all cases

except for linear discriminant with nonlinear estimator of covariance matrix, which used

10 repetitions of 5-fold nested cross validation. In all cases, 1-0 loss function was used.

For the confidence interval of the means of cross-validation accuracy, we used a confidence

level of 95% using student’s t-distribution.

Statistical Tests for Classification. To test for statistical significance between 3 dif-

ferent chromophores, we used one-way ANOVA test. If the overall F test passed the given

significance of 0.05, we followed up with post-hoc two-tailed two-sampled t-tests and used

Bonferroni-corrected p-values. To test for statistical significance in decoding performance

between high and low-performance group, we used two-tailed two-sampled t-tests.

2.3 Results

Behavioral Results. All 12 subjects performed significantly above chance level in the task

(mean ± standard deviation: 84.3±14.1%). Of these 7 subjects, who had performance lev-

els of 80% or above were categorized as high-performing, and 5 subjects with performance

levels less than 80% were categorized as low performing.

HRFs. We plot the HRFs for various conditions, spatial locations and chromophores

in the figures below. One example channel that shows different HRF patterns for left and

right spatial locations is located in the FEF region in the right hemisphere and is shown

in the right column of Figure 2·3. In addition, this channel has the highest correlation

coefficient between task performance and single-channel CV accuracies. Its contralateral

channel (in the left hemisphere) is also shown in the left column of Figure 2·3. In addition,

we observed mostly a positive hemodynamic response in the right hemisphere and mostly a

negative hemodynamic response in the left hemisphere in ∆[HbO] and ∆[HbT]. The differ-

ent magnitudes of the responses to spatial location suggests that it’s possible to decode the
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spatial location using features of the HRF. In addition, we tested for statistical significance

and only found that the ∆[HbO] activation in the right FEF in response to the left spatial

location was statistically significant at α = 0.05 (t(11) = 2.73, p = 0.0196).

To investigate if there were any differences between the high-performance and low-

performance groups, we examined the group-averaged HRFs. Figure 2·4 shows exam-

ple group averaged HRFs from the FEF region. The most striking pattern was that the

response variabilities (as shown with 95% confidence intervals) in the HRFs are sub-

stantially wider in the low-performance group compared to the high-performance group.

Moreover, the positive hemodynamic response in the right hemisphere and negative hemo-

dynamic response in the left hemisphere was more pronounced in the high-performance

group. Statistical tests showed that only ∆[HbT] activation on the left FEF in response

to the left spatial location in the high-performance group is statistically significant at

α = 0.05,(t(6) =−2.64, p = 0.039).

Due to large subject variability and the small sample size, Table 2.1 provides the aggre-

gation method where we calculated the percentage of subjects that achieved subject-level

statistical significance using α = 0.05. In all but one of the cases, subjects from the high-

performance group are more likely to achieve statistical significance than subjects from the

low-performing group.

High-Performance Group (n=7)
∆HbT Left Right Center ∆HbT L vs R L vs C R vs C
L FEF 85.71 85.71 71.43 L FEF 85.71 71.43 57.14
R FEF 100.00 71.43 85.71 R FEF 71.43 85.71 100.00

Low-Performance Group (n=5)
∆HbT Left Right Center ∆HbT L vs R L vs C R vs C
L FEF 60.00 40.00 40.00 L FEF 40.00 60.00 40.00
R FEF 80.00 40.00 60.00 R FEF 80.00 20.00 60.00

Table 2.1: Aggregation Method. Percentage of subjects with statistical
significance for both activation (using one-sample one-tailed t-test) and dif-
ference in activation between two spatial locations (using two-sample one-
tailed t-test). High-performance group is more likely to yield statistical sig-
nificance in all except one case. All use significance of 0.05.
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Figure 2·3: Hemodynamic Response Functions (HRFs) of FEF. Top
panel represents ∆[HbO], middle panel represents ∆[HbR] and bottom panel
represents ∆[HbT]. Left column represents channel covering FEF in the left
hemisphere. Similar for right column. Blue line represents GLM-fitted HRF
responses to left stimuli, red line for right stimuli, and yellow line for center
stimuli. Shaded regions represent 95% confidence interval. Bold line indi-
cates statistical significance in activation using one-sample two-tailed t-test.
∗ indicates statistical significance in difference between left and center con-
dition using two-sample two-tailed t-test, + for left vs right condition, and
x for right vs center condition. In this case, there is no statistical difference
between any pairs of spatial locations. The horizontal black line is the axis
at 0 M ·mm. Right FEF channel showed the highest correlation coefficient
(R = 0.38, n = 9) between task performance and single-channel CV accura-
cies
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Figure 2·4: HRFs of FEF by task performance. Same as Figure 3 but for
group average of a high and a low-performing groups. Range in M*mm of
y-axis is [-1.2e-4 1.2e-4] for the 3 left columns but [-1.8e-4 1.8e-4] for the
rightmost column.
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Classification/Decoding Performance. Next, we plotted the decoding performance

using all-channel cross validation (CV) accuracies. Figure 2·5a and c show the averages of

2-class and 3-class CV accuracies, respectively, for the interval t=3-4s after the cue onset

when using all channels in the classification. In both cases, CV accuracies are significantly

above chance level and are highest when using ∆[HbT] and lowest when using ∆[HbR].

Next, we focused on ∆[HbT] and divided the subjects into high-performance and low-

performance groups. We found that decoding performance was significantly higher in high

performance subjects compared to low performance subjects (Fig. 2·5b and d). To further

quantify the relationship between CV accuracies and task performance, we plotted these

quantities in Fig. 2·6a-b and performed linear regression when classifying using ∆[HbT]

between 3 and 4 seconds. The significant correlation between the CV accuracies and task

performance indicates that the decoding performance is dependent on the subject’s task

performance.

We next focused on CV accuracy in the high-performance group using ∆[HbT] sig-

nals. To assess the contribution of specific brain regions towards decoding performance we

quantified single channel classification performance. Figure 2·8 shows the single-channel

2-class classification using a 2D channel layout (a) and interpolated over the brain surface

(b) for the interval 3-4s after the cue onset. On average, decoding performance was higher

in the right hemisphere but the difference was not significant at the 0.05 level (Fig. 2·8a in-

set). In addition, the top 2 performing channels are located in the right FEF region. The CV

accuracy from single-channel classification (Fig. 2·8) was lower compared to all-channel

classification (Fig. 2·5b).

In order to examine the contribution of each subset of channels to the CV accuracy as

well as the tradeoff between the number of channels and window length, we plotted 2-class

CV accuracies for left and right FEF and IPS regions (Fig. 2·10). All-channel classification

is shown for comparison. All intervals start at the cue onset. For the all-channel classifica-
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Figure 2·5: ∆[HbT] has the highest CV accuracies, CV accuracies are
highly dependent on task performance. (a) 2-class grand-average CV re-
sults for all 12 subjects at t = 3-4s. Error bar represents 95% confidence in-
terval. x represents F-test using one-way ANOVA with significance of 0.05.
x represents significance level of p < 0.05. (F2,33 = 1.86, p = 0.17). (b) Fo-
cusing on ∆[HbT], 2-class CV accuracies shown for high-performance and
low-performance groups. Two-sample two-tailed t-test: t(10) = 2.79, p =
0.019. Similar plots are shown for 3-class classification in (c) and (d). (c)
One-way ANOVA F-test, F2,33 = 3.87, p = 0.031. (d) Two-sample two-
tailed t-test: t(10) = 2.69, p = 0.023.

Figure 2·6: Strong correlation between CV accuracies and task per-
formance. (a) Linear regression between behavioral score and 2-class CV
accuracy for ∆[HbT] using interval 3-4s. (Slope coefficient: t(10) = 2.63,
p=0.025, adjusted r2=0.35) (b) Linear regression between behavioral score
and 3-class CV accuracy for ∆[HbT] using interval 3-4s. (Slope coefficient:
t(10) = 4.84, p=0.018, adjusted r2=0.39). In all cases, n = 12. Dashed lines
represent 95% confidence intervals.
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Figure 2·7: Decoding performances for other classifiers. (a) 2-Class CV
accuracies for ∆[HbO] on the left panel, ∆[HbR] on the middle panel, and
∆[HbT] on the right panel. Error bars representing 95% confidence interval
are omitted for clarity. (b) Same as (a) but for 3-class CV accuracies. It’s
very noteworthy that linear discriminant analysis with linear shrinkage has
the highest classification accuracy for most of the trial segment for ∆[HbT].
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tion, the cross-validation accuracy is already significantly above chance level using 1 sec

window length (t(6) = 2.94, p = 0.026). In addition, the lateralization of decoding perfor-

mance to the right hemisphere is evident in both FEF and IPS regions. However, FEF has

substantially higher decoding performance than IPS. Even when combining left and right

IPS regions for a total of 8 channels to account for FEF’s higher dimension, it remains at

chance level (not shown). Seeing that the R FEF region is the primary driver of decoding

performance, in order to identify specific key channels within the R FEF region, we per-

formed LOFO-classification for all channels (Fig. 2·9). All top 3 channels within the R

FEF region are located closer to the medial axis (Inset of Fig. 2·10). Specifically, these

channels cover FEF and superior precentral sulcus. While FEF and IPS both are part of the

dorsal frontoparietal network known to play an important role in visuospatial attention, our

study shows that FEF has substantially better fNIRS decoding performance than IPS.

2.4 Discussions.

In fNIRS study, we demonstrated the capability of fNIRS to decode attended spatial loca-

tion in CSA. During quantitative assessment of the classifier, we made several discoveries.

First, we found that ∆[HbT] provides substantially higher CV accuracy than ∆[HbO] and

∆[HbR], consistent with a previous report (Xu et al. 2013). Second, the CV accuracy of a

classifier was significantly correlated with behavioral performance. It is well known that at-

tention can modulate cortical response properties, e.g., in fMRI studies on auditory primary

and secondary cortices (Jäncke, Mirzazade, and Joni Shah 1999; Petkov et al. 2004). The

difference in CV accuracy between high and low performance groups supports the idea that

attention improves decoding performance. Third, we identified right FEF region as making

the largest contribution to overall decoding performance. Interestingly, FEF had substan-

tially higher decoding performance compared to IPS even though both are part of dorsal

frontoparietal network, which has been implicated in previous studies of spatial attention
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Figure 2·8: Single-Channel CV Accuracies. (a) 2-D probe layout where
each line represents a channel with the corresponding colormap indicating
their CV accuracies. Red numbers represent source optodes and blue num-
bers represent detector optodes. Inset: single chancel classification grouped
by hemisphere, reported as mean and standard deviation. Left: 0.51±0.047.
Right: 0.56±0.050. ns is not significant. Two-tailed two-sample t-test for
lateralization: t(28) = -1.81, p=0.081. (b) Colormap of the single-channel
CV accuracies plotted on the surface of the brain with interpolation. Mean
and median of 95% CI across all channels are 0.168 and 0.135 respectively.
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Figure 2·9: FEF has biggest impact as determined by leave-one-feature-
out classification. Bar chart showing the averaged percentage difference in
CV accuracies between all-channel classification and leave-one-channel-out
classification.

(Shomstein 2006; Smith et al. 2010; C.-T. Wu et al. 2007). Finally, we found that CV accu-

racy improved faster than expected, reaching significantly (at α = 0.05) above chance level

at 1s, well before of the peak of the HRFs. This suggests that the onset of the HRFs, not

just the peaks which occur much later, can contain useful information for classification. A

contributing factor in the increased classification performance in high performing subjects

is the lower variability of the underlying HRFs in high performing subjects (Figure 2·4).

Signal detection theory predicts that higher detection and discrimination performance can

result from an increase in the mean difference and/or a decrease in the variability of the

two distributions (Green and Swets 2000). A previous study found reduced variability of

neural responses in auditory cortex associated with improved neural detection during audi-

tory task performance (Trapp et al. 2016). Such an effect is a potential neural mechanism

underlying the HRFs in our experiments.

One advantage of fNIRS over EEG is better spatial resolution, which revealed FEF
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Figure 2·10: Time course of improvement in CV accuracy. Average
classification accuracies of high-performing group as a function of time.
All windows start at 0s (cue onset). Decision window lengths tested here
are 0.1s, 0.2s, 0.5s, 1s, 1.5s, 2s, 3s, 4s, and 5s. LFEF = left frontal eye field.
RFEF = right frontal eye field. LIPS = left intraparietal sulcus. RIPS =
right intraparietal sulcus. The numbers next to subregion in legend represent
the number of channels. Pink line indicates statistical significance for p
= 0.05 using two-tailed t-test and the given standard deviation from our
cross validation accuracies across subjects at window length 1s. Error bars
represent 95% confidence intervals. Error bars for other lines are similar in
magnitude and are not shown for visual clarity. (Inset) Top 3 channels from
R FEF based on LOFO impact are shown as navy lines.
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to be a critical region for decoding the attended location in CSA. Moreover, relative to

EEG, fNIRS is less influenced by eye movement and blinking, enabling the use of visual

stimuli for decoding brain signals without significant contributions from eye movements.

In the future, it would be interesting to use an integrated fNIRS-EEG system to leverage

the high spatial resolution of fNIRS and the high temporal resolution of EEG to develop a

robust and rapid decoding algorithm. It also would be interesting to see whether fNIRS can

be applied in assistive devices to help those struggling with CSA, e.g., populations with

ADHD, autism and hearing impairment.
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Chapter 3

Fast EEG-based Decoding of Attended
Audio-Visual Spatial Location.

3.1 Introduction

In this chapter, we investigate the use of EEG to decode spatial attention of an attended

audio-visual stimulus. While there are several successful EEG-based algorithms, this study

addresses two key deficits. First, to date, most focused exclusively on the auditory modality.

In complex natural scene, a more ecologically typical scenario, e.g., a cocktail party, vision

also plays a critical role in directing attention to audio-visual objects, e.g., a target speaker.

Thus, careful considerations must be taken in with respect to both audio-visual stimuli and

ocular-related activities. In particular, one key observation about ocular-related activities

and especially saccade is that the lateral differential effect of saccade is largely confined

to delta and theta frequency bands (Gasser, Sroka, and Möcks 1985; Hagemann and Nau-

mann 2001; Whitton, Lue, and Moldofsky 1978). Second, several decoding strategies have

been based on reconstructing the attended auditory stimuli based on stimulus reconstruc-

tion strategies (Alickovic et al. 2019; Aroudi et al. 2019; Cheveigné et al. 2018; Mirkovic et

al. 2015; Narayanan and A. Bertrand 2020; J. A. O’Sullivan et al. 2015; Taillez, Kollmeier,

and Meyer 2020; Wong et al. 2018). Requiring access to the original stimulus presents an

obvious problem. While some algorithms attempted to solve this with speech segregation

algorithm, speech segregation algorithm by its own entity adds a lot of overhead. Another

class of ADD algorithms is based on EEG signals themselves and encompasses commpon
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spatial pattern (CSP) (for background on CSP, see Blankertz et al. 2008), (Geirnaert, Van-

decappelle, et al. 2021) and convolutional neural network (CNN) (Ciccarelli et al. 2019;

Su et al. 2022; Vandecappelle et al. 2021) and have showed strong classification accuracy.

These have the benefit of being independent of stimulus features. Here, we extend CSP

algorithm to decode the spatial locations of audio-visual object. Our results demonstrate

robust and rapid decoding of attended spatial location of audio-visual stimuli based on the

EEG signals using CSP analysis. Moreover, we find that distinct frequency bands show

distinct temporal dynamics of decoding. In particular, delta and theta frequency bands

show high decoding performance at cue onsets and movie offsets, which coincide with the

expected timings of saccades whereas all higher frequency bands exhibit high decoding

performance that is consistent throughout the duration of the trial. These findings reveal

novel aspects of EEG decoding based on audio-visual stimuli, compared to auditory stim-

uli, suggesting important cross-modal interactions consistent with previous studies (Bizley,

Nodal, et al. 2007; Bizley, Maddox, and Lee 2016).

3.2 Materials and Methods

This study employs 64Ch BrainCap MR, a 64-channel EEG-recording cap made by EASY-

CAP. All electrodes are sintered Ag/AgCl sensors. For the electrodes located on the cap,

they are layered with 5 kOhm resistors. For the drop-down electrodes for electromyography

and electrocardiography, they are layered with 15 kOhm resistors. Gel is applied topically

to minimize unwanted impedance between sensor and scalp. The data were recorded in

an electromagnetic-shield room at 5 kHz with FCz as the reference channel and AFz as

the ground channel. The EEG-recording cap is connected to the amplifier (BrainAmp-MR,

BrainProducts). Two of the three electromyographic (EMG) channels were repurposed

to horizontal electro-oculographic (hEOG) channels and the 3rd EMG channel as well as

electrocardiographic (ECG) channel both weren’t used in the experiment.



41

Dataset. The videos used in the experiment are from AVSpeech, a publicly available

dataset (https://looking-to-listen.github.io/avspeech/index.html). For target

stimuli, each subject was shown 10 different speakers, each speaker having 5 different clips,

all showing the speakers’ faces clearly. Each clip was shown at all spatial locations at equal

frequencies. For masker stimuli, each subject was shown 50 different speakers which are

separated from the pool of speakers designated for target stimuli. These 50 speakers also

have 5 different clips. For both pools of targets and maskers, all are English speakers. Each

subject was presented with different pools of speakers and maskers. For each video clip, the

audio clip was extracted and passed through three different head-related transfer functions

(HRTF) to create auditory virtualization, one for each location (center, 45° to the left,

and 45° to the right). The HRTF filters are based on measurements using KEMAR head

model (https://sound.media.mit.edu/resources/KEMAR.html). For each location,

the HRTF-filtered audio clip replaced the original audio waveform in the video clip. Thus,

there is a total of 300 trials, 50 for each location and condition. Stimuli delivery software

was written with Psychtoolbox-3 library.

Participants. 12 adults with normal hearing (age 18-44) were recruited for this study

in accordance with the Institutional Review Board of Boston University. COVID-19 pro-

tocol was developed and strictly adhered to in accordance with the Institutional Review

Board of Boston University. Participants were screened to exclude those with neurological

disorders. Participants were briefed and consented before partaking in this study and were

compensated for their time.

Experiment. The experiment is almost identical to our previous fNIRS-based exper-

iment (Ning et al. 2022). For the calibration, before the start of the main experiment, we

recorded EEG signals while the subjects were instructed to sit still and only move and blink

their eyes in the following order: left, right, up, down and blink 5 times, 10 secs between.

A computer with three monitors was used for the experiment. The monitors were located

https://looking-to-listen.github.io/avspeech/index.html
https://sound.media.mit.edu/resources/KEMAR.html
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at the three locations: center, 45° to the left, and 45° to the right (Fig. 3·1). They all

are equidistant from the center where the subject is sitting upright. The auditory stimuli

were delivered via earphone (ER-1 Etymotic Research Inc.) with eartips (E-A-RLink 3A

Insert Eartips). This study adopted event-related design. For each trial, a 2 seconds long

audio-visual cue was delivered in the form of a white cross against a black background

and a 2 kHz pure tone linearly ramped in the first 0.5 s. This audio-visual cue appeared

randomly at one of the 3 spatial locations, indicating the location of the target speaker. For

the target-alone (TA) condition (Fig. 3·1a), the cue was followed by a video of the target

speaker. For the target-plus-masker (TM) condition (Fig. 3·1b), the cue was followed by

3 videos, one for each location, one of which is the target speaker and the 2 remaining are

the maskers. Afterward, in both conditions, it’s followed by two multiple-choice questions,

each question containing 5 possible choices. These multiple-choice questions are always

displayed at the center location. The two questions are related to face identification and

words identification, presented in that order. In the face identification task, the subjects are

presented five different faces and is tasked with correctly identifying the face of the target

speaker shown in the video. In the word identification task, the subjects are presented five

different transcripts and is tasked with correctly identifying the words spoken by the target

speaker in the video. Thereafter, an instruction to press the space bar to begin the next trial

is displayed at the center location. While the audio-visual cue and the video clip last 2 and

3 seconds respectively, the subjects have 20 seconds in total to answer both multiple-choice

questions but can move on to the space bar instruction immediately after the questions are

done. The subjects are given a 2 to 4-minute-long break in the middle of the experiment.

Lastly, the subjects are provided with chin rest in order to discourage head movements.

Grouping by Task Performance. Using the same criteria in our previous fNIRS study

(Ning et al. 2022), we divided subjects into 2 groups, high-performing group where subjects

scored at least 80% correct on all trials, and low-performing group where subjects scored
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Figure 3·1: Schematic Diagram of the Trials. (a) Timeline of the trial for
TA condition. Each row represents the three monitors at a point in time. A
cue in the form of a white cross accompanied by a pure ramping tone of
2 kHz randomly appears at one of the three locations to indicate the loca-
tion of the target stimuli at the start of the trial. In this example, the cued
location is at the right. Next, a video clip is displayed simultaneously for
3 seconds. Next, two multiple-choice questions are displayed at the center
monitor, to be answered with keyboard. 1st question is to identify the face
of the speaker, 2nd question is to identify the words spoken by the target
speaker. Subject has up to 25 seconds to answer both questions. Upon the
completion of the questions, instruction to press the space bar is displayed
at the center monitor to begin the next trial. (b) Timeline of the trial for
TM condition. It’s identical to TA condition except three video clips are
displayed simultaneously instead of one. In this example, the cued location
is the center.
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less than 80%. A trial is counted as correct if the participant correctly identified both the

faces of speakers and the words spoken by the targeted speakers.

EEG Preprocessing. For the delta to gamma-low frequency bands, EEG signals were

low-pass filtered with passband edge frequency of 40 Hz (with cutoff frequency 45 Hz at -6

dB and 10 Hz transition bandwidth) using zero-phase, non-causal Hamming window filter

of order 1650 before down-sampled to 250 Hz. Next, they were high-pass filtered with

passband edge frequency of 1.5 Hz (with cutoff frequency 0.75 Hz at -6 dB and 1.5 Hz

transition bandwidth) using zero-phase, non-causal Hamming window filter of order 550.

Next, channels with standard deviation above 75 mV were automatically rejected. Trials

with variance above the threshold (defined as 80th-percentile + 3*abs(80th-percentile-20th-

percentile)) were rejected. Next, we opted for interference subtraction method using linear

least square method to reduce ocular artifacts (Parra et al. 2005). This will be called EOG

regression. Next, we band-passed the signals into 6 different frequency bands where the

frequency parameterized are the passband edge frequencies: delta band (1.5-3 Hz), theta (4-

7 Hz), alpha (8-12 Hz), low-beta (13-17 Hz), high-beta (18-30 Hz), and gamma-low (30-40

Hz). No common-average referencing was performed because some electrodes have sig-

nificantly higher impedance or line noise (60 Hz) than other electrodes even after filtering

and channel-rejection, resulting in unbalanced weight averaging.

While the gamma-low range used here is quite narrow, we tested the range 30-50 Hz

and found no substantial difference in decoding performance (not shown). The narrow

range is necessary for reducing noise associated with power transmission line (60 Hz).

For the gamma-high frequency band, EEG signals were low-pass filtered at 150 Hz

(with cutoff frequency 168.75 Hz at -6 dB and 37.5 Hz transition bandwidth) using zero-

phase, non-causal Hamming window filter of order 440 before down-sampled to 500 Hz

and then high-pass filtered at 100 Hz (with cutoff frequency 87.5 Hz at -6 dB and 25 Hz

transition bandwidth) using zero-phase, non-causal Hamming window filter. Channels with
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standard deviation above 125 mV were rejected. Thereafter, the preprocessing pipeline is

identical for the delta to gamma-low bands.

EEG Classification. For each frequency band, we performed common spatial pattern

(CSP) filtering on 1 sec window for both 2-class and 3-class classification. We begin the

cross-validation step here by dividing the EEG trials into training and test sets. We ex-

tracted 6 common spatial pattern (CSP) filters from the training set for each frequency

band, 3 filters with the maximum ratio of variances for each condition. These 6 filters

are applied on the test set. Next, the features are extracted as the logarithm of the vari-

ance of the CSP-filtered signals, where the variance represents variation over time. In

addition, we also tested filter-bank CSP where we combine 6 CSP filters from each of the

following frequency bands (theta, alpha, low-beta and gamma-low) to form a total of 24

filters. For the 3-class classification, before extracting CSP filters from the training set, we

added a small constant (σ = 1e-8) to the diagonal elements of covariance matrices before

performing joint-approximate diagonalization to ensure that the covariance matrices are

well-conditioned, a process commonly known in statistical signal processing literature as

diagonal loading (Carlson 1988).

In this study, to test the cross-validation (CV) accuracy of the classifier trained with the

entire probe, we tested 2-class classification between left (-45°) and right (45°) spatial lo-

cations as well as 3-class classification between all 3 spatial locations. Linear discriminant

analysis with covariance matrix estimator based on linear combination between sample co-

variance matrix and identity matrix is used (Ledoit and Wolf 2004). The one-sec window

is tested for every interval starting from 2.5 sec before the start of the cue to 7.5 sec after

the start of the cue, in step of 1/5th sec.
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3.3 CSP

CSP finds a linear transformation of two covariance matrices that maximizes the ratio of

the variances between two classes of signals for discrimination. Consider here the case of

binary classification. Roughly, CSP can be seen as the supervised version of principal com-

ponent analysis (PCA) by changing from the singular value decomposition for the overall

covariance matrix to the generalized eigenvalue problem (GEP) for a pair of covariance

matrices (A,B), one for each class (Blankertz et al. 2008). The full derivation of CSP is left

in Chapter 5.

3.4 Results

Behavioral Results. All 12 subjects performed significantly above chance level in both

tasks (mean ± standard deviation of all trials: 84.3±14.1%). Furthermore, all 12 subjects

performed above 80% on TA trials whereas 4 out of 12 subjects performed less than 80%

on TM trials. Of these 8 subjects, who had performance levels of 80% or above on TM

trials were categorized as high-performing, and 4 subjects with performance levels less

than 80% on TM trials were categorized as low performing. One subject performed 0% in

left vs right for the TM condition so that subject was excluded from all TM analysis. Thus,

we have 12 subjects for analysis in the TA condition and 11 subjects for TM condition.

Classification Performance of the Filter-Bank. The grand averages and their 95%

confidence intervals of filter-bank (which include theta, alpha, low-beta and gamma-low

frequency bands) CSP 2-class decoding performance as a function of the ending time of the

1-second window are shown in the top row of Figure 3·2. The performance first crossed the

70% accuracy at 900ms after the cue onset in the TA condition and remains significantly

above chance level until after movie offset. Similarly, the performance first crossed the

70% accuracy at 500ms after the cue onset in the TM condition. Next, we split the subjects

into two groups based on their task performance. The averages of high-performance group
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Figure 3·2: Decoding Performance of the Filter-Bank. Decoding per-
formance of the filter-bank (theta, alpha, low-beta and gamma-low) as a
function of the ending time of a decision window 1 s long. Top row: grand
averages and their 95% confidence intervals. In chronological order, verti-
cal lines represent cue onset, movie onset and movie offset. Middle row:
averages of high-performing subjects in bold black line. Individual sub-
jects shown as colored dashed lines. The dashed vertical lines in the middle
row represent the timings used in Figure 3·5. Bottom row: averages of low-
performing subjects in bold black line. Individual subjects shown as colored
dashed lines. Left column: TA condition. Right column: TM condition.
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Figure 3·3: Band-Specific Decoding Performance. Similar to Fig. 3·2,
decoding performance for high-performance group as a function of ending
time of decision window 1s long. The 4 frequency bands shown are theta
band, alpha band, low-beta band and gamma-low band. Decoding perfor-
mance for TA condition is shown in left and TM condition in right.

Figure 3·4: Decoding Performance Based on Gamma-High. Similar to
Fig. 3·3, decoding based on gamma-high [100-150 Hz] band and filter-bank.
Note that filter-bank does not include gamma-high frequency band.
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and low-performance group are shown in the middle and bottom row of Figure 3·2, re-

spectively. In addition, the average decoding performances for each individual subjects are

shown as dashed colored lines in middle and bottom row of Figure 3·2. This is to highlight

the variability in decoding performance across subjects. The difference in decoding perfor-

mance between high and low-performance group supports the hypothesis that the decoding

performance is highly dependent on task-performance.

Band-Specific Performance. The averages of CSP decoding performances of high-

performance group for the 6 frequency bands as well as the filter-bank are also shown in

Figure 3·3. All combinations of frequency bands and conditions (TA vs TM) yield above

chance-level classification accuracy shortly after the onset. The bimodal peaks of the theta

band (red lines in Figure 3·3) in both conditions reflect the expected timings of lateral eye

movements. On the other hand, the decoding performances based on the gamma-low band

lack the bimodal peaks and is more sustained throughout the trial (light-blue lines in Figure

3·3).

We separately assess the decoding performance based on the gamma-high [100-150

Hz] frequency band (Fig. 3·4) which is unlikely to originate from the brain. The decoding

performance of the gamma-high band rises slowly relatively to the filter-bank and eventu-

ally bypasses the performance of the filter-bank starting at the movie onset. This analysis

suggests that decoding the spatial location is also possible using physiological signals that

do not originate from the brain.

We noted two trends in Figure 3·3. First, the decoding performance increases as the

frequency band increases for t = 1-2s and 3-4s, which is when participants are expected to

have fixed gaze at target spatial locations. Second, the timings of the bimodal peaks of theta

frequency bands suggest that these peaks occur approximately around the time of the eye

movements. Thus, we performed one-way repeated measure ANOVA tests to test across

two different groupings. First, we look at whether the difference in decoding performance
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F(3,21) p-value
Fixed Time (TA)
-0.1-0.9s 0.67 0.51
1-2s 2.15 0.18
3-4s 8.48 0.0057 **
4.5-5.5s 1.74 0.20
Fixed Time (TM)
-0.1-0.9s 0.88 0.42
1-2s 2.88 0.12
3-4s 8.02 0.0066 **
4.5-5.5s 4.31 0.032 *
Fixed Frequency (TA)
theta 3.79 0.035 *
alpha 0.36 0.77
low-beta 0.88 0.42
gamma-low 2.62 0.13
Fixed Frequency (TM)
theta 6.79 0.015 *
alpha 1.66 0.22
low-beta 2.47 0.12
gamma-low 2.82 0.12

Table 3.1: rANOVA Results. The rANOVA results were Greenhouse-
Geisser corrected for non-sphericity using the epsilon coefficient. In all
cases, the degree of freedom are 3 for the factor tested and 21 for the er-
ror term. Note that although the overall rANOVA result for the fixed theta
frequency-band in TA condition is significant, none of the pairwise t-test
results are significant as shown in Figure 3·6
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Figure 3·5: Correlation Between Filter-Bank Decoding Performance
and Task Performance. Linear regression between task performance and
decoding performance using window 2.1-3.1s for both TA and TM condi-
tions. For TA condition, n = 12. For TM condition, n = 11. Dashed lines
represent 95% confidence intervals. Left is for TA condition and right is for
TM condition.

across different frequency bands within a fixed time point is statistically significant. Next,

we look at whether the difference in decoding performance across different time points

within a fixed frequency band is statistically significant. This is run once for each condition

(TA and TM). Thus there is a total of 16 rANOVA tests. The results for the first grouping

are presented in the top row of Fig. 3·6 , and similarly, the second grouping are presented

in the bottom row. For the windows 1-2s and 3-4s, which are during the cue presentation

and stimuli presentation, respectively, the decoding performance increases as the frequency

band increase. The difference is statistically significant for 3-4s window in both TA and TM

condition (top row of Fig. 3·6). In contrast, the difference in decoding performance across

different time point within a fixed frequency band is only statistically significant in theta

for the TM condition. This, in conjunction with the timing of the expected eye movement

as shown in Fig. 3·3, suggests that the decoding performance of theta frequency band is

highly sensitive to the eye movement. The F-statistic and Greenhouse-Geisser corrected
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Figure 3·6: Repeated-Measures ANOVA Tests. Top row tested difference
in decoding performance across different frequency bands within a time
point. Bottom row tested different in decoding performance across 4 dif-
ferent time points within a frequency band. 16 repeated-measure ANOVA
tests are conducted in total, one for each group. At t=1-2s and t=3-4s, in
both TA and TM conditions, the decoding performance increase as the fre-
quency band increase. In the bottom right panel, for the theta band in TM
condition, the decoding performances peaked at the onset of the cue and the
offset of the movie, in accordance with the expected timing of lateral eye
movements. All bars represent averages of all high-performance subjects
as defined in the main text. Error bars represent 95% confidence interval
across subjects. p-values are reported in Table 3.1.
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Figure 3·7: Scatter Plot of Filter-Bank Decoding Performance between
TA and TM Conditions for High-Performance Group. Scatter plot be-
tween TA and TM conditions for high-performance group using filter-bank
(theta, alpha, low-beta and gamma-low) CSP algorithm. Different colors
represent ending times of the decision window 1s long.
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Figure 3·8: Decoding Performance as a Function of Window Lengths.
Decoding performance as a function of window lengths for 4 different sce-
narios are shown. EOG regression negatively affected the decoding perfor-
mance by roughly 5%. Error bars represent 95% confidence interval. Error
bars for 3 other lines are similar in magnitude and omitted for visual clarity.
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p-value are displayed in Table 3.1.

Task Performance Correlation. Next, we fitted the linear regression between CV

accuracy of the filter bank and task performance (Figure 3·5). For both conditions, the

slope coefficients of the linear regression are not statistically significant at α= 0.05. It’s

important to note that the small sample size still renders it difficult to draw any definite

conclusion.

Figure 3·9: Band-Specific Latency Analysis. Same as Figure 3·8 but for
4 individual frequency bands (theta to gamma-low).

To examine the effect the EOG regression has on the decoding performance for the

latency analysis, we plotted scatter plots of decoding performances between preprocessing

pipelines with and without EOG regression for the 5 frequency bands using data points

from Fig. 3·9 (Fig. 3·10 for TA condition and Fig. 3·11 for TM condition). We observed

that the theta frequency band is sensitive to EOG regression (several sample points are

above the x=y line) and the sensitivity to EOG regression increases as the frequency band

increase. This is confirmed by the lack of significant difference between EOG regression
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Figure 3·10: Scatter Plots between Decoding Performance with and
without EOG Regression. Scatter plots of decoding performance with
EOG regression at the x-axis and without EOG regression at the y-axis are
shown for the 5 frequency bands as well as the filter-bank. Theta band ben-
efits the most from ocular activities whereas gamma-low and gamma-high
bands are relatively intact. Different marker shapes represent different sub-
jects. Different color represents different window lengths, all start from cue
onset. Filled marker indicates that the difference between decoding perfor-
mances with and without EOG regression is statistically significant for sig-
nificance level p = 0.05. All are for TA condition. All are high-performing
subjects as defined in the main text.
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Figure 3·11: Scatter Plots for TM Condition. Same as Figure 3·10 but
for TM condition.

and without EOG regression in the gamma-low and gamma-high frequency bands in both

TA and TM conditions.

Maskers Effects. Next, we examine the way maskers affect both task performance and

decoding performance. The decrease in task performance from TA (89.4%) to TM con-

dition (75.9%) for all subjects is statistically significant (two-tailed paired t-test: p=0.04,

t(11)=2.33). Figure 3·7 suggests that the decoding performance of TM condition is slightly

higher than TA condition. However, the change in decoding performance at t=3.1-4.1s

between TA and TM condition is not statistically significant for high-performing subjects

(79.3% for TA condition vs 80.8% for TM condition, two-tailed paired t-test: p=0.275,

t((7)=-1.19). Put together, these suggests that higher cognitive demanded from the TM

condition yields marginally better decoding performance.

Latency Analysis. Figure 3·8 shows the CV accuracies of filter-bank as a function

of the window lengths, where all window starts at the cue onset. We tested all combina-

tions of masker conditions and inclusion-vs-omission of ocular-removal algorithm in the
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Figure 3·12: Scatter Plot between Filter-Bank and Gamma-Low De-
coding Performance. Decoding performances using filter-bank method
are on the x-axis whereas decoding performances trained on gamma-low
frequency-band are on the y-axis. Different points within the same color
represent different time points of the trial. In general, the filter-bank method
substantially outperforms gamma-low band but in some subjects, gamma-
low band slightly outperforms the filter-bank method. Different colors rep-
resent different subjects. All are high-performing subjects as defined in the
main text.
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preprocessing pipeline. We adopted EOG linear regression for ocular-removal algorithm.

While the decoding algorithm benefits greatly from the omission of EOG regression in the

lower-frequency range, the performance of the decoding algorithm with EOG regression

still performs well and only decreased by roughly 5%. Regardless of the algorithm used,

the decoding performances are relatively fast and reach significantly above chance level at

500 ms after cue onset. Since the decision windows at least 2 seconds long likely include

both saccade and fixed gaze at different lateral points, this showed that common spatial

pattern can be trained to both scenarios. However, when looking at individual frequency

bands in Figure 3·9, an interesting pattern emerges. When including the ocular-removal

algorithm, in the top row of Figure 3·9, the decoding performance of the gamma-low band

outperforms the filter-bank and every other frequency band at decision windows ≤ 200 ms

long. When excluding the EOG regression, in the bottom row of Figure 3·9, the decoding

performance of the gamma-low band equates that of the filter-bank (and still outperform

every other frequency band) for decision windows ≤ 200 ms.

Gamma Band vs Filter-Bank. A scatter-plot of the decoding performance for the TM

condition between filter-bank and gamma-low frequency-band for each subject is shown in

Figure 3·12. While the filter-bank outperforms the gamma-low frequency band on average,

gamma-low band does slightly outperform the filter-bank in some subjects.

3.5 Discussion

3.5.1 Attention.

Consistent with previous studies showing that spatial attention in both auditory and visual

modalities can lateralize the neural responses over the brain in a frequency-dependent man-

ner, we demonstrated robust decoding of the spatial location of attention. As mentioned in

the introduction, this has the benefit of not being contingent on both the availability of

original speech stimuli as well as speech segregation algorithm.
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Two interesting patterns can be deduced from the dynamic of performance of theta fre-

quency bands in Figure 3·3. First, in TA condition, the decoding performance of theta

increases faster (earlier) than higher frequency bands whereas in TM condition, the decod-

ing performance of theta and gamma-low increases faster (earlier) than alpha and low-beta

frequency bands. Second, the timings of the bimodal peaks of theta and delta frequency

bands coincide with the expected timings of the saccades, even with EOG regression. In

contrast, frequency bands above theta exhibit strong and consistent decoding performance

throughout the entire duration of the trial. Put together, these reveal distinct temporal dy-

namics corresponding to different neural oscillations.

One way of studying attention is to divide it into fast, automatic stimulus-driven pro-

cess (also known as bottom-up attention) and a slower, effortful and goal-driven process

(also known as top-down attention) (Katsuki and Constantinidis 2014; Weichselgartner and

Sperling 1987). In particular, neurophysiological studies from (Chalk et al. 2010; Richter

et al. 2017) show that alpha-beta oscillations invoked by goal-driven attention can mod-

ulate stimulus-driven gamma oscillation. However, EEG’s poor spatial resolution make

interpreting coherence between different regions difficult.

Thus, hybrid EEG-fNIRS holds promise for incorporating the high spatial resolution of

fNIRS to identify specific regions activated during tasks and high temporal resolution of

EEG to identify neural oscillations during tasks. We can use hybrid EEG-fNIRS to iden-

tify the regions activated during different stages of cognitive tasks in order to elucidate

the different types of attention engaged. In addition, we can study the synchronization/de-

synchronization between two or more regions using neural oscillations. In the case of

audio-visual spatial attention, it can be used to explore the relationship between gamma

neural oscillation and FEF and possibly other regions during the orienting of spatial atten-

tion. Since FEF is a source of top-down goal-driven attention (Petersen and Posner 2012), it

can exert influence on lower bottom-up sensory-processing regions such as primary visual
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cortex and extrastriate areas during visual processing via neural synchronization (Wom-

elsdorf, Schoffelen, et al. 2007) as well as primary auditory cortex (Garg, Schwartz, and

Stevens 2007; Sun et al. 2022).

One previous study utilized audio-visual stimuli to assess the decoding of spatial atten-

tion A. E. O’Sullivan, Lim, and Lalor 2019. There are two major differences between this

current study and O’Sullivan’s study. One difference is that the participants in O’Sullivan’s

study didn’t allow eye movements. Our study demonstrates that robust decoding is also

possible in the presence of eye movements, which would occur in more naturalistic scenes.

Another difference is that O’Sullivan’s study didn’t directly decode the spatial location

of attention. Rather, they used stimulus-reconstruction approach, which is unsuitable for

real-time BCI.

3.5.2 Limitations and Future Directions.

One limitation of our study was that we did not perform eye-tracking or EMG recordings.

Although, we did assess decoding performance with and without regressing out ocular-

related activities, it is difficult to rule out possible contributions of other physiological

signals, e.g., eye or muscle activities. The decoding performance based on high-gamma

suggests that decoding may also be possible based on these physiological signals. Future

studies should better dissect the contributions of physiological signals that originate outside

of the brain. From a BCI decoding perspective, a combination of all of these signals can be

useful for decoding the attended spatial location.
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Chapter 4

Conclusions and Future Directions

4.1 CSA-Deficit Population

It should be noted that all participants in our sample for both EEG and fNIRS experiments

are normal-hearing. Thus, it’s necessary to perform additional experiments on people who

struggle with CSA such as people with hearing loss, autism spectrum disorder and ADHD.

It will be interesting to see how the responses change in frontal eye field, intraparietal sul-

cus, superior temporal gyrus/planum temporale and other relevant brain regions for each

subpopulation (hearing loss vs autism vs ADHD). One expected difficulty to this study

is the large variation due to the cortical diversity within the hearing loss population. For

example, people who were born and remained deaf into adulthood will exhibit drastically

different cortical structure and functioning from people who gradually lost their hearing

during late adulthood. In addition, the brain is known for remarkably adaptation, also

known as brain plasticity. In particular, hearing deprivation will induce cortical changes,

and partial restoration of hearing with hearing aids or cochlear implant will induce addi-

tional cortical changes. For a review, see (Stropahl, Chen, and Debener 2017). Thus, it will

be necessary to impose additional control on hearing loss population, e.g. regular cochlear

implant users.

In addition, testing these subpopulations may also answer another question: what are

the necessary and sufficient conditions for achieving fast and reliable decoding perfor-

mance? Specifically, if people with hearing loss pay close attention to the stimuli (top-

down attention), successfully orient their eyes to the spatial location but fail to process the
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sound due to hearing loss (bottom-up), is it sufficient to achieve fast and reliable decoding

performance? Similarly, what would the results look like for people with autism spectrum

disorder and ADHD?

4.2 Hybrid EEG-fNIRS

As discussed in the Discussion section of EEG chapter, hybrid EEG-fNIRS holds promise

for incorporating the high spatial resolution of fNIRS to identify specific regions activated

during tasks and high temporal resolution of EEG to identify neural oscillations synchro-

nized or desynchronized during tasks. Although hybrid EEG-fNIRS is still relatively new,

there are already over a hundred studies as of 2021 (Z. Liu et al. 2021). For example, hybrid

EEG-fNIRS has already been used to investigate the differences in activated regions during

auditory or visual task (Chen, Sandmann, et al. 2015). In addition, hybrid EEG-fNIRS was

also used to compare auditory and visual responses between normal-hearing with cochlear-

implant users (Chen, Stropahl, et al. 2017). When used as BCI, hybrid EEG-fNIRS have

already been used to successfully decode the perception as either auditory or visual (Putze

et al. 2014). In addition, there are already at least two companies selling commercial hybrid

EEG-fNIRS device (NIRx Medical Technologies, LLC, Berlin, Germany and Artinis Med-

ical Systems, Einsteinweg, The Netherlands). Since it’s still relatively new, as highlighted

in (Z. Liu et al. 2021), one main challenge is the successful integration of EEG and fNIRS

data during data analysis. A review of hybrid EEG-fNIRS in the context of BCI including

preprocessing steps and data analysis can be found in (Ahn and Jun 2017; Li et al. 2022;

Z. Liu et al. 2021).
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Chapter 5

Appendix

5.1 CSP

CSP finds a linear transformation of two covariance matrices that maximizes the ratio of

the variances between two classes of signals for discrimination. Consider here the case of

binary classification. Roughly, CSP can be seen as the supervised version of principal com-

ponent analysis (PCA) by changing from the singular value decomposition for the overall

covariance matrix to the generalized eigenvalue problem (GEP) for a pair of covariance

matrices (A,B), one for each class (Blankertz et al. 2008). The following derivations are

from (Ghojogh, Karray, and Crowley 2019; He and D. Wu 2018).

Let Xi, j ∈RC×T be a segment of the ith EEG trial belonging to class j where j ∈ 1,2,3,

where C is the number of channels and T is the number of sampled time-points. Xi is

assumed to be already zero-centered and scaled. The mean covariance matrix for each

class can then be estimated as follow:

Σ j =
1

N j

N j

∑
i=1

Xi, jXT
i. j (5.1)

where N j is the total number of trial belonging to class j. Assume here that Σ1 and Σ2 are

invertible. For binary classification j = 1,2, we seek to identify a set of spatial filters W

that optimize the following objective function:

argmax
W=[w1,...,w′

C]

=

C′
2

∑
i=1

wT
i Σ1wi

wT
i Σ2wi

+
C′

∑
i=C′

2 +1

wT
i Σ2wi

wT
i Σ1wi

(5.2)
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which is equivalent to picking the top C’/2 spatial filters for the following objective func-

tion:

argmax
W=[w1,...,w′

C]

=
wT

i Σ1wi

wT
i Σ2wi

(5.3)

and similarly, the top C’/2 spatial filters for the following:

argmax
W=[w1,...,w′

C]

=
wT

i Σ2wi

wT
i Σ1wi

(5.4)

The Lagrangian function for 5.3 is:

L(w,λ) = wT
Σ1w−λ(wT

Σ2w−1) (5.5)

Setting the derivative of L with respect to w to 0, we obtain the following:

∂L
∂w

= 2Σ1w−2λΣ2w set
= 0 (5.6)

⇒ 2Σ1w = 2λΣ2w ⇒ Σ1w = λΣ2w (5.7)

which we recognize as the GEP. If Σ2 is invertible, then it can be simplified into standard

eigenvalue problem for the matrix Σ
−1
2 Σ1. By assumption that both Σ1 and Σ2 are invertible,

Σ
−1
2 Σ1 and Σ

−1
1 Σ2 are just inverse of each other and hence will yield identical set of eigen-

vectors. Thus equation 5.3 and 5.4 can be simplified to equation 5.3 where after solving the

optimization problem, we ordered the eigenvalues λi and their corresponding eigenvectors

wi, i = 1, . . .C. We next pick the top C′

2 eigenvectors and bottom C′

2 eigenvectors to con-

struct W ∈ RC′×C(C′ <C). In turn, W acts as a dimension reduction from C-dimension to

C′-dimension:

XCSP
i, j =W T Xi, j ∈ RC′×T (5.8)

Lastly, since Xi, j is already whitened (centered and scaled), the GEP can be solved in

MATLAB as (W = eig(Σ1,Σ1 +Σ2)). Even when Σ1 and Σ2 are not invertible, W can still

be obtained from equation 5.3 by using the GEP formulation but the ordering of the GEP
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pair matters.

Multiclass CSP. For the 3-class classification, the problem become that of simultane-

ously diagonalizing multiple standard eigenvalue problems:

W T
Σ1W = Λ1

W T
Σ2W = Λ2

W T
Σ3W = Λ3

(5.9)

No close-form analytical solution exists for the simultaneous diagonalization of more

than 2 square matrices and thus we resorted to joint approximate diagonalization (JAD),

a class of numerical algorithms which aim to identify W that makes Λ1,Λ2 and Λ3 as

diagonal as possible. More precisely, (Dinh-Tuan Pham and Cardoso 2001) introduced the

diagonalization metric as the minimization of the following nonconvex objective function:

L(W ) =
1

2n

3

∑
i=1

[logdet diag(W T
ΣiW )− logdet(W T

ΣiW )] (5.10)

where W is the diagonalizing matrix. (Ablin, Cardoso, and Gramfort 2018) proposed the

use of 2nd-order optimization, termed quasi-Newton’s method. This requires calculating

the Hessian matrix which is computationally intensive. They instead estimate the sparse

Hessian matrix before performing the line search. The line search converges quadratically.

Interested readers can refer to aforementioned reference for more details. In addition, the

codes are provided by the authors.

Multi-class CSP. In addition, we cannot use the objective function in 5.2 for multiclass

classification, which provide a way to select C’ out of C spatial vectors from W. Instead,

this study employs information-theoretic based algorithm, which was proposed by (Grosse-

Wentrup and Buss 2008) in his 2008 paper. The algorithm, along with its assumptions and

some notes will be briefly discussed here. We seek to identify w that maximize the mutual
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information between the class distribution j and the distribution of a filtered data:

argmax
w

I( j,wT X) (5.11)

where X is the random variable of the EEG data. The distribution of X given class label j is

assumed to be Gaussian with zero mean and a covariance matrix Σ j. Even though we are

computing the entropy between a discrete and a continuous random variable, we can use

differential entropy for X which is needed for expanding the mutual information as follows:

I( j,wT X) = H(wT X)−H(xT X | j)

= H(wT X)−
3

∑
i=1

P( ji) log
√

2πewT Σiw
(5.12)

where the marginal entropy H(wT X) is approximate as

H(wT X)≈ log
√

2πe− 3
16

( 3

∑
i=1

P( ji)((wT
Σiw)2 −1)

)2
(5.13)

Thus, after neglecting constant, we have

I( j,wT X)≈−
3

∑
i=1

P( ji) log
√

wT Σiw− 3
16

( 3

∑
i=1

P( ji)((wT
Σiw)2 −1)

)2
(5.14)

Equation 5.14 is used to compute the mutual information for each spatial filter w. We

picked C’ filters with the highest mutual information and finally use equation 5.8 to get the

filtered signals.
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