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1 Introduction and summary

Studying the scattering properties of black holes is a topic of current and future interest.

Of particular importance is the study of the quantum mechanical rate of decay of black

holes into a field quantum of a given frequency, which is given, up to a thermal factor,

by the greybody factor, due to the effective potential created by the black hole outside its
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horizon. This greybody factor is, also up to a projection term, related to the cross section

of absorption of an equivalent quantum field by the black hole.

The low frequency limit of the absorption cross section for minimally coupled scalar

fields is equal to the area of the black hole horizon, a result which can also be extended to

higher spin fields [1]. Equivalently, one can say that the low frequency cross section equals

four times the Bekenstein-Hawking black hole entropy: σ = 4GS. Recently there has been

a renewed interest in this cross section, also from the theoretical point of view, since this

quantity is directly related to the shear viscosity η of the dual quark-gluon plasma, which

according to the fluid-gravity correspondence [2, 3] behaves as a strongly coupled (and

almost ideal) fluid. In this context it is worth mentioning the KSS bound [4], which states

that for theories with a holographic dual the ratio η/s between the shear viscosity and the

entropy density has a lower bound of 1
4π . This bound can be saturated for boundary field

theories in the limit of large ’t Hooft coupling and number of colors.

The KSS bound was established in classical Einstein gravity (without higher order

corrections). However, string theories require higher derivative corrections in α′, the inverse

string tension.

Such theories are dual to Einstein gravity (without corrections). However, more general

computations in higher derivative gravity showed that the KSS bound can be violated,

although the crucial sign of the coefficient in front of the higher derivative correction is in

general undetermined. This suggests the need to study higher derivative corrections to η,

and correspondingly to the absorption cross section σ [5].

Another motivation to study higher derivative corrections to the absorption cross sec-

tion is the aforementioned relation σ = 4GS which, like the KSS bound, was only es-

tablished classically. It is important to check if and how such relation is maintained in

the presence of higher derivative terms, namely string α′ corrections. These are a few of

the theoretical motivations which lead us to study α′ corrections to the absorption cross

section. But such study is interesting and important by its own, since gravitational wave

astronomy is becoming an experimental reality which could allow for the detection and

measurement of (small) string effects.

The first work to discuss the effects of leading α′ corrections quadratic in the Riemann

tensor in the absorption cross section of spherically symmetric black holes for generic d

dimensions was article [7], but just dealing with a particular black hole solution. In this

article we wish to perform such study for any d dimensional asymptotically flat spherically

symmetric black hole with such corrections. We leave the asymptotically de Sitter/Anti de

Sitter cases for a future work.

The article is organized as follows. In section 2 we present the generic α′-corrected

black hole solutions in the background of which we consider a test scalar field. We also

discuss the field equation to this scalar field. In section 3 we solve this field equation

in different regions of spacetime, using different approximations: close to the horizon, at

asymptotic infinity and in the intermediate region. We present solutions, in closed form, for

these three regions. After matching these three different solutions, we are able to obtain a

general formula for the α′-corrected low frequency absorption cross section of the test scalar

fields by the black hole. All we have been describing is performed for a generic metric; in
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section 4, we apply our result to three different known black holes with α′ corrections. In

section 5 we compute the α′-corrected entropy of these three black hole solutions, which

we compare to the cross sections obtained in section 4. All these results are obtained in

a specific scheme (concerning the metric) and based on assumptions about the coordinate

system; in section 6, we obtain expressions for the entropy and cross section which are

covariant and independent of metric redefinitions. We end by discussing our results.

2 Basic setup: α
′-corrected field equations in d dimensions

2.1 Spherically symmetric α′-corrected black hole solutions

We start by considering a d-dimensional string effective action with α′ corrections given,

in the Einstein scheme,1 by

1

16πG

∫ √−g
(

R− 4

d− 2
(∂µφ) ∂µφ+ λ′ e

4
d−2

(1+w)φY (R) + Lmatter

)

ddx. (2.1)

Here, Y (R) is a scalar polynomial in the Riemann tensor representing the leading higher

derivative string corrections to the metric tensor field, and λ′ is, up to a numerical factor,

the suitable power of the inverse string tension α′ for Y (R). The dilaton field is φ, and w

is the conformal weight of Y (R), with the convention that w (gµν) = +1 and w (gµν) = −1.

If one is rather just considering higher order gravitational corrections in a non-stringy

framework, one can simply take φ = 0 in (2.1): the main results of this article are also

valid for such choice, as long as λ′ is taken as a purely perturbative parameter. Lmatter

contains terms, up to the same order in α′, including the metric, the dilaton and also other

matter fields depending on the string theory we are considering.

After having eliminated certain terms involving derivatives of φ, which would only

contribute at higher orders in our perturbative parameter λ′, the dilaton and graviton field

equations following from the effective action (2.1) are respectively of the form

∇2φ− λ′

2
e

4
d−2

(1+w)φ Y (R) = matter terms,

(2.2)

Rµν + λ′ e
4

d−2
(1+w)φ

(

δY (R)

δgµν
+

1

d− 2
Y (R)gµν −

1

d− 2
gµνg

ρσ δY (R)

δgρσ

)

= matter terms.

(2.3)

The “matter terms”, coming from Lmatter, involve other fields than the metric and the

dilaton.

In this article we consider the scattering of massless test scalar fields by a spherically

symmetric black hole with string α′ corrections in d dimensions. These black holes are so-

lutions to the corrected Einstein equation coming from (2.1) which are built perturbatively

1In this article we adopt the designation “scheme” instead of frame, in order to distinguish it from a

generic coordinate frame.
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in α′ and valid only in regions where r2 ≫ α′ : for these black holes the event horizon is

much bigger than the string length. They are of the form

ds2 = −f(r) dt2 + g−1(r) dr2 + r2dΩ2
d−2. (2.4)

As a solution to the classical Einstein equations, in principle one could take a metric

like (2.4), the most general spherically symmetric metric, with two independent functions

f0(r), g0(r). But at order λ
′ = 0, (2.3) reduces to the Einstein equation in vacuum, Rµν = 0,

and in this case one can always take f0(r) = g0(r).

The spherically symmetric solution to the vacuum Einstein equation in d dimensions

is the Tangherlini solution [15], with

f0(r) =: fT0 (r) = 1−
(

RH

r

)d−3

, (2.5)

RH being the horizon radius.

In order to also include spherically symmetric black holes in the presence of matter,

we will allow for a multiplicative factor c(r) :

f0(r) = c(r)

(

1−
(

RH

r

)d−3
)

. (2.6)

This will be the form of the function f0(r) we will be considering. The factor c(r) may

encode string effects (see subsection 4.3); it also allows for charged black holes, which may

happen in the presence of gauge fields. The corresponding solution, corresponding to a

black hole of mass M and charge Q, is given by [15]

fQ0 (r) := 1− 16πM

(d− 2)Ωd−2

1

rd−3
+

2Q2

(d− 2)(d− 3)

1

r2(d−3)
; (2.7)

it can always be reduced to the general form (2.6) by taking

c(r) =
fQ0 (r)

fT0 (r)
. (2.8)

As it is well known, fQ0 (r) has in general two simple roots: taking x = r3−d, it is a second

degree polynomial in x. In this case RH in (2.6) represents the largest (in r) root of fQ0 (r).

If the other root of fQ0 (r) is R−, c(r) is therefore proportional to R3−d
− − x : it is a smooth

function of r. For the case of an extremal black hole (i.e. when R− ≡ RH : fQ0 (r) has a

degenerate double root) we see that c(RH) ≡ 0.

Concerning the α′ corrections, we make the general assumption that the functions

f(r), g(r) in (2.4) have the form

f(r) = f0(r) (1 + λfc(r)) , g(r) = f0(r) (1 + λgc(r)) . (2.9)

f0(r) is the classical solution, while the functions fc(r), gc(r) encode the α
′ higher-derivative

perturbative corrections. λ is a dimensionless quantity defined in the same way as λ′, with

the same numerical factor but with α′ replaced by the dimensionless quotient α′/R2
H . Here

we are assuming the horizon radius RH itself does not admit any α′ corrections; it is always

possible to choose a system of coordinates in order for that assumption to be true.
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2.2 The field equation for minimally coupled scalars in the background of

spherically symmetric black holes

We now consider the low frequency scattering of a massless minimally coupled test scalar

field H by the black holes we saw in the previous section. (By “test” we mean it does not

affect the evolution of the black hole background.)

First we analyze the case without α′ corrections. In this case, the scalar field obeys

the Klein-Gordon equation

1√−g∂µ
[√−ggµν∂νH

]

= 0. (2.10)

From (2.10) and the metric (2.4), the scalar field H obeys therefore a field equation of

the type [1]

∂2tH− F 2(r) ∂2rH+ P (r) ∂rH+Q(r) H = 0, (2.11)

F (r), P (r), Q(r) being functionals of the metric (2.4) and its derivatives, namely of the

functions f(r), g(r).

For pure gravity (in the absence of α′ corrections) in d dimensions, it is not difficult

to obtain such functionals, which in this case we designate by Fcl, Pcl, Qcl:

Fcl =
√

fg,

Pcl = −f
[

(d− 2)
g

r
+

1

2

(

f ′ + g′
)

]

,

Qcl =
ℓ (ℓ+ d− 3)

r2
f +

(g − f)f ′

r
. (2.12)

Since we are in a static, spherically symmetric background, the field H can be redefined

and expanded as

Φ(t, r, θ) = k(r)H(t, r, θ) =
∑

ℓ

Φℓ(t, r)Yℓ0...0(θ) . (2.13)

where ℓ is the angular quantum number associated with the polar angle θ and Yℓ,ϕ1,...,ϕd−3
(θ)

are the usual spherical harmonics defined over the (d−2) unit sphere. ϕ1, . . . , ϕd−3 are the

azimuthal angles, which in our problem we may set to constants: θ carries all the angular

information. In this case, up to a normalization, Yℓ0...0(θ) are the Gegenbauer polynomials

C
d−3
2

ℓ (cos θ) [6].

It is customary to rewrite the above equation (2.11) in terms of the tortoise coordinate

r∗ defined in this case by dr∗ =
dr

F (r) . In order to achieve so, we take in (2.13)

k(r) =
1√
F

exp

(

−
∫

P

2F 2
dr

)

, (2.14)

and replace ∂/∂r by ∂/∂r∗.

It is then easy to see that an equation like (2.11) may be written as a wave equation

with a potential V [f(r), g(r)] [8]:

∂2Φ

∂r2∗
− ∂2Φ

∂t2
=

(

Q+
F ′2

4
− FF ′′

2
− P ′

2
+

P 2

4F 2
+
PF ′

F

)

Φ ≡ V [f(r), g(r)] Φ. (2.15)
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In the absence of α′ corrections, the λ = 0 part of k(r) is given by k0(r) = r
d−2
2 (see (3.10)

below). The potential is given by

Vcl [f(r), g(r)] = Qcl +
F ′2
cl

4
− FclF

′′
cl

2
− P ′

cl

2
+

P 2
cl

4F 2
cl

+
PclF

′
cl

Fcl

=
1

16r2fg

[

(16ℓ(ℓ+ d− 3)f2g + r2f2f ′2 + 3r2g2f ′2 − 2r2f(f + g)f ′g′

−4r2fg(g − f)f ′′ + 16rfg2f ′ + 4r(d− 6)f2gf ′ + 4(d− 2)rf2gg′

+4(d− 4)(d− 2)f2g2
]

. (2.16)

For solutions (2.4) with f(r) = g(r) a potential analogous to Vcl [f(r), g(r)] has been

obtained in d dimensions in [6]. Still in the absence of α′ corrections, equation (2.15)

also governs tensor-type gravitational perturbations of the metric, with the same potential

Vcl [f(r), g(r)] obtained from the same functions Fcl(r), Pcl(r), Qcl(r) in (2.12), as it was

shown in [9].

Determining the field equation for the scalar H in the presence of the α′ corrections

is not as simple. Since we are dealing with minimally coupled scalars, one could take the

same equation (2.15) as in Einstein-Hilbert gravity, and consider that only the graviton

is affected by the higher-derivative terms. That procedure is very often followed in the

literature, in the context of black holes with non-stringy higher derivative corrections.

In such cases, it is possible that the higher derivative corrections only affect the metric.

Particularly in the context of Lovelock theories in d dimensions, even the metric does not

get a higher order equation of motion, as it is well known.

That cannot be the case in the context of string theory we are considering, since the

gravitational correction Y (R) in (2.1) is multiplied by a term containing the dilaton and, as

we have seen, acts as a source term in its field equation (2.2). In string theory the graviton

field equation (2.3) is modified and, in general, it is of higher order. That must be the case

of the other field equations too, including the dilaton. The dilaton field equation (2.2) is

of second order, but recall that it results from eliminating terms which would be of higher

order in λ, since φ is at least of order λ. We do not have such information for H, and

therefore we cannot make a priori a similar elimination, at least without some extra input.

But a clever argument from [5] tells us that a second order equation is enough to

describe the dynamics of the test scalar field H, at least close to the horizon. Indeed,

regularity at the horizon tells us that the scalar field can only depend on one (but not on

the two) of the Eddington-Finkelstein coordinates u = t− r∗, v = t+ r∗. This means that

close to the horizon, H must satisfy either ∂H
∂u = 0 (incoming solution) or ∂H

∂v = 0 (outgoing

solution), which for the metric (2.4) may be written as ∂H
∂t = ±F (r)∂H∂r . Combining the

two possible behaviors results in a second order field equation for H close to the horizon,

of the form
(

∂

∂t
− F (r)

∂

∂r

)(

∂

∂t
+ F (r)

∂

∂r

)

H = 0. (2.17)

In principle, the α′-corrected scalar field equation should also be a higher order differential

equation, of the same order of the derivatives in the corrections we are considering, namely

– 6 –
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in Y (R). But, as argued in [5], close to the horizon such higher order equation should

reduce to powers (of the same order) of the second order equation (2.17). Therefore in this

region one may simply take (2.17).

At infinity, the curvature vanishes for an asymptotically flat solution like those we are

considering, and so do the curvature corrections in Y (R). We assume the same to be true

for the α′ corrections in general. Therefore the field equation for H in this region should

be the same as if there were no α′ corrections, i.e. a second order equation.

As we will see, in order to study the scattering of scalars by black holes we will

only need the scalar field equation in the intermediate region between the horizon and

asymptotic infinity in order to match the solutions obtained in these two regions. Since

in these two regions we have second order scalar field equations, in order to match the

respective solutions it is natural to take a second order equation.

This way we assume for the scalar H a field equation like (2.11), with functionals

F (r), P (r), Q(r) of the functions f(r), g(r), but this time including explicit λ-corrected

terms, which we write as:

F = Fcl, P = Pcl + λPcorr, Q = Qcl + λQcorr. (2.18)

The λ = 0 parts Fcl, Pcl, Qcl, as we have seen, correspond to the α′ = 0 terms for F, P,Q

given in (2.12), while Pcorr, Qcorr represent explicit λ corrections (with a metric like (2.9) we

can always define F as Fcl in (2.12), without explicit corrections). Such equation for H can

be rewritten as (2.15), but with a potential V [f(r), g(r)] also with explicit λ corrections.

Still, as we will see the result for the absorption cross section will be essentially inde-

pendent of the potential, as long as a few general conditions are respected.

We are now ready to start studying scattering processes in the background of a black

hole like (2.4).

3 Scattering of minimally coupled scalars by spherically symmetric α
′-

corrected non-extremal black holes in d dimensions

A classical result in Einstein gravity is that, for any spherically symmetric black hole

in arbitrary dimension, the absorption cross section of minimally coupled massless scalar

fields is equal to the area of the black hole horizon [1], or equivalently σ = 4S, S being

the Bekenstein-Hawking entropy. In order to extend such study to an effective theory

with string α′ corrections, we shall use the technique of matching solutions, which was first

developed for Einstein gravity in d = 4 in [12], and later extended to arbitrary d dimensions

in [13]. That was also the technique which was used in [7], where for the first time black hole

scattering with R2 α′ corrections was studied. In that paper, a formula for the absorption

cross-section was derived for a particular d-dimensional solution [11]. We are looking for a

general formula for the absorption cross section, applicable to a general solution like (2.4).

The idea of this technique is to separately solve the scalar field equation (2.11) in different

regions of the parameter r, where in each region we take a different approximation in order

to simplify the equation.
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We will be considering scattering at low frequencies, RHω ≪ 1. The low frequency

requirement is necessary in order to use the technique of matching solutions: it is precisely

when the wavelength of the scattered field is very large, compared to the radius of the

black hole, that one can actually match solutions near the event horizon to solutions at

asymptotic infinity [12, 13]. Also, at low frequencies, only the mode with lowest angular

momentum contributes to the cross section [1]; therefore, from now on, we will always

take ℓ = 0. Since C
d−3
2

0 (cos θ) ≡ 1, from the expansion (2.13) we only have to consider

H0(t, r) =: H(t, r).

We assume that the solutions to the field equation (2.15) are of the form Φ(r∗, t) =

eiωtΦ(r∗), such that ∂Φ
∂t = iωΦ (the same being valid for H(r, t)). This way (2.15) looks

like Schrödinger equation.

In appendix A we obtain the temperature T of a black hole solution of the form (2.9):

not surprisingly, it is proportional to f ′0(RH). In this article we assume we are dealing with

non-extremal black holes; therefore we take f ′0(RH) 6= 0. For the same reason, from the

discussion following (2.8) and since f ′0(RH) = (d−3)c(RH)
RH

, we also assume c(RH) 6= 0. We

leave the analysis of scattering by extremal black holes to a future work.

3.1 Scattering close to the event horizon

We start by solving (2.15) near the black hole event horizon. Since f(RH) = g(RH) ≡ 0,

in this region the functions f(r), g(r) from (2.9) have the form

f(r) ≃ f ′0(RH) (1 + λfc(RH)) (r −RH) , g(r) ≃ f ′0(RH) (1 + λgc(RH)) (r −RH) . (3.1)

We then naturally take the following assumption for the potential V [f(r), g(r)] in (2.15):

at the horizon it vanishes, and as long as r−RH

RH
≪ (RHω)

2 one will have V [f(r), g(r)] ≪ ω2

and in this near-horizon region it may be neglected in (2.15). This assumption is based

on the fact that V [f(r), g(r)] is a function of f(r), g(r), which vanish at the horizon. But

V [f(r), g(r)] may also be a function of the derivatives of f(r), g(r), which do not vanish at

the horizon. That is the case of the potential VT[f(r), g(r)] as seen from (B.2). In this case

the combinations of terms including derivatives of f(r), g(r) are such that the assumption

is indeed valid. That is necessarily the case for the classical part of V [f(r), g(r)] (the

α′ = 0 part of VT[f(r), g(r)]), as it an be seen from (B.3); this classical part is universal,

and it indeed vanishes at the horizon. The remaining part of the potential depends on the

considered λ corrections, and we cannot guarantee that it always vanishes at the horizon,

like the α′ correction of VT[f(r), g(r)] in (B.3) indeed does. But if that is the case then

it is always suppressed by λ, which is some power of α′, guaranteeing the validity of the

assumption of the smallness of V [f(r), g(r)] near the horizon.

One thus obtains, very close to the event horizon,

(

d2

dr2∗
+ ω2

)

(

k(r)H(r)
)

= 0. (3.2)

– 8 –
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In this same region, with f0 given by (2.6), one has from (2.14)

k(r) = R
d−2
2

H

[

1− 1

4
λ

(

(fc(RH) + gc(RH))− (fc(RH)− gc(RH)) log

(

r −RH

RH

))]

+O (r −RH) .

(3.3)

One can always choose a scheme in such a way that the condition fc(RH) ≡ gc(RH) is

verified (this assertion will be clarified in section 3.5). If this is the case, then k(r) is well

defined at r = RH , and can be treated simply as a constant, k(RH), in a neighborhood of

the horizon. Such constant can be discarded from (3.2), which we may then simply write as

(

d2

dr2∗
+ ω2

)

H(r) = 0. (3.4)

The solutions to (3.4) are plane waves. As we are interested in studying the absorption

cross section, we shall consider the general solution for a purely incoming plane wave:

H(r∗) = Aneare
iωr∗ +O (r −RH) . (3.5)

From (2.9) and the definition of F in (2.18), one has

r∗(r) =

∫

1

f0(r)

(

1− λ
fc(r) + gc(r)

2

)

d r.

Also with f0 given by (2.6), one has in this region f0(r) ≃ f ′0(RH) (r −RH) , f ′0(RH) =
(d−3)c(RH)

RH
, and therefore2

r∗(r) =
RH

(d− 3)c(RH)

(

1− λ
fc(RH) + gc(RH)

2

)

log

(

r −RH

RH

)

+O (r −RH) . (3.6)

Replacing (3.6) in (3.5), one finally obtains in this region

H(r) ≃ Anear

(

1 + i
RHω

(d− 3)c(RH)

(

1− λ
fc(RH) + gc(RH)

2

)

log

(

r −RH

RH

))

+O (r −RH) .

(3.7)

3.2 Scattering at asymptotic infinity

We now analyze the solution to (2.15) close to infinity.

In this article we consider asymptotically flat black holes which, at infinity, behave like

flat Minkowski spacetime. This is equivalent to saying that, in the metric (2.4), functions

f(r), g(r) tend to the constant value 1 in the limit of very large r, and their derivatives

tend to 0 in the same limit. This means that, as r → ∞, c(r) in (2.6) must go to 1; that

is the case, for instance, of (2.8). In the same limit r → ∞, fc(r), gc(r) in (2.9) must go to

0; indeed, in an asymptotically flat space the curvature tensor vanishes at infinity and so

2When obtaining (3.3), we mentioned we have re-scaled the time coordinate in order to have fc(RH) ≡

gc(RH). This choice could also be obtained by choosing an adequate scheme for the metric (see section 3.5).

As we will see in the same section, our final result is independent of the chosen scheme. We then prefer in

general to leave fc(RH) and gc(RH) as independent quantities.
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should its effects. Therefore in this limit we only need to consider the classical potential

Vcl(r), without string corrections, like in [13]. Having all this in mind, from (2.16) we

obtain that, asymptotically, Vcl(r) ≈ (d−4)(d−2)
4r2

+O
(

RH

r3

)

, and therefore the potential can

be neglected in the limit r → ∞.

This way, in this limit (2.15) reduces to a simple free-field equation whose solutions

are either incoming or outgoing plane-waves in the tortoise coordinate. One can also

solve the same equation in the original radial coordinate in terms of Bessel functions,

obtaining [1, 12, 13]

H(r) = (rω)(3−d)/2 [Aasymp J(d−3)/2 (rω) +BasympN(d−3)/2 (rω)
]

.

At low-frequencies, with rω ≪ 1, such solution becomes

H(r) ≃ Aasymp

1

2
d−3
2 Γ

(

d−1
2

)

+Basymp

2
d−3
2 Γ

(

d−3
2

)

π (rω)d−3
+O (rω) . (3.8)

In order to compute the absorption cross section, we will need to relate the coefficients

Aasymp and Basymp to Anear, obtained in (3.7). This can be done by the technique of matching

near-horizon to asymptotic solutions, and requires us to solve the scalar field equation (2.11)

in an intermediate region, between the event horizon and asymptotic infinity [12, 13]. This

is what we will do in the following.

3.3 Scattering in the intermediate region

We now consider the intermediate region: far from the horizon, but not asymptotic infinity.

We keep working in the low frequency regime, but this time without any restrictions to the

magnitude of the potential, which may be large (but always assumed to be regular).

We want to solve (2.15) or, equivalently, equation (2.11), perturbatively in λ. We then

define the expansion

H(r) = H0(r) + λH1(r), k(r) = k0(r) + λk1(r).

Using the previous assumptions (2.9) for f, g and taking their λ = 0 term (which is f0),

and also using the λ = 0 terms Fcl, Pcl, Qcl from (2.12) in (2.11), we obtain the following

equation for H0(r), written in the r coordinate (where if λ = 0 d
dr∗

= f0
d
dr ):

[

−f0(r)
d

dr

(

f0(r)
d

dr

)

+ f0(r)

(

(d− 2)(d− 4)f0(r)

4r2
+

(d− 2)f ′0(r)

2r

)]

(

k0(r)H0(r)
)

= 0,

(3.9)

First, one verifies that from (2.12) and (2.14) we have, up to a multiplicative constant

(and for any f),

k0(r) =
1√
f
exp

(
∫
(

d− 2

2r
+
f ′

2f

)

dr

)

= r
d−2
2 . (3.10)

Replacing this expression for k0, one indeed has, after a simple computation,

d

dr

(

f0(r)
d

dr

(

r
d−2
2 H0

)

)

=

(

(d− 2)(d− 4)f0(r)

4r2
+

(d− 2)f ′0(r)

2r

)

r
d−2
2 H0 + r

2−d

2
d

dr

(

rd−2f0(r)
d

dr
H0

)

.

(3.11)
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Replacing (3.9) in the equation above, we see that H0(r) satisfies

d

dr

(

rd−2f0(r)
d

dr
H0(r)

)

= 0, (3.12)

whose most general solution is3

H0(r) = A0
inter +B0

inter

∫

d r

rd−2f0(r)
. (3.13)

In order to solve for H1(r), we take for F, P,Q similar expansions as we did for H, k :

F = F0 + λF1, P = P0 + λP1, Q = Q0 + λQ1. The λ = 0 parts F0, P0, Q0, as we have

seen, correspond to the α′ = 0 terms for F, P,Q given in (2.12), while F1, P1, Q1 represent

the full λ corrections: those which are explicit, from (2.18), and those which are implicit,

coming by replacing the λ corrections (2.9) to f, g in (2.12).

We then expand every term of (2.11). To zero order in λ we obtain

H ′′
0 − P0

F 2
0

H ′
0 −

Q0

F 2
0

H0 = 0, (3.14)

which is completely equivalent to (3.9), with solution (3.13).

The terms of first order in λ are −F 2
0H

′′
1 − F 2

1H
′′
0 + P0H

′
1 + P1H

′
0 + Q0H1 + Q1H0,

which may be rewritten as

H ′′
1 − P0

F 2
0

H ′
1 −

Q0

F 2
0

H1 = R(r), R(r) = −
(

F1

F0

)2

H ′′
0 +

P1

F 2
0

H ′
0 +

Q1

F 2
0

H0 (3.15)

This is a second-order linear nonhomogeneous differential equation for H1. The homoge-

neous part is exactly the same as the differential equation (3.14) for H0, with general

solution (3.13), replacing H0(r), A
0
inter, B

0
inter by H1(r), A

1
inter, B

1
inter. A basis for the vector

space of independent solutions of (3.14) is

h1(r) = 1, h2(r) =

∫

d r

rd−2f0(r)
; (3.16)

the respective wronskian matrix is

W (r) =

[

h1(r) h2(r)

h′1(r) h
′
2(r)

]

=

[

1
∫

d r
rd−2f0(r)

0 1
rd−2f0(r)

]

,

with inverse

W−1(r) = rd−2f0(r)

[

1
rd−2f0(r)

−
∫

d r
rd−2f0(r)

0 1

]

.

According to the method of variation of constants, a particular solution to the nonhomo-

geneous equation (3.15) is given by

Hpart

1 (r) = v1(r)h1(r) + v2(r)h2(r),

[

v1(r)

v2(r)

]

=

∫

R(r)W−1(r)

[

0

1

]

d r. (3.17)

3The integrals in this subsection are all meant to be indefinite.

– 11 –



J
H
E
P
0
9
(
2
0
1
3
)
0
3
8

To obtain the most general solution to (3.15) one just needs to add to Hpart

1 (r) the most

general solution (3.13) to the homogeneous equation (3.14), including the contributions

H0, H1 as H = H0 + λH1 :

H(r) = (Ainter+λv1(r))h1(r)+(Binter+λv2(r))h2(r) = Ainter+Binter

∫

d r

rd−2f0(r)
+λHpart

1 (r).

(3.18)

We still need to verify the behavior of the function Hpart

1 (r) given by (3.17), namely of the

indefinite integrals

v1(r) = −
∫

R(r)rd−2f0(r)h2(r) d r, v2(r) =

∫

R(r)rd−2f0(r) d r. (3.19)

Since the metric, by assumption, has no other singularity than the horizon, v1(r), v2(r)

should be well defined functions for r > RH . It is therefore necessary to verify that the

integrals at v1(r), v2(r) converge at infinity (i.e for arbitrarily large values of r) and to

study their behavior close to r = RH .

Close to infinity, one has at most

f0(r) = 1−
(m

r

)d−3
+O

(m

r

)d−2
; (3.20)

no lower power of 1
r is allowed [15]. (If f0(r) represents the Tangherlini solution (2.5), then

m represents the horizon radius RH , but in general other string effects may be present.)

Taking this to be the asymptotic form of f0(r), one has

v1(r) ≈ −
∫

d− 3

2
Binter

md−5

rd−3

(

f ′c(r) + g′c(r)
)

d r,

v2(r) ≈ d− 3

2
Binter (fc(r) + gc(r)) . (3.21)

Here we make the same assumptions as in section 3.2, namely that all the λ-corrections

(the functions fc(r), gc(r) and the functionals Pcorr, Qcorr) tend to zero at infinity (i.e.

asymptotically the effects of the corrections vanishes, and everything happens as if f =

g = f0). This is a very reasonable physical assumption. In such case, v1(r), v2(r) and

therefore Hpart

1 (r) vanish at infinity.

Close to the horizon, one has

v1(r) ≈ Binter

4(d−3)c(RH)Rd−1
H

(fc(RH)−gc(RH)) log

(

r−RH

RH

)2

+vreg

1 (RH)+O
(

r−RH

RH

)

,

v2(r) ≈−Binter

2R2
H

(fc(RH)−gc(RH)) log

(

r−RH

RH

)

+vreg

2 (RH)+O
(

r−RH

RH

)

. (3.22)

vreg

1 (RH), vreg

2 (RH) are defined up to two integration constants (from (3.19)), which may be

absorbed by Ainter in (3.18). The only terms in these functions which are not regular at

r = RH are both multiplied by (fc(RH)− gc(RH)) but, as we have mentioned in section 3.1

and will clarify in section 3.5, we can always choose a scheme in order to obtain a system

of coordinates such that fc(RH) ≡ gc(RH). The remaining terms in v1(r), v2(r) are regular

– 12 –



J
H
E
P
0
9
(
2
0
1
3
)
0
3
8

and vanish at r = RH . This means that one can ignore Hpart

1 (r) close to the horizon and

simply consider the solution to the homogeneous equation.

To summarize: we were able to solve the field equation (2.11) equation in the interme-

diate region. This is a linear nonhomogeneous equation; for its general solution, we should

add to the solution to the homogeneous equation a particular solution Hpart

1 (r), which we

found by the method of variation of constants. We verified the behavior of this particular

solution Hpart

1 (r) at infinity and close to the black hole horizon, and in both cases we con-

cluded that either it vanishes or its contribution was subleading; close to these regions, we

can neglect Hpart

1 (r) and simply consider the solution to the homogeneous equation H0(r).

This will be a key feature for the matching process.

3.4 Calculation of the absorption cross section

We are now ready to start the matching process, using f0 given by (2.6).

If we evaluate (3.18) near the horizon, from (3.16) we obtain

H(r) ≃ Ainter +
Binter

(d− 3)Rd−3
H c (RH)

log

(

r −RH

RH

)

+O
(

r −RH

RH

)

. (3.23)

Matching the coefficients above to the ones in (3.7) immediately yields

Anear = Ainter,

Binter = iAnearR
d−2
H ω

(

1− λ
fc(RH) + gc(RH)

2

)

. (3.24)

As in section 3.2 we assume that c(r) −→
r→∞

1 in such a way that condition (3.20) is

verified. This condition allows us to have, at asymptotic infinity, to leading order,

h2(r) =

∫

d r

rd−2f0(r)
≃
∫

d r

rd−2
+ · · · = − 1

d− 3

1

rd−3
+ · · · , (3.25)

and, therefore, evaluating (3.18) again asymptotically,

H(r) ≃ Ainter −
Binter

d− 3

1

rd−3
+ · · · . (3.26)

In this region one may match the coefficients above to the ones in (3.8), yielding

Aasymp = 2
d−3
2 Γ

(

d− 1

2

)

Ainter = 2
d−3
2 Γ

(

d− 1

2

)

Anear,

Basymp = − πωd−3

2
d−3
2 (d− 3)Γ

(

d−3
2

)

Binter = − iπ (RHω)
d−2

2
d−1
2 Γ

(

d−1
2

)

(

1− λ
fc(RH) + gc(RH)

2

)

Anear.

(3.27)

Computing the low frequency absorption cross section is now a simple exercise in

scattering theory [12, 13]. Near the black hole event horizon, from (3.5), the incoming flux

per unit area is

Jnear =
1

2i

(

H†(r∗)
dH

dr∗
−H(r∗)

dH†

dr∗

)

= ω |Anear|2 . (3.28)
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The outgoing flux per unit area at asymptotic infinity, where r∗ and r coincide, is, from (3.8),

Jasymp =
1

2i

(

H†(r)
dH

dr
−H(r)

dH†

dr

)

=
2

π
r2−dω3−d |AasympBasymp| . (3.29)

In order to compute the cross section, this same flux per unit area at asymptotic infinity

must be integrated over a sphere of (large) radius r, and the result should be divided by

the incoming flux per unit area:

σ =

∫

rd−2JasympdΩd−2

Jnear

=
2

π
ω2−d |AasympBasymp|

|Anear|2
Ωd−2. (3.30)

Replacing the results from (3.27), the final result is

σ = AH

(

1− λ
fc(RH) + gc(RH)

2

)

, (3.31)

where AH = Rd−2
H Ωd−2 is the horizon area with respect to the metric induced by (2.4).

3.5 Discussion on dependence under field redefinitions

During our calculation process, we have made the assumption that fc(RH) = gc(RH). In

general, fc(r) and gc(r) in (2.9) are two independent functions. Setting them equal by

a conformal transformation is possible: that would be equivalent to setting the functions

f(r), g(r) in the metric (2.4) equal. That field redefinition is called a change of scheme.

By requiring that fc(r) = gc(r), we are therefore picking a particular scheme, since such

relation is not valid in every scheme.

One may therefore ask which quantities depend and which do not on the choice of

scheme. It turns out that physical quantities should not depend on such choice, since

schemes are all equivalent up to metric redefinitions.

In appendix A we obtain the temperature T of a black hole solution of the form (2.9),

given by eq. (A.1). With f0 given by (2.6), this temperature comes as

T =
(d− 3)c(RH)

4πRH
(1 + λδT ) . (3.32)

In this expression, c(RH) should only depend on the black hole mass and charges. One

can always choose a system of coordinates (namely, rescaling the time coordinate, and its

periodicity 1/T ) in which T has units such that we have c(RH) ≡ 1.

RH is the horizon radius in the scheme one is considering. Of course the horizon loca-

tion does not depend on the scheme, but if one wants the metric to remain of the form (2.4)

(as we do), after the change of scheme one must apply a change of coordinates. The rela-

tion between the location of the horizon in the two different coordinates can be obtained

precisely by equating the expressions for the temperature in the two different schemes,

since the black hole temperature, as a physical quantity, does not depend on the chosen

coordinates or schemes. Consider for example the known Einstein and string schemes, with

horizon radii RE
H , R

S
H and λ corrections δTE , δTS , respectively. Writing (3.32) in terms of
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the variables of each of the two schemes and equating the corresponding expressions, one

obtains the desired relation between the horizon locations in the two different schemes:

RE
H = RS

H (1 + λ (δTE − δTS)) . (3.33)

In general, for a black hole of the type we have been considering, its mass can be

written with a perturbative multiplicative λ-correction to the classical Tangherlini mass

(Ωd−2 =
2π

d−1
2

Γ( d−1
2 )

):

M = (1 + λ δM)
(d− 2)Ωd−2

16πG
Rd−3

H . (3.34)

Also in this expression, RH is the horizon radius and δM the λ correction in the scheme one

is considering. Since the black hole mass also does not depend on the choice of coordinates

or schemes, by expressing (3.34) in the Einstein and string schemes and equating the two

expressions, like we did with the temperature, we can reobtain the relation (3.33) between

RE
H and RS

H , this time given in terms of the λ corrections δME , δMS respectively in the

Einstein and string schemes:

RE
H = RS

H

(

1 + λ
δMS − δME

d− 3

)

. (3.35)

This relation between RE
H and RS

H must be unique; therefore, there must be a relation

between the mass and temperature λ corrections and the factors c(RH) such that (3.33)

and (3.35) represent exactly the same expression.

The λ corrections we have been considering are multiplicative; also for the black hole

absorption cross section the result (3.31) we obtained is of the form σ = σ|α′=0 (1 + λδσ) .

Here δσ, like δM and δT, is a dimensionless factor characteristic to the specific solution

one is considering. These factors also depend on the scheme one is using, as we saw.

Comparing (3.31) with (A.1), we see that

σ = AH (1− λ δT ) , δT = −δσ =
fc(RH) + gc(RH)

2
. (3.36)

This relation between δσ and δT will help us expressing the cross section in a way that

is independent of the chosen scheme. Once that is achieved, one can simply obtain δσ by

computing the black hole temperature, without having to be concerned with choosing a

scheme such that fc(RH) ≡ gc(RH). We will return to this subject in section 6.

4 Application to concrete string-corrected black hole solutions

We now apply our results to the computation of the absorption cross section for a few

specific black hole solutions in string theory. Although our results can of course be applied

to concrete solutions in specific given d dimensions, we prefer to consider in this article

only solutions in which d remains arbitrary.

In this article we only consider solutions with leading corrections quadratic in the

Riemann tensor. Concretely, we take Y (R) = 1
2 RµνρσRµνρσ in (2.1),4 with λ′ = α′

2 ,
α′

4 or

4Any other gravitational correction of the same order in α′ is equivalent to this one by field redefini-

tions [11].
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0 (or λ = α′

2R2
H

, α′

4R2
H

or 0) for bosonic, heterotic and type II5 strings, respectively. Since

in the previous sections we took λ with arbitrary higher order corrections and here we

are working with a specific correction of first order in α′, we prefer in this section to keep

α′ explicit. We choose to work in the context of heterotic strings and, therefore, we take

λ = α′

4R2
H

in this section. The formulas we obtain in this section are also valid in the context

of bosonic strings by simply replacing α′ by 2α′.

4.1 The d-dimensional Callan-Myers-Perry black hole

The Callan-Myers-Perry solution was the first d-dimensional black hole solution with

quadratic Riemann corrections to be obtained (in [11]). It is a simple generalization of

the Tangherlini solution of the form (2.9), with f0 = fT0 given by (2.5) and (in the Einstein

scheme)

fc(r) = gc(r) = fCMP
c (r) := −(d− 3)(d− 4)

2

(

RH

r

)d−3 1−
(

RH

r

)d−1

1−
(

RH

r

)d−3
. (4.1)

A simple application of l’Hôpital’s rule allows us to compute

lim
r→RH

fCMP
c (r) = fCMP

c (RH) = −(d− 1)(d− 4)

2
, (4.2)

from which, using (A.1), we obtain the temperature of the Callan-Myers-Perry black hole

in the Einstein scheme:

T =
d− 3

4πRE
H

(

1 + δTCMP
E

α′

4
(

RE
H

)2

)

, δTCMP
E = −(d− 1)(d− 4)

2
. (4.3)

From (3.36), we obtain the absorption cross section in the Einstein scheme6

σ = AE
H

(

1 +
(d− 1)(d− 4)

8

α′

(

RE
H

)2

)

, (4.4)

with AE
H =

(

RE
H

)d−2
Ωd−2. Just for future reference, the black hole mass is given in this

case by

M =

(

1 + δMCMP
E

α′

4
(

RE
H

)2

)

(d− 2)Ωd−2

16πG

(

RE
H

)d−3
, δMCMP

E =
(d− 3)(d− 4)

2
. (4.5)

Also for future reference, in the string scheme [11] the Callan-Myers-Perry solution is

still of the form (2.4), but with f, g replaced by fCMP
S , gCMP

S , given by

fCMP
S (r) = fT0

(

1 +
α′

2
(

RS
H

)2µ(r)

)

, (4.6)

gCMP
S (r) = fT0

(

1− α′

2
(

RS
H

)2 ǫ(r)

)

, (4.7)

5Type II supersymmetry prevents this term to appear in the ten dimensional effective action; this is why

in this case we have λ′, λ = 0.
6Here we are just confirming the result of [7], where this same computation was performed, with less

generality, just for this particular solution.
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with the definitions7

ǫ(r) =
d− 3

4

(

RH

r

)d−3

1−
(

RH

r

)d−3

[

(d− 2)(d− 3)

2
− 2(2d− 3)

d− 1
+ (d− 2)

(

ψ(0)

(

2

d− 3

)

+ γ

)

+ d

(

RH

r

)d−1

+
4

d− 2
ϕ(r)

]

, (4.8)

µ(r) = −ǫ(r) + 2

d− 2
(ϕ(r)− rϕ′(r)), (4.9)

ϕ(r) =
(d− 2)2

4

[

ln

(

1−
(

RH

r

)d−3
)

− d− 3

2

(

RH

r

)2

− d− 3

d− 1

(

RH

r

)d−1

+ B

(

(

RH

r

)d−3

;
2

d− 3
, 0

)]

, (4.10)

ϕ′ (r) =
(d− 3)(d− 2)2

4

Rd−3
H

rd−2

1−
(

RH

r

)d−1

1−
(

RH

r

)d−3
. (4.11)

fT0 is given by (2.5), but in the string scheme, the same being valid for ϕ(r) in (4.10): in

both cases with RH replaced by RS
H . B(x; a, b) =

∫ x
0 t

a−1 (1 − t)b−1 dt is the incomplete

Euler beta function.

At the horizon, we have [14]

ϕ (RH) = − (d− 2)2

8(d− 1)

(

d2 − 2d+ 2(d− 1)

(

ψ(0)

(

2

d− 3

)

+ γ

)

− 3

)

. (4.12)

In such scheme and system of coordinates, after determining the limits of ǫ(r), µ(r)

when r → RH (using the definitions (4.8), (4.9) but also the properties (4.2), (4.11), (4.12)),

from (A.1) the black hole temperature is given by

T =
d− 3

4πRS
H

(

1 + δTCMP
S

α′

4
(

RS
H

)2

)

,

δTCMP
S = −

3d(d− 3)
(

d− 5
3

)

− 2(d− 1)2 + 2(d− 2)(d− 1)
(

ψ(0)
(

2
d−3

)

+ γ
)

4(d− 1)
. (4.13)

The black hole mass is given, again in the string scheme, by

M =

(

1 + δMCMP
S

α′

4
(

RS
H

)2

)

(d− 2)Ωd−2

16πG

(

RS
H

)d−3
,

δMCMP
S = (d− 3)

(

−δTCMP
S − (d− 2)(d− 4)

2

)

. (4.14)

7The digamma function is given by ψ(z) = Γ′(z)/Γ(z), Γ(z) being the usual Γ function. For positive

n, one defines ψ(n)(z) = dn ψ(z)/d zn. This definition can be extended for other values of n by fractional

calculus analytic continuation. These are meromorphic functions of z with no branch cut discontinuities.

γ is Euler’s constant, defined by γ = limn→∞

(
∑

n

k=1
1
k
− lnn

)

, with numerical value γ ≈ 0.577216.
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4.2 The string-corrected dilatonic d-dimensional black hole

The Callan-Myers-Perry solution expresses the effect of the string α′ corrections, but it

does not consider any other string effects, namely the fact that string theories live in dS
spacetime dimensons (dS = 10 or 26 on heterotic or bosonic strings, respectively), and have

to be compactified to d dimensions on a dS − d-dimensional manifold. When passing from

the string to the Einstein scheme, the volume of the compactification manifold becomes

spatially varying. In the simple case when such manifold is a flat torus, that volume

depends only on the d−dimensional part of the dilaton φ and, after solving the α′-corrected

field equation (2.3) the metrics of the compactification manifold and of the d-dimensional

spacetime decouple.

The explicit solution was worked out in [14]. The general solution for the dilaton, in

the background of the spherically symmetric Tangherlini black hole (2.5), is necessarily of

order α′ : φ(r) := α′

4R2
H

ϕ(r), with ϕ(r) given by (4.10). The derivative of φ can be obtained

from (4.11), which can also be written as rϕ′ = − (d−2)2

2(d−4)f
CMP
c (r), with fCMP

c (r) given

by (4.1).

The d-dimensional part of the metric is of the form (2.4), with f, g given by (2.9),

f0 = fT0 given by (2.5) and (in the Einstein scheme)

gc(r) = fCMP
c (r), fc(r) = fCMP

c (r) + 4
dS − d

(dS − 2)2
(

ϕ− rϕ′
)

. (4.15)

Using (4.2), (4.11) and (4.12), one can determine limr→RH
(ϕ− rϕ′), which is a finite

quantity. Together with (4.15) and again (4.2), this allows us to obtain, using (A.1), the

black hole temperature in the Einstein scheme:

T =
d− 3

4πRE
H

(

1 + δT d
E

α′

4
(

RE
H

)2

)

,

δT d
E = −

(

(d−1)(d−4)

2
+

dS−d
(dS−2)2

(d−2)2

4(d−1)

(

3d2−6d−1+2(d−1)

(

ψ(0)

(

2

d−3

)

+γ

))

)

.

(4.16)

From (3.36), the absorption cross section comes as

σ = AE
H

(

1− δT d
E

α′

4
(

RE
H

)2

)

. (4.17)

We have numerically evaluated the α′-correction for the cross section: it is always positive,

for every relevant value of d.

The mass of this black hole in the Einstein scheme is of the form (3.34), i.e.

M =

(

1 + δMd
E

α′

4
(

RE
H

)2

)

(d− 2)Ωd−2

16πG

(

RE
H

)d−3
,

δMd
E =

(d−3)

4(d−1)(dS−2)2

[

2(d−1)(d−2)2(d−4)−2(d−1)(d−2)(dS−d)
(

ψ(0)

(

2

d−3

)

+γ

)

+(d−2)(d2−14d+17)(dS−d)+2(d−1)(d−4)(dS−d)2
]

. (4.18)
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When d ≡ dS the solution studied in this section is equivalent to the previously studied

one of Callan-Myers-Perry given by (4.1); in this case, (4.16), (4.17) and (4.18) reduce

to (4.3), (4.4) and (4.5), as expected.

4.3 The doubly charged d-dimensional black hole

In article [16] one can find black holes in any dimension formed by a fundamental string

compactified on an internal circle with any momentum n and winding w, both at leading

order and with leading α′ corrections. One starts with the Callan-Myers-Perry solution

in the string scheme given in (4.6), (4.7). This metric is lifted to an additional dimension

by adding an extra coordinate, taken to be compact (this means to produce a uniform

black string). One then performs a boost along this extra direction, with parameter αw,

and T -dualizes around it (to change string momentum into winding), obtaining a (d+ 1)-

dimensional black string winding around a circle. Finally one boosts one other time along

this extra direction, with parameter αp, in order to add back momentum charge. One finally

obtains a spherically symmetric black hole in d dimensions with two electrical charges.

The whole process is worked out in detail in [16]; the final metric, in the string scheme,

is of the form (2.4), with f, g given by

fS(r) =
fT0

∆(αn)∆(αw)

[

1 +
α′

2
(

RS
H

)2

µ(r)

∆(αn)∆(αw)

− α′

2
(

RS
H

)2µ(r)
sinh2(αn) sinh

2(αw)

∆(αn)∆(αw)

(

RS
H

r

)2(d−3)

+
α′

2
(

RS
H

)2µ(r)

(

sinh2 αn

∆(αn)
+

sinh2 αw

∆(αw)

)

+
α′

4
(

RS
H

)2 (d− 3)2fT0

(

RS
H

r

)2(d−2)
sinh2(αn) sinh

2(αw)

∆(αn)∆(αw)

]

, (4.19)

∆ (x) := 1 +

(

RH

r

)d−3

sinh2 x, (4.20)

gS(r) = fT0

(

1− α′

2
(

RS
H

)2 ǫ(r)

)

. (4.21)

The dilaton in this case is given by

e−2φ =
√

∆(αn)∆(αw)

[

1− 2
α′

4
(

RS
H

)2ϕ(r)−
α′

4
(

RS
H

)2µ(r)f
T
0

(

sinh2 αn

∆(αn)
+

sinh2 αw

∆(αw)

)

− α′

4
(

RS
H

)2

(d− 3)2

2
fT0

(

RS
H

r

)2(d−2)
sinh2(αn) sinh

2(αw)

∆(αn)∆(αw)

]

, (4.22)

with ϕ(r) still given by (4.10).

In order for the functions f, g to have the form (2.9), one could take a conformal trans-

formation of the metric, changing scheme: gIµν = e−2φgSµν , e
−2φ being given by (4.22). In
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this case f0 would have the form (2.6), with f I0 (r) =
fT

0 (r)√
∆(αn)∆(αw)

and c(r) = 1√
∆(αn)∆(αw)

.

It would be easy to obtain the functions fc, gc, according to (2.9). But with this procedure

we would not obtain a metric of the form (2.4), since the form of the r2 factor in front of

dΩ2
d−2 would not be preserved. We could solve that by defining a new radial coordinate as

rI = e−φ(r)r, but that would imply to write the metric in terms of d r2I instead of d r2, and

this way we would loose the assumed form (2.9) for the functions f, g.

Instead, it is more convenient to consider the original string scheme metric given in

terms of the functions fS(r), gS(r) in (4.19), (4.21) and carefully look at their near-horizon

limit. From (4.7) we see that gS(r) ≡ gCMP
S (r). From (4.20) we get ∆(x) −→

r→RH

cosh2 x

and this way

fS(r)

fT
0
(r)

−→
r→RS

H

[

1+
α′

2
(

RS

H

)2
µ
(

RS

H

)

(

1

cosh2 αn cosh
2 αw

−tanh2 αn tanh
2 αw+tanh2 αn+tanh2 αw

)

]

× 1

cosh2 αn cosh
2 αw

Simplifying the above expression using cosh2 x− sinh2 x = 1 we see that, close to the hori-

zon, we have fS(r) ≃ c(RS
H)2fCMP

S (r), with fCMP
S (r) being given by (4.6) and c(RS

H) =
1

coshαn coshαw
. This means that, re-scaling the time as dt̃ = c(RS

H) dt (in a procedure analo-

gous to the one which we took after (3.36), when we mentioned that time and temperature

could be always chosen in order to set c(RH) ≡ 1), near the horizon the doubly charged

black hole we have been analyzing is written as

ds2 = −fCMP
S (r) dt̃2 + gCMP

S (r) dr2 + r2dΩ2
d−2,

which is exactly the metric of the Callan-Myers-Perry solution written in the string scheme.

This way, there is a system of coordinates such that the near horizon geometry of this

black hole solution in the string scheme is the same as the Callan-Myers-Perry solution,

and therefore so is the black hole temperature, given by (4.13). From (3.36) we obtain the

absorption cross section:

σ = AS
H

(

1− α′

4
(

RS
H

)2 δT
CMP
S

)

. (4.23)

with δTCMP
S defined in (4.13) and AS

H =
(

RS
H

)d−2
Ωd−2. We have again numerically evalu-

ated the α′-correction for the cross section: like in the previous cases, it is always positive,

for every relevant value of d.

5 Comparison between the black hole cross section and entropy

As we have seen, in classical Einstein gravity the low frequency limit of the absorption

cross section of minimally coupled massless fields, for any spherically symmetric black

hole in arbitrary d dimensions, equals the area of the black hole horizon [1]. In terms of

a physical quantity, the Bekenstein-Hawking entropy, this statement may be written as

σ|α′=0 = 4G S|α′=0 .
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It is an interesting physical question to figure out if such relation is preserved in the

presence of α′ corrections, i.e. to verify if the corrections to the cross sections we have been

obtaining and to the black hole entropy are the same. The α′-corrected entropy can be

obtained through Wald’s formula

S = −2π

∫

H

∂L
∂Rµνρσ

εµνερσ
√
h dΩd−2, (5.1)

L being the lagrangian one is considering, which can include α′ corrections; H is the black

hole horizon, with area AH and metric hij induced by the spacetime metric gµν . ε
µν is the

binormal to H.

For the metric (2.4) we are considering, the nonzero components of εµν are εtr =

−εrt = −
√

g
f . For the α′-corrected lagrangian (in the Einstein scheme) (2.1) we took, we

have

8πG
∂L

∂Rµνρσ
=

1

4
(gµρgσν − gµσgρν) + e

4
d−2

φλ
′

2

∂Y (R)

∂Rµνρσ
.

This way, taking only nonzero components, one gets from (2.4)

8πG
∂L

∂Rµνρσ
εµνερσ = 4× 8πG

∂L
∂Rtrtr

εtrεtr =

(

−f
g
+ e

4
d−2

φ2λ′
∂Y (R)

∂Rtrtr

)

g

f
, (5.2)

and therefore

S =
1

4G

∫

H

(

1− 2λ′
∂Y (R)

∂Rtrtr

) √
h dΩd−2 =

AH

4G
− λ′

2G

∫

H

∂Y (R)

∂Rtrtr

√
h dΩd−2. (5.3)

Here one should notice that the λ′ = 0 part of the integrand could in principle also

contribute to the α′-correction to the entropy, because of the α′-correction to the metric.

But this λ′ = 0 part is actually constant, as one can see from (5.2), no matter what f, g

actually are. This way, the α′-correction to the entropy depends only on the λ′-correction

term in (5.2) which, to first order in λ′, should be computed with the λ = 0 part of the

metric. Therefore, the α′-correction to the entropy does not depend on the λ′-corrections

to the metric (to first order in λ′), and we may write

S =
AH

4G
(1 + λ δS) . (5.4)

Like δM in (3.34) and δT in (3.32), δS is a dimensionless factor depending on the specific

correction and solution one is considering.

For the case Y (R) = 1
2 RµνρσRµνρσ and λ′ = α′

4 , corresponding to the particular

solutions in the Einstein scheme we have been studying, one has ∂Y (R)
∂Rtrtr = Rtrtr. At order

α′ = 0, φ = 0, f = g = fT0 . In this case Rtrtr =
1
2f

′′. f ′′ = fT
′′

0 = −(RE

H)
d−3

rd−1 (d− 3)(d− 2).

Therefore

S =
1

4G

∫

H

(

1+
α′

4
(

RE
H

)2 (d−3)(d−2)

)

√
h dΩd−2 =

AE
H

4G

(

1+(d−3)(d−2)
α′

4
(

RE
H

)2

)

.

(5.5)
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This same result was first obtained (by a different process, though) in [11]. From what

we have just seen, it is no surprise that the result (5.5) is the same for the Callan-Myers-

Perry solution (4.1), for the dilatonic solution (4.15) and for any solution for which the

near-horizon limit of its classical part is the Tangherlini solution (2.5).

The absorption cross section of the doubly charged black hole we considered in sec-

tion (4.3) has been obtained in the string scheme, where its near horizon geometry is that of

the Callan-Myers-Perry black hole. We should therefore compute its entropy in the string

scheme. Since the entropy, as a physical quantity, is not affected by the change of schemes,

it is given by the result in (5.5), but with RE
H replaced by RS

H . This replacement can be

made using (3.33), with δTE given by δTCMP
E defined in (4.3) and δTS given by δTCMP

S

defined in (4.13). The final result is

S =
AS

H

4G

(

1 + (d− 2)

(

δTCMP
S − (d− 2)(d− 5)

2

)

α′

4
(

RS
H

)2

)

. (5.6)

Comparing the value obtained in (5.5) with those in (4.4), (4.17) and the one in (5.6)

with (4.23), we see that in every case we have δS 6= −δT. This way we conclude that the α′

corrections to the absorption cross section and to the entropy do not coincide, for a generic

black hole solution.

6 Covariant and scheme-independent formulae for the black hole entropy

and absorption cross section

As we previously saw, the α′ correction factor −δT in (3.36) is not invariant under field

(namely metric) redefinitions: its value depends on the scheme we take to compute it.

Also precisely because of such term giving the α′ correction, the expression (3.36) is not

covariant. Indeed the results we obtained for the cross section, using (3.36), are valid only

for a particular system of coordinates, namely in which the horizon radius RH has no λ

corrections. Since for each of the cases we considered the entropy and the cross section

have been obtained using this same system of coordinates, and in the same scheme, it is

legitimate to compare their values and to conclude that their α′ corrections are not the

same, as we did in the previous section. But it would be clearly useful to obtain expressions

for both the absorption cross section (3.31) and the entropy which are both covariant and

invariant under field redefinitions: that could clarify if there exists (or not) a relation

between these two quantities; nonetheless, it is certainly more convenient to express them

in terms of other quantities which do not depend on systems of coordinates or metric

redefinitions. That is also not the case of the horizon area (although this is a covariant

quantity).

Suitable quantities for this purpose are the black hole mass and temperature, given for

metrics of the form (2.4) respectively by (3.34) and (3.32). One can invert these relations
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in order to obtain in each case the black hole radius RH(M), RH(T ) :

RH(M) =
1√
π

(

8GMΓ
(

d−1
2

)

d− 2

)
1

d−3 [

1− λ

(d− 3)
δM

]

, (6.1)

RH(T ) =
d− 3

4πT
(1 + λδT ) . (6.2)

Replacing RH(M) (respectively RH(T )) in AH = Rd−2
H Ωd−2, we can obtain the horizon

area as a function of the black hole mass (respectively temperature). Replacing these

results in (5.4), we get

S(M) = 2
2d−3
d−3

√
π

(

GΓ

(

d− 1

2

))
1

d−3
(

M

d− 2

)
d−2
d−3
[

1 + λ

(

δS − d− 2

d− 3
δM

)]

, (6.3)

S(T ) =
Ωd−2

4G

(

d− 3

4πT

)d−2

(1 + λ (δS + (d− 2)δT )) . (6.4)

In order to better illustrate the procedure, first we will consider the Callan-Myers-

Perry solution. Considering the Einstein scheme values for this solution δMCMP
E , δSCMP

E

respectively from (4.5), (5.5), and the corresponding string scheme values δMCMP
S , δSCMP

S

respectively from (4.14), (5.6), it is easy to verify that we have δSCMP
E − d−2

d−3δM
CMP
E =

δSCMP
S − d−2

d−3δM
CMP
S . In both cases, replacing that result in (6.3) we obtain the same

expression,

S(M) = 2
2d−3
d−3

√
π

(

GΓ

(

d− 1

2

))
1

d−3
(

M

d− 2

)
d−2
d−3



1+α′ (d− 2)2

8
π

(

d− 2

8GMΓ
(

d−1
2

)

)
2

d−3



 ,

(6.5)

which indeed represents the entropy of the Callan-Myers-Perry black hole as a function of

its mass, to first order in α′, and is a scheme-independent function.

Still for the same solution, considering the Einstein scheme values δTCMP
E , δSCMP

E

respectively from (4.3), (5.5), and the corresponding string scheme values δTCMP
S , δSCMP

S

respectively from (4.13), (5.6), we can also verify that δSCMP
E +(d−2)δTCMP

E = δSCMP
S +

(d−2)δTCMP
S . In both cases, replacing that result in (6.4) we also obtain the same expres-

sion,

S(T ) =
Ωd−2

4G

(

d− 3

4πT

)d−2
(

1− α′ (d− 2)2(d− 5)

8

(

4πT

d− 3

)2
)

, (6.6)

which represents the entropy of the Callan-Myers-Perry black hole as a function of its

temperature, to first order in α′, and is also a scheme-independent function. Similar ex-

pressions S(M), S(T ) can be obtained for the dilatonic [14] and doubly charged [16] black

holes, replacing in (6.3) and (6.4) the corresponding values of the α′ corrections.

One can follow exactly the same procedure and replace RH(M) (respectively RH(T ))

in the horizon area in (3.36), obtaining what would be the absorption cross section of a
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spherically symmetric black hole, as a function of its mass (respectively temperature):

σ(M) = 2
4d−9
d−3

√
π

(

Γ

(

d− 1

2

))
1

d−3
(

GM

d− 2

)
d−2
d−3
(

1− λ

(

δT +
d− 2

d− 3
δM

))

, (6.7)

σ(T ) =

(

d− 3

4πT

)d−2

Ωd−2 (1 + (d− 3)λδT ) . (6.8)

But for the cross section, concerning the Callan-Myers-Perry black hole, if one replaces

in (6.7) the Einstein scheme values one obtains a different result than if one replaces the

string scheme values: δTCMP
E +d−2

d−3δM
CMP
E 6= δTCMP

S +d−2
d−3δM

CMP
S .Without surprise, and

quite obviously, if one analogously replaces in (6.8) the Einstein scheme value one obtains a

different result than if one replaces the string scheme value: δTCMP
E 6= δTCMP

S . This means

that, differently from the black hole entropy, the string-corrected absorption cross section

cannot be expressed exclusively as a function of the black hole mass (or temperature) in a

way which is independent of metric redefinitions, i.e. of the chosen scheme.

From a computational point of view, comparing the λ correction terms in (6.3), (6.4)

with those in (6.7), (6.8), that impossibility is easy to understand. Since classically, up to a

factor of 4G, both expressions are equal to the horizon area, they represent the same power

of RH , which provides the same factor in front of the δT or δM terms, plus an intrinsic

term, which is δS (given in (5.4)) for the entropy, and δσ for the cross section. The entropy

can be expressed in terms of the mass or temperature: the specific values of the intrinsic

correction δS in the different schemes allow for that. Given that fact, for the same to be

possible with the cross section, the intrinsic correction δσ would have to equal δS, or at

most their difference would have to be a scheme-independent constant. But (3.36) tells us

that δσ = −δT , and one can easily check that δSCMP
E + δTCMP

E 6= δSCMP
S + δTCMP

S . Once

more, this leads to the impossibility we just mentioned. The reason for this impossibility

lies precisely in the string α′ corrections and their coefficients: classically, those expressions

in terms of mass or temperature are possible. We would have found the same impossibility

if we had taken the λ corrections corresponding to the other black holes we considered.

Thinking independently of these solutions and considering just the classical terms,

without the λ corrections, from (3.32) and (3.34) we obtain σ|α′=0 = AH |α′=0 =

4G d−3
d−2

M |
α′=0

T |
α′=0

; including the λ corrections, namely from (3.36), we see that such classi-

cal expression does not generalize. Nonetheless, the presence of the 1/T factor seems to

indicate the right dependence on the temperature that the cross section should have, in

order to naturally absorb the λ term in (3.36) (this had already been suggested in ap-

pendix A). Replacing in (3.36) one of the factors of RH by RH(T ) given in (6.2), we obtain

to first order in λ σ = Rd−2
H Ωd−2 (1− λδT ) = d−3

4πTR
d−3
H Ωd−2, i.e.

σ =
d− 3

4πT
Ω

1
d−2

d−2A
d−3
d−2

H . (6.9)

Since it was obtained only from (3.36) and (6.2), (6.9) represents an expression for the

absorption cross section which is covariant and valid on every scheme, for generic spherically

symmetric d−dimensional black holes, to first order in λ.
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Several interesting questions can be raised. We can only guarantee that (6.9) is valid

to first order in λ, because that is the order we worked with in our derivation. Interestingly

there is no explicit dependence on λ (or α′) in this expression. Could it still be valid to

higher (maybe arbitrary) orders in α′? Also, could an expression like (6.9) be valid for

non-spherically symmetric black holes?

The 1/T dependence of σ in (6.9) raises the issue of its validity in the T → 0 limit,

i.e. for extremal black holes (we recall that in our derivation we assumed we were dealing

with nonextremal black holes). That could be combined with the AH → 0 limit: the case

of small black holes, where the horizon area vanishes classically and is of order λ. These

questions are to be addressed in future works.

7 Discussion and future directions

In this article, we have obtained a general formula for the low frequency absorption cross

section for spherically symmetric d-dimensional black holes with leading α′ corrections in

string theory, which we applied to known black hole solutions. First we obtained it in a

form (3.36) that can be applied in a specific scheme and coordinate system, but later we

wrote it in a form (6.9) which is covariant and scheme-independent, given in terms of the

black hole area and temperature.

A remarkable fact about our α′-corrected cross section, either in the forms (3.36)

or (6.9), is that it depends exclusively on information computed at the black horizon.

Indeed, as we have seen, only the λ = 0 contribution from the intermediate region affects the

matching (and the final result). At asymptotic infinity the analysis is exactly the same as

without α′ corrections, and close to the horizon, the potential V [f(r), g(r)] given by (2.15)

also vanishes and the only effect of the α′ corrections comes from the approximation (3.1).

This suggests some kind of universality: maybe the low frequency limit of the cross

section is the same not only for minimally coupled massless scalar fields, but also for other

types of fields. In particular, our result for the cross section finally does not depend on the

effective potential and on the α′ corrections that it may contain. This fact, together with

the absence of explicit α′ corrections in (6.9), allows us to go even further and propose that

a result like (6.9) could be valid to higher orders in α′. All these claims should be checked

in future works. A first step would be the generalization of the cross section formula (3.31)

to include next to leading order α′ corrections.

Another general question we have addressed in this work is the validity of the relation

σ = 4GS in the presence of α′ corrections. Indeed, from our discussion of section 5,

we showed that the entropy, to first order in α′, depended exclusively on the classical

α′ = 0 metric, while from (3.31) the absorption cross section depends explicitly on the

α′ corrections to the metric. The examples we have analyzed confirm such discrepancy,

which can be understood with the analysis of section 6. Indeed, as we saw the α′-corrected

entropy can be expressed in terms of the mass or temperature, something which is not

possible with the α′-corrected absorption cross section. This fact clearly shows that the

entropy and the (low frequency) cross section are two distinct quantities; the fact that,
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classically, they are related (up to a factor 4G) is just a coincidence, at least in string

theory.

But there are examples in the literature where the agreement σ = 4GS exists up to

higher orders in α′. In article [17] such agreement was found, to all orders in α′, for funda-

mental strings in the (small) black hole phase (BPS states of heterotic strings compactified

on S1 × T 5). In this article we did not deal with fundamental strings or small black holes,

but this gives us a hint that, in some special cases, the agreement may exist.

A more recent example is in article [18], where the authors analyzed 1/4 BPS black

holes in N = 4 string theory both in d = 4 and d = 5, having in both cases obtained

the agreement σ = 4GS just to first order in α′. The examples we have analyzed here are

not supersymmetric and are in generic d spacetime dimensions. But the agreement found

in [18] allows us to ask a few questions, which for now remain open: does that agreement

hold for generic d dimensions? Does it only hold for supersymmetric black holes? What

could be the minimal amount of supersymmetry for it to eventually hold? We cannot

provide answers to such questions because, as we have mentioned, our results only apply to

non-extremal black holes. In a forthcoming work we will extend the results of this article

to extremal (and, in particular, to supersymmetric) black holes.

From what we have seen, the possibility of the two quantities σ, S having the same

correction would require some relation between the classical α′ = 0 metric and its α′

corrections. That should also be the object of further study.
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A The α
′ corrections to the temperature

In order to compute the temperature T of a black hole given by a metric of the form (2.4),

one first Wick-rotates to Euclidean time t = iτ ; the resulting manifold has no conical

singularities as long as τ is a periodic variable, with a period β = 1
T . The precise smoothness

condition is 2π = limr→RH

β

g−
1
2 (r)

df
1
2 (r)
dr , from which one gets

T = lim
r→RH

√
g

2π

d
√
f

d r
.

In the case f, g are given by (2.9), the temperature comes as

T =
f ′0(RH)

4π

(

1 + λ
fc(RH) + gc(RH)

2

)

. (A.1)
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The α′ correction to the temperature is the same obtained to the absorption cross

section in (3.31), but with opposite sign: when one of these quantities increases, the other

one decreases by the same (relative) magnitude. This means the product σT does not get

α′ corrections to first order.

B An example: the potential for tensor-type gravitational perturbations

with leading α
′ corrections

As we mentioned in the main text, without α′ corrections the equation describing tensor-

type gravitational perturbations of a spherically symmetric metric in d dimensions like (2.4)

is the same as the field equation for H (the same being true for the potential Vcl[f(r), g(r)],

given by (2.16)). That does not necessarily need to be the case in the presence of α′

corrections. Just as an example of a higher order potential, here we show the potential for

tensorial perturbations of a metric like (2.4), but with leading α′ corrections quadratic in

the Riemann tensor, in the context of heterotic string theory, i.e. a solution coming from

the action (2.1), with λ′Y (R) = α′

8 RµνρσRµνρσ.

In a different work [10] we showed that in this case the perturbation variable obeys an

equation like (2.11), with8

FT =
√

fg

(

1 +
α′

4

f ′ − g′

r

)

,

PT = −f
[

(d−2)
g

r
+
1

2

(

f ′+g′
)

+
α′

4r2

(

4(d−4)
g(1−g)

r
+rg′

(

f ′−g′
)

−4gg′+2(d−2)gf ′
)]

,

QT =
ℓ (ℓ+d−3)

r2
f+

(g−f)f ′
r

+
α′

2r2

[

ℓ (ℓ+d−3)

r
f

(

2
1−g
r

+f ′
)

+(g−f)f ′2
]

. (B.1)

From (B.1) and (2.16) we see that the corresponding potential is given by

VT[f(r), g(r)]

= Vcl[f(r), g(r)] +
α′

32r4fg

[

32ℓ(ℓ+ d− 3)f2(1− g)g + 16ℓ(d+ ℓ− 3)f2gf ′r

+3r3g2f ′2
(

f ′ − g′
)

− 2r3fgf ′
(

f ′ − g′
)

g′ − 4r3f2gf ′
(

f ′′ − g′′
)

− 2r3f2gg′
(

f ′′ − g′′
)

+2r3fg2
(

−3f ′f ′′ + 2g′f ′′ + f ′g′′
)

− 4r3f2g2
(

f (3) − g(3)
)

+ 18r2fg2f ′2 − 12r2f2gf ′2

−10r2f2gg′2 − 2r2fg2f ′g′ + 2r2(4d− 13)f2gf ′g′ + 8r2f2g2f ′′ + 8(d− 5)r2f2g2g′′

+4r(d− 4)2f2g2(f ′ + g′) + 8rf2g2(g′ − f ′) + 8(d− 4)rf2g(f ′ + g′ − 4gg′)

+ 16(d− 5)(d− 4)f2g2(1− g)− r3f2f ′2
(

f ′ − g′
)]

, (B.2)

8It is easy to see that, for a solution like (2.9), one has FT = Fcl, as previously mentioned.
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Close to the horizon f, g are given by (3.1), and the potential VT[f(r), g(r)] comes as

VT(r) ≃ r −RH

2RH

[

(d− 2)f ′20 (RH) +
α′

4R2
H

f ′0(RH)
[

4(d− 4)RHf
′2
0 (RH)

+ (8(d− 4) + (3d− 10)fc(RH) + (d+ 2)gc(RH)

+ RH

(

f ′c(RH)− g′c(RH)
))

f ′0(RH) +RH (fc(RH)− gc(RH)) f ′′0 (RH)
]

]

+O
(

(r −RH)2
)

. (B.3)

This means at the precise location of the horizon, VT[f(r), g(r)] vanishes; in the nearby

region it may be neglected.

In this article we consider asymptotically flat black holes which, at infinity, behave like

flat Minkowski spacetime. Here we make the same assumptions as in section 3.2, namely

that at asymptotic infinity, in the metric (2.4), functions f(r), g(r) tend to the constant

value 1 in the limit of very large r, and their derivatives tend to 0 in the same limit.

From (B.2) we see that, asymptotically, VT(r) behaves at most as 1/r2, and therefore it

vanishes in the limit r → ∞. The leading α′ correction behaves as 1/r4 and it also vanishes

in this limit.

We conclude that the potential VT[f(r), g(r)] given by (B.2), which is an example of

a potential including α′ corrections, satisfies all the assumptions we made in sections 3.1

and 3.2.
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