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Figure 1: Proposed workflow of the MuSIC application that combines automated and interactive visual co-registration.

Abstract

In gynecologic cancer imaging, multiple magnetic resonance imaging (MRI) sequences are acquired per patient to reveal
different tissue characteristics. However, after image acquisition, the anatomical structures can be misaligned in the various
sequences due to changing patient location in the scanner and organ movements. The co-registration process aims to align the
sequences to allow for multi-sequential tumor imaging analysis. However, automatic co-registration often leads to unsatisfying
results. To address this problem, we propose the web-based application MuSIC (Multi-Sequential Interactive Co-registration).
The approach allows medical experts to co-register multiple sequences simultaneously based on a pre-defined segmentation
mask generated for one of the sequences. Our contributions lie in our proposed workflow. First, a shape matching algorithm
based on dual annealing searches for the tumor position in each sequence. The user can then interactively adapt the proposed
segmentation positions if needed. During this procedure, we include a multi-modal magic lens visualization for visual quality
assessment. Then, we register the volumes based on the segmentation mask positions. We allow for both rigid and deformable
registration. Finally, we conducted a usability analysis with seven medical and machine learning experts to verify the utility of
our approach. Our participants highly appreciate the multi-sequential setup and see themselves using MuSIC in the future.
CCS Concepts

• Applied computing ! Health informatics; • Human-centered computing ! Visualization design and evaluation methods;

1. Introduction

Endometrial cancer is the most common gynecologic cancer type
in high-income countries and is one of the leading causes of cancer
deaths worldwide [HS16, HSG⇤13, MLC⇤16]. Diagnostic imaging

data often includes different modalities, e.g., computed tomogra-
phy (CT) or MRI, per patient and examination date, depending on
the body area and tumor type. This variety of medical images al-
lows for examining varying tumor characteristics that become vis-
ible in the different modalities [LSBP18]. Radiomic tumor pro-
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filing extracts meaningful tumor features from high-dimensional
multi-modal imaging data with the aim of finding new imaging
biomarkers. These may improve prognostication to tailor ther-
apy [MWLH⇤20]. In addition, radiomic tumor profiling in endome-
trial cancer is promising to predict death by disease and may aid
personalized treatment [Fas18, HHD⇤21, Ber16, HS16]. Further-
more, machine learning algorithms for automated tumor segmen-
tation may allow for expedited radiomic tumor profiling [Hod21].

To use multiple modalities in further processing steps such as
segmentation and radiomic tumor profiling, all images of a single
patient have to be aligned after the acquisition, which is referred to
as co-registration [MWLH⇤20, MBSK16]. Co-registration can ac-
count for organ movements, such as bladder filling in the pelvic
area between the scans, the possible variation in the patient’s lo-
cation in the scanner, and the acquisition angle. Registration and
segmentation belong to the biggest challenges in medical imaging
with substantial potential clinical impact [SDP13]. Machine learn-
ing algorithms are currently state-of-the-art for many registration
and segmentation problems and often lead to remarkable results.
Still, scanning artifacts such as noise due to patient movement or
low resolution, lacking training data due to anatomical variation,
and physiological changes make these tasks challenging [RS14].
These factors often lead to insufficient registration and segmenta-
tion results.

Our collaborators encounter some of these unsatisfying co-
registration results in endometrial and cervical cancer MRI data.
Currently, the data sets are registered based on the DICOM header
data that contains information regarding the patient’s position in
the MRI scanner. Available command-line tools that aim to align
several sequences did not yield sufficient registration results in all
cases and need specific settings depending on both the patient and
sequence. Furthermore, existing interactive tools do not allow for
multi-sequential processing. Different approaches try to automati-
cally find insufficient co-registrations results, one example was pre-
sented by Mörth et al. [MEH⇤22]. These cases can then be reg-
istered, for example using landmark-based approaches which are
among the most accurate ones. However, landmarks are challeng-
ing to set in cancer imaging data. For example, the tumor might
appear differently in the sequences due to imaging physics, and the
sequences might show low contrast and noise in the area of inter-
est [PMEM16, FW01]. To facilitate interactive co-registration of
cancer imaging data where automatic registration methods do not
lead to satisfying results, we propose the MuSIC (Multi-Sequential
Interactive Co-registration) approach. Our workflow is based on a
pre-defined tumor segmentation mask per patient that matches one
of the sequences. The mask is specified manually, or generated us-
ing machine learning approaches [Hod21]. Our main contributions
are the following:

• We present interactive multi-sequential co-registration for cancer
imaging data based on a segmentation mask.

• We enable automatic shape matching as a first fit and manual
shifting of the segmentation mask in multiple sequences simul-
taneously.

• We introduce an interactive magic lens visualization presenting
an alignment preview.

• We integrate co-registration based on landmarks determined

from the segmentation mask shift to allow for fast and accurate
co-registration within one application.

To show the utility of our approach, we evaluated our application
with five experts in gynecological cancer imaging research and
two machine learning experts, using the System Usability Scale
(SUS) [Bro04] and a qualitative evaluation form.

2. Related Work

The survey of Maintz et al. [MV98] introduces basic concepts
regarding medical image registration and reviews existing ap-
proaches based on a broad classification scheme. We present related
work based on individual steps in our workflow and differentiate
between automatic and interactive registration.

Automatic Shape Matching Our registration approach is based
on the alignment of tumor segmentations in two imaging se-
quences. To identify the tumor or another structure of interest in
an image, existing approaches apply various segmentation meth-
ods to segment a target structure independently in various se-
quences and register them in a deformable manner. Segmenta-
tions can be generated based on shape modeling with prior in-
formation [KDSU⇤16], active contours [SFF06, PMWH05], level
sets [TYW⇤03], or deep learning [XN19, CKMK19]. Several de-
formable registration approaches have been proposed in the field
of image-guided surgery [CKMK19, KDSU⇤16] or cardiac imag-
ing [TA13] to account for organ movements. In contrast to existing
approaches, we search for the exact shape of a given segmentation
mask in each sequence and use the single voxels as landmarks for
both rigid and deformable registration.

Automatic Registration Many approaches have been published
that aim for completely automated registration. For example, Fu
et al. [FLW⇤20], as well as Haskins et al. [HKY20] provide a re-
view regarding the use of deep learning for medical image reg-
istration. Deep learning approaches focus either on learning the
similarity metric [CZZ18, SGBM⇤16] or learning transformation
parameters [CW18, KK19, SZ18]. Ferrante et al. [FOGM18] ap-
ply transfer learning to improve the generalization of mono-modal
registration algorithms to new medical domains. In addition, some
methods incorporate landmarks to improve automated registra-
tion [Mah18,VLM⇤17]. Apart from deep learning approaches, sev-
eral publicly available command-line tools for image registration
require the user to specify different parameters based on the data
set [ATS09, KSM⇤09, JBB⇤12]. Solving a registration problem in-
volves many parameters that depend on the body area, contrast,
and image noise, especially in multi-modal and deformable regis-
tration [MV98, SDP13, HKY20]. Therefore, the required settings
for command-line tools can differ between patients and sequences.
Finding a setup for each patient or sequence individually is time-
consuming, as experienced by our collaborators in our endometrial
cancer data set. Supervised learning requires an extensive and high-
quality ground truth data set for sufficient robustness [HKY20].
However, ground truth data in registration is often lacking, as in
our case of endometrial cancer imaging. We need a way to correct
the results interactively for cases where automated methods fail.
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Interactive Registration Several approaches provide interactive
registration methods for medical imaging data to overcome the lim-
itations of automated algorithms. Among those methods, interac-
tive 3D registration tools have been proposed [SHS⇤14, LXN⇤05].
Smit et al. [SHS⇤14] offer 3D interactive manual, landmark-based,
and automatic transformations, and, as well as Li et al. [LXN⇤05],
assign a color to each volume during the rigid registration process
to make them easily identifiable. The color homogeneity is then
used as a similarity measure, assuming that homogeneous regions
are well aligned. In the tool FireVoxel [MR], the user can choose a
region of interest where the registration will be more accurate than
in outer areas. The publicly available tool 3D Slicer [PHK04] of-
fers several modules for image registration such as automatic and
interactive landmark-based registration between two images. Also,
Cheung et al. [CK09] let users set different landmarks during an
iterative registration procedure. Setting manual landmarks is often
used to assess registration accuracy. Especially in deformable regis-
tration, many landmarks are necessary, which involves much man-
ual work. Furthermore, it can be challenging to identify anatomical
landmarks in data that show low contrast or noise in areas of in-
terest [PMEM16, FW01]. We propose to use a segmentation mask
that acts as a set of pre-defined landmarks that can be placed inter-
actively. In the aforementioned approaches, it is possible to regis-
ter exactly one image volume to another. In contrast, our approach
allows for the visualization and processing of multiple sequences
simultaneously.

Visual Registration Evaluation Visualization methods allow for
validating outcomes of individual cases qualitatively [SFJ⇤16]. In
several approaches, checkerboards are used to assess the alignment
of two images [HBR⇤17,CK09,PHK04]. Handels et al. [HWS⇤07]
color-encode the displacement vector field’s magnitude and dis-
played the result on a 3D surface model. This gives information
about the deformation amount but not the registration accuracy.
Schlachter et al. [SFJ⇤16] visualize mono-modal voxel-wise dis-
similarity. Lawonn et al. [LSBP18] review approaches for multi-
modal data visualization, where focus-and-context visualizations
play an important role. Lens visualizations represent an interactive
method to examine different data characteristics. As introduced by
Bier et al. [BSP⇤93], the view of the data is altered within a specific
area. Magic lenses have been applied to the medical field, for exam-
ple in volume visualization for surgical applications [KYWH12],
comparative CT parameter studies [MHG10], blood flow visual-
ization [GNBP11], or comparative visualization of MRI follow-up
data [Dzy13]. In contrast to simple transparent overlays, the advan-
tage of checkerboards is that they are applicable to show similarity
even if the gray value ranges of the modalities differ. However, it
is more challenging to assess registration inaccuracies in homoge-
neous regions [SFJ⇤16]. Furthermore, the accuracy assessment is
limited to a pre-defined grid. Therefore, in contrast to previous ap-
proaches, we use a magic lens to compare multiple sequences to
allow for interactive and localized alignment assessment.

3. Data and Requirements

In the data set from our collaborating cancer imaging researchers,
seven different MR sequences with varying parameters are avail-
able per patient. The MRI sequences and parametric maps in-
cluded are T2, contrast-enhanced VIBE (T1-weighted sequence),

the apparent diffusion coefficient (ADC), diffusion-weighted mag-
netic resonance imaging (b1000), peak enhancement (PE), time to
peak (TTP), and area under the peak enhancement curve (AUC).
PE, TTP, and AUC are derived from a dynamic contrast-enhanced
(DCE) diffusion image and thus represent the same acquisition time
point. We refer to the different MR image series as sequences.

Shifts in Imaging Sequences MRI investigations are a rather slow
scanning method and may take between 30 and 60 minutes depend-
ing on the area of the body being scanned. A crucial aspect of high
imaging quality is that the screened person remains still during the
scanning procedure. Movements can result in image misalignment
between sequences acquired at different time points. Typical move-
ments are translation and rotation, as the scanned person may shift
up, down, left, and right within the scanner. Rotation happens when
the hip is tilted. The endometrium and other tissues surrounding the
tumor are soft tissues. Therefore, bowel movement and bladder fill-
ing during the MRI scanning procedure can cause variations in the
shape of these structures. In contrast, tumorous tissue is rigid and
does not change shape during the investigation. The position of the
tumor can in our case therefore only vary in translation and rotation
parameters [ZRC⇤20, AGM17].

Automatic Co-Registration Our collaborators performed an ini-
tial automatic co-registration using FMRIB’s Linear Imaging Reg-
istration Tool (FLIRT) [JBBS02] without optimization and only
performing geometric alignment using scanner coordinates. How-
ever, the quality of the results varies and the algorithm does not
always find an optimal solution. Our collaborators are currently
working on machine learning-based approaches, but the results are
still insufficient for some cases. Therefore, our collaborators are
in need of an intuitive way to investigate such cases and fix the
co-registration issues with the least possible amount of human in-
teraction.

Requirement Analysis Based on the nested model for visualiza-
tion by Munzner [Mun09], we characterized the problem domain.
We consulted with our collaborating experts in gynecological can-
cer imaging and machine learning research to identify relevant
challenges. We found that radiomic tumor profiling is currently
used in a research setting, but the latest research suggests that it
might also be essential for clinical practice soon [Fas18, HHD⇤21,
Ber16, HS16]. Radiomic tumor profiling over multiple sequences
while only having the segmentation mask available for one of them
is only possible with co-registered data. As of now, the gynecolog-
ical cancer imaging experts did not perform co-registrations. The
machine learning experts worked with automatic solutions that do
not yield satisfying results and found that landmark-based registra-
tion methods are not sufficiently intuitive to be used by radiologists.
Based on our analysis, we formulated the following requirements
for our application together with collaborating experts:

• R1: Automatic co-registration methods should be applied where
possible

• R2: Co-registration should be easy and intuitive, targeted toward
medical researchers

• R3: Quality checking capabilities for registration results should
be included
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Figure 2: Main view with three orthogonal slicing directions in a
T2 sequence and active magic lens visualization showing the refer-
ence sequence before processing.

• R4: Efficient processing and visualization of multiple sequences
at the same time

• R5: The application should be deployable in a medical research
setting

By satisfying these requirements, our application can be an es-
sential asset enabling further research in exploring and analyzing
imaging biomarkers for cancer research. This could enable more
personalized treatment and the best possible outcome for patients.

4. MuSIC Workflow and Interface

In Figure 1, the workflow of MuSIC is illustrated. The workflow
consists of an automatic shape matching (ASM) step that aims
to find a suitable position of the segmentation mask, an interac-
tive magic lens visualization for alignment assessment, interac-
tive shape matching (ISM) for adjustments, and finally, the co-
registration itself. We implemented MuSIC as a web-based appli-
cation to allow for easy deployment (R5). Furthermore, the appli-
cation allows for processing of all sequences of one patient at once
(R4). Therefore, all the steps of the proposed workflow can be con-
ducted within the application (R2).

User Interface The user interface is divided into a toolbar, the
main view that shows one of the sequences in three slicing direc-
tions (see Figure 2), and a grid view with the remaining sequences
shown in one slicing direction (in our case: axial oblique, the direc-
tion in which the sequence has been acquired, see Figure 3) (R4).
This way, we provide sequence details on demand while avoiding
visual overload. In addition, the grid view is further customizable
in size and location of sequences.

Initially, the user uploads the desired sequences and the segmen-
tation mask. User interaction with the slices is based on the inter-
action methods available in a standard radiology workstation, i.e.,
scrolling, zooming, and panning (R2, R5). Before starting the au-
tomatic shape matching (ASM), the user sets a reference sequence
on which the segmentation mask is based and groups derived se-
quences that should be processed together (R4). In our data set, the
same transformations should be applied to the derived sequences
(PE, TTP, AUC), as they represent the same acquisition time point.

Figure 3: Grid view with six sequences. The three sequences with
the bright blue outline are grouped for simultaneous processing.
The sequence on the bottom right (VIBE) is selected as reference
sequence as indicated by the orange outline.

4.1. Automatic Shape Matching

We propose a method to automatically align the segmentation mask
of the reference sequence with the actual tumor borders in the other
sequences, for which no mask is defined (R1). Since the tumor is a
rigid structure in our context, we search for the tumor by adapting
rotation and translation parameters minimizing a cost function.

Pre-Processing To limit the search space, we crop the images to
the area around the original segmentation with a search margin of
15 voxels in each image direction, as determined by our medical
collaborators. A larger shift is unlikely to occur. We then apply
adaptive histogram normalization with 512 bins and a Gaussian
Gradient Magnitude (GGM) filter with s = 1 voxel to enhance the
contrast. We determined these values heuristically. Since the con-
trast around the tumor is very low in some sequences, we define two
values for each sequence by visual analysis to trim the histogram
of the equalized volume to a specific range. These values need to
be defined only once for the data set. Sequences that have been
grouped by the user are processed by adding them up before apply-
ing the other pre-processing steps (R4). Histogram trimming is not
necessary in this case, as the yielded contrast around the tumor by
adding the sequences is sufficient.

Optimization Procedure To optimize our cost function, we use
SciPy’s [Vir20] dual annealing approach. In addition to simulated
annealing, it introduces a local search at accepted positions of the
global search. We initially set the six varying parameters (three for
translation and three for rotation in each direction) to zero since
we assume that the segmentation position can only change slightly
compared to the initial position. We set the bounds, i.e., the min-
imum and maximum range for each parameter, to -15 and +15
voxels for the translation parameters and -30 and +30 degrees for
the rotation parameters, as, according to our medical collaborators,
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larger transformations are unlikely. Following SciPy’s [Vir20] doc-
umentation, the initial temperature is set to 1000, and the visit pa-
rameter to 1.5. These values allow for smaller search steps than the
default values as we expect the optimal position to be in the close
surroundings.

Cost Function To calculate the current cost, we transform the seg-
mentation with a given parameter set p as determined by the dual
annealing approach, yielding the transformed segmentation volume
S. We then calculate the segmentation border area, which we refer
to as the segmentation hull, by computing Shull = Sdilated �Seroded
with a kernel size of 3x3x3 for the morphological operators. This
slightly wider hull allows for variations of the tumor border that
can occur due to varying imaging physics. Then, we extract the
gradient magnitude values from the pre-processed volume V at the
positions of the segmentation hull, smooth it with a Gaussian fil-
ter with s = 1.5 voxels, as determined heuristically, and weigh the
resulting volume by multiplying with V to increases the difference
between low and high magnitude values. We refer to the resulting
weighted volume as Wp . We define the cost function as:

J(p) =�2 · ÂWp

n
+s(Wp),

where n is the number of nonzero voxels of the weighted hull Wp.
p is the parameter vector with the translation and rotation parame-
ters. We define a good fit as a high (first term of the cost function)
and homogeneous (second term) gradient in the sequence at the
borders of the transformed segmentation mask. In the first term, we
compute the sum of the gray values in the weighted segmentation
hull Wp divided by n. Since it is generally lower than the second
term, we weigh it by factor 2. In the second term, we compute the
standard deviation of the weighted segmentation hull Wp to ensure
a homogeneous border.

4.2. Alignment Assessment

To assess the alignment of the segmentation mask with the individ-
ual sequences after the ASM, we propose an interactive magic lens
visualization during the ISM and after registration (R3) (Figure 2).
The magic lens shows the reference sequence around the current
cursor position in a square. It can be used in the grid view and all
slicing directions of the main view. The user can activate the magic
lens and change the opacity of the overlay gradually with the key-
board. Furthermore, the segmentation mask opacity can be adapted
in the toolbar. The magic lens follows the movement of the cur-
sor. Interactions like scrolling and transformation of the segmen-
tation are also possible while the lens is active. Furthermore, the
magic lens updates based on the current segmentation transforma-
tion, which means that the translation and rotation are also applied
to the magic lens (see Figure 1 for an example with slight trans-
lation and rotation compared to Figure 2). This feature enables a
preview of the potential co-registration outcome and aids the align-
ment assessment (R3).

4.3. Interactive Shape Matching

In cases where the ASM does not lead to satisfactory results, the
segmentation position can be adapted interactively by using the
keyboard (R2). The transformations are then applied to the se-
quence under the current cursor position. The segmentation can be

moved in four directions with the four arrow keys. Even though
we represent the data in 2D, the visualization is based on a trans-
formation of the segmentation position in 3D. The transformations
are applied to the slicing direction under the cursor and affect the
transformation in the other slicing directions to maintain a correct
representation. Therefore, moving the segmentation to the side in
the axial oblique direction might result in moving the mask back
or forth in another slicing direction. The same concept applies to
rotation. Several keys can rotate the segmentation around each axis
at both a positive and negative angle. If the user transforms the
segmentation in a sequence part of the grouping, the transforma-
tions are applied to the whole group (R4). To undo transformations,
the transformation state of the segmentation can be set to its initial
state.

4.4. Co-Registration

We use the indices of the segmentation mask as landmarks for reg-
istration. The original indices of the reference segmentation repre-
sent the landmarks in the fixed image, while the user-adapted trans-
formed segmentation indices are the corresponding landmarks of
the moving image. To register the processed sequences to the ref-
erence sequence, we use Elastix [KSM⇤09] and follow the recom-
mendations [KS18] to specify the following settings. If not spec-
ified otherwise, the default settings are used. We use a combina-
tion of the corresponding points metric (for landmark-based reg-
istration) and the advanced Mattes Mutual Information. To ana-
lyze only tumorous tissue, rigid registration would be sufficient.
However, in order to take also surrounding tissue into account, es-
pecially the uterus, also deformable registration is of interest. In
contrast to the tumor, the uterus is a soft structure that can be de-
formed based on bladder filling and intestinal movements. In de-
formable registration, we use a combination of rigid and B-spline
transforms. We set a lower weight to the B-spline component (0.5)
than the default value of 1.0 to avoid strong deformations. This
setting gives a higher weight to the landmarks. We further con-
strain the deformable registration to the area outside the tumor with
binary registration masks. These masks limit the random coordi-
nate sampler to select voxels only in the defined area outside the
tumor. We set the parameters NewSamplesEveryIteration
and UseRandomSampleRegion to true. Furthermore, we use
the B-spline interpolator with N = 3 and the adaptive stochas-
tic gradient descent optimizer. Elastix allows for registration with
both multiple fixed or moving images. We register the sequences
grouped by the user as multiple moving images to the reference
modality (R4). The results are shown to the user by updating the
view. The segmentation position is set to its initial state (as in
VIBE) and should now match the tumor borders. The alignment
quality can be assessed with the help of the magic lens (R3).

5. Implementation

We used React [Wal11] for the frontend and implemented a WebGL
shader written in the OpenGL ES shading language (GLSL ES) to
render the sequences and segmentation data. The renderer, cam-
eras, scenes, and objects are based on Three.js [Dan12]. We read
NIfTI data in JavaScript with the open-source NIfTI reader [LM16]
and facilitate backend requests with the promise-based HTTP client
Axios [Zab14]. For image processing steps in the backend, we

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

85



Tanja Eichner et al. / MuSIC

AUC

b1000

(a) Before ASM (b) After ASM

Figure 4: Results of the automatic shape matching (ASM) (b) in
comparison to the original segmentation position (a) in two se-
quences with the segmentation as transparent red overlay. Blue:
actual tumor borders, yellow: mismatch of the segmentation posi-
tion.

ADC

(a) Before ASM (b) ASM Results (c) After ISM

Figure 5: Results of the automatic shape matching (ASM) (b) in
comparison to the original segmentation position (a) in one se-
quence. In this case, user adaptations were necessary (c). Blue:
actual tumor borders, yellow: mismatch of the segmentation posi-
tion.

use NumPy [Oli06], and SciPy [Vir20] for Gaussian and gradient
magnitude filters. Translation and rotation is carried out by Sim-
pleITK [LCIB13]. For the automatic shape matching, we optimize
the cost function by using SciPy’s [Vir20] dual annealing approach.
As registration framework, we use the Python interface SimpleE-
lastix [MBSK16, KSM⇤09].

6. Case Studies

To demonstrate the utility of MuSIC, we examine the outcomes
of the automatic shape matching and final registration results with
our collaborating radiologists. Furthermore, we compare the regis-
tration outcomes of MuSIC with non-landmark-based registration.
Finally, we depict examples of two patients in our data set and pro-
vide the comparison of all sequences in the additional material.

6.1. Automatic Shape Matching

In Figure 4 and Figure 5, we compare the segmentation position
before and after the automatic shape matching in three different
sequences of one patient. Our automatic shape matching approach
can find suitable positions for the segmentation mask in PE, TTP,

VIBE

(a) VIBE

ADC

(b) Elastix

ADC

(c) MuSIC

Figure 6: Results of rigid registration with Elastix (b) and MuSIC
(c) in comparison with the reference sequence VIBE (a). Blue: ac-
tual tumor borders, yellow: mismatch of the segmentation position.

AUC, and b1000 in most cases of our data set. As mentioned in
Section 4, the PE, TTP, and AUC sequences are derived and pro-
cessed together in our workflow. In the ADC sequence of Patient 1
(see Figure 5), it is visually and algorithmically challenging to dis-
tinguish the tumor from the surrounding uterus tissue. Due to low
contrast at the tumor border, the algorithm terminates with a cost
function minimum which often represents the uterus border, where
we can observe higher contrast. This phenomenon might also oc-
cur in T2 sequences or if the gray value distribution of a sequence
varies from the standard range in our data set. In these cases, man-
ual adaptations can be necessary.

6.2. Registration

After automatic and interactive shape matching by a medical ex-
pert, we applied rigid and deformable registration to our use cases
and visually compared the outcomes with non-landmark-based reg-
istration. For the latter, we used Elastix [KSM⇤09] and follow the
settings as proposed by the Elastix manual [KS18].

Rigid Registration After performing rigid registration with Mu-
SIC, the alignment reflects the mask positions set by the medical
expert. Therefore, the results are accurate for the alignment of the
tumor in all sequences. In contrast, the alignment without land-
marks is often inaccurate, likely because the alignment is based
on structures with high contrast, which is usually the bladder and
the uterus. We show an example in Figure 6.

Deformable Registration To locally transform soft tissue sur-
rounding the tumor, we allow for deformable registration. In
this case, we are mainly interested in the alignment of the
uterus and the tumor itself. We observe unnatural deformations
in deformable registration without landmarks but maintaining
the other settings described in Section 4. Therefore, we adapted
the settings of Elastix following the manual [KS18]. We ap-
ply a higher number of iterations, 2000 instead of 500, as we
use in MuSIC. Even higher values did not yield better results.
Furthermore, the parameter a can be tuned that determines the
amount of deformation applied to the image where higher a
values allow for stronger deformations [KS18]. To adapt this
parameter, we use StandardGradientDescent instead of
AdaptiveStochasticGradientDescent in Elastix. We
show the results of two settings (a = 500 and a = 5000) in Fig-
ure 7 in comparison with the outcomes of MuSIC.

Even though tumors are rigid structures, they can appear slightly
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VIBE

T2

b1000

(a) Reference

(b) Original (c) Elastix 
α = 500

(d) Elastix 
α = 5000

(e) MuSIC

Figure 7: Comparison of deformable registration outcomes between Elastix with two different a settings and MuSIC. Purple: shape of the
uterus in VIBE as overlay over the sequences, blue: actual tumor borders, yellow: mismatch of the segmentation position or uterus border,
green: unnatural deformation of the tumor.

different in the varying sequences due to imaging physics. There-
fore, applying deformable registration without landmarks can re-
sult in tumor deformations that do not resemble the underlying bi-
ological tissue characteristics and alter important tumor informa-
tion. We can observe this phenomenon in the b1000 sequence in
Figure 7. We can avoid these tumor deformations by using seg-
mentation masks as landmarks, and by applying local transforma-
tions mainly to surrounding soft tissue. Additionally, we can see
that a value of a = 500 sufficiently transforms the b1000 sequence
(apart from minor deviations in the tumor area), while T2 would
require stronger deformations. In comparison, a = 5000 aligns T2
better, but the setup applies too strong deformations in b1000. We
also tested values of a between 500 and 5000, but all experiments
yielded results where some sequences were transformed too much
while others would have needed more substantial transformations.
Furthermore, a per-sequence setup would not be sufficient, as the
required settings also change between two patients. Therefore, we
would have to tune the parameters for each patient and sequence
individually to obtain optimal results. In contrast, according to our
medical experts, the results of MuSIC are less sensitive to patient-
and sequence-specific characteristics since the registration is based
on matching landmarks.

7. Evaluation

To show the utility of our approach, we conducted a qualitative user
evaluation with seven expert participants. M1 and M2 are radiol-
ogists and Ph.D. students in gynecological cancer research. Both
were involved during the development of the application. M3 is a
postdoctoral researcher with over ten years of experience in pre-
clinical imaging. M4 is a medical physicist and Ph.D. student, and
M5 is a radiographer with 12 years of experience. M1 to M5 rep-
resent the primary target audience of the application, while ma-
chine learning experts also showed interest in using the tool to co-
register their data without medical experts being involved. There-

fore, we included two machine learning experts (A1 and A2). A1
is a Ph.D. student in machine learning for cancer imaging, and A2
is an associate professor of mathematics with almost 20 years of
experience in the same field who also works on the automation of
co-registration.

At the beginning of the evaluation, we introduced the partici-
pants to the tool and the interaction methods. Participants were en-
couraged to ask questions where needed. Furthermore, we asked
the participants to speak out loud throughout the evaluation and
let us know which features and workflows they favored and which
they would change. After the introduction, the participants pro-
cessed the sequences of one patient of our data set. The partici-
pants used all available features, and we further let them compare
our tool to a landmark-based registration method as provided by
3D Slicer [PHK04]. We encouraged them to compare our magic
lens interaction with the common checkerboard visualization of-
fered by 3D Slicer [PHK04]. After roughly 45 minutes per person,
the participants filled out a specific evaluation form about our ap-
plication consisting of 23 statements and the standardized System
Usability Scale (SUS) introduced by Brooke et al. [Bro04]. The
23 statements are grouped into the following categories: general
statements & interaction (G1-G11), segmentation mask interaction
(S1-S5), outcome evaluation (O1-O3), and comparison to 3D Slicer
(traditional landmark-based co-registration) (C1-C4).

7.1. Evaluation Results

The evaluation results are presented in Table 1. Questions marked
with a star were originally formulated negatively, but in the results,
the scores and the questions are inverted. All participants strongly
preferred our approach as an alternative to setting manual land-
marks. The participants argued that it could be challenging to define
landmarks in pathological data, as the tumor can appear slightly
different in the various sequences due to imaging physics. Using
a mask as a pre-defined landmark is a solution here. The radiolo-
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Table 1: Results of our usability analysis on a 5-point Likert scale, with meaning 1: strongly disagree and 5: strongly agree. Statements
marked with a star are rephrased to the positive form in this table with inverted scores for presentation purposes. In the rightmost column,
average values are presented. The last row reveals the results of the SUS questionnaire.

Statements M1 M2 M3 M4 M5 A1 A2 Avg.

G1 I see myself using MuSIC in the future. 5 5 4 5 5 3 4 4,43
G2 Defining a reference view is clear and intuitive.* 5 5 5 5 5 4 5 4,86
G3 The linked slice view interactions (zooming, scrolling, moving) are intuitive. 5 2 5 5 5 5 5 4,57

G4 Reordering the sequences in the grid view is helpful to visualize related modalities next to each
other.

4 4 5 5 5 4 5 4,57

G5 It is helpful to resize the sequences in the grid view.* 5 5 5 4 4 5 5 4,71
G6 Switching one sequence of the grid to the main view provides me more details when needed. 5 4 5 5 5 5 5 4,86

G7 Grouping multiple sequences is quick and intuitive. 4 5 4 5 5 4 5 4,57
G8 After grouping multiple sequences it is clear which sequences are grouped.* 5 5 5 5 4 5 5 4,86

G9 Activating and interacting with the magic lens is easy and intuitive.* 5 5 5 5 5 5 5 5
G10 The magic lens helps me to determine differences in tumor position between sequences.* 5 5 5 5 5 5 5 5
G11 It is easier to assess differences in tumor position with the integrated visualization of two se-

quences via the magic lens than having two sequences next to each other.
4 3 5 5 4 5 5 4,43

S1 Moving the segmentation in x, y and z direction using the keyboard is intuitive. 5 5 5 5 5 4 5 4,86
S2 Rotating the segmentation using the keyboard is intuitive. 5 5 4 5 5 5 3 4,57
S3 The possibility to change the opacity of the segmentation helps me to determine the segmenta-

tion’s fit.*
5 5 4 5 5 5 5 4,86

S4 The three slicing directions in the main view help me to understand the exact position in 3D. 3 5 4 5 5 5 5 4,57
S5 It is helpful being able to reset the segmentation movement of the currently processed se-

quence.*
5 5 5 5 5 5 4 4,86

O1 Based on the updated slice view for each sequence and the original segmentation position, I can
see if the registration is performed correctly.

5 5 5 5 5 5 5 5

O2 The magic lens is useful to check the quality of the alignment after registration.* 5 5 5 5 5 4 5 4,86
O3 It is useful to be able to further adapt the registration if needed. 5 5 5 5 5 5 5 5

C1 I prefer to process multiple sequences at a time because it is easier to keep track of differences
in the tumor position.

5 5 4 5 3 4 5 4,43

C2 I think it saves time to visualize and process multiple sequences at a time.* 5 5 4 5 5 4 5 4,71
C3 It is helpful to move a predefined segmentation mask instead of setting landmarks in pathologi-

cal data.
5 5 5 5 5 5 5 5

C4 I prefer the magic lens visualization over a checkerboard.* 5 5 5 5 5 5 5 5

SUS System Usability Scale 97.5 100 97.5 100 97.5 85 90 95.4

gists also favor grouping sequences and processing them simultane-
ously if needed. All experts agreed on the clear structure and layout
without visual overload. M5 has been using multiple tools for seg-
mentation and registration and thinks MuSIC is very intuitive and
does not have a steep learning curve. The customizable layout was
rated favorably. One participant would like a clearer visualization
of where to click to drag or resize a component in the customizable
layout. M2 would prefer less sensitive zooming in the slice-view in-
teractions. Generally, our participants thought the interaction with
the segmentation mask via keyboard was intuitive.

The participants expressed different ideas and wishes. The im-
ages in our data set are acquired in an axial oblique direction, per-
pendicular to the central axis of the uterus. One of our radiologists
would prefer to see the other two slicing views as real axial and
sagittal slices according to the body axes (slicing from the front
to the back and from left to right instead of oblique slicing), as this
would be more intuitive. Furthermore, three participants would like
orientation lines indicating the current position in the three slicing
directions. Especially for translation, two participants expressed the

idea of additionally having mouse interaction to reduce the time
needed for more extensive translations.

Our participants were enthusiastic about MuSIC and hope to use
it soon to improve co-registration in their research projects. Fur-
thermore, four of them expressed the wish to use it for not only
co-registration but also for simultaneous segmentation. Currently,
there are no tools available that include intuitive multi-modal seg-
mentation visualization methods. Therefore, they mainly draw the
segmentation on one of the sequences. When using our tool, how-
ever, they found that some parts of the segmentation might re-
quire adaptations because several tissue characteristics become vis-
ible throughout the various sequences. In these cases, they would
strongly appreciate being able to adapt the segmentation mask.

System Usability Scores The system usability scores are shown at
the end of Table 1. The lowest value is 85, and the highest value is
100. On average, our application reached a SUS of 95,4. According
to Bangor et al. [BKM09] the SUS can be interpreted in three ways,
the acceptability range, a grade scale like in education, and the ad-
jective rating scale. MuSIC has an acceptance rate of Acceptable
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(best possible), grade scale of A (best score), and adjective rating
of Excellent (best possible score).

Among the medical experts, we achieved high SUS rating as the
tool is customized to their used workflows and tooling. For our ma-
chine learning experts, this score is slightly lower. One of them
thinks medical experts should perform the registration, while the
one with more experience would like to use the tool himself. He
states that their automated segmentation algorithms could strongly
benefit from better co-registration, even if their manual segmen-
tation fitting includes more errors than if performed by a medical
expert.

7.2. Evaluation Conclusion

Overall, we received very positive feedback for our application.
Considering the results from Table 1, we infer that MuSIC has the
potential to be a valuable tool for multi-sequential co-registration.
Our participants especially appreciated the magic lens in addition
to a side-by-side view for a more detailed comparison, the outcome
preview, and a final visual evaluation of the results. Gynecological
cancer imaging experts and machine learning experts would like to
use it in the future to enhance their data quality and enable radiomic
tumor profiling research across imaging sequences.

8. Conclusion and Future Work

We present MuSIC, a web-based approach that allows radiologists
to interactively co-register multi-modal cancer images by adjusting
the position of pre-defined tumor segmentation masks. We propose
an automatic search of the optimal segmentation positions in the
other available imaging sequences by a dual annealing optimiza-
tion. Users can interactively adapt the resulting positions by trans-
lating and rotating the masks. We support the user in this task with a
multi-modal magic lens visualization that enables a preview of the
co-registration results. Finally, we register the sequences based on
the segmentation transformations and use the corresponding vox-
els as landmarks. We allow for both rigid and deformable regis-
tration. In contrast to existing approaches, we apply local transfor-
mations mainly outside the tumor due to our landmark-based ap-
proach, which avoids unnatural deformations and better resembles
the biological conditions of a rigid tumor and surrounding soft tis-
sue. From our usability analysis, we conclude that MuSIC can be a
valuable application for improving co-registration results. Our par-
ticipants especially appreciate the intuitive interface, interaction,
and magic lens. Our medical experts see themselves using MuSIC
in the future. The sequences used in endometrial cancer research
might differ from other tumor types. However, our medical experts
believe that the tool is useful for other application fields as well and
the workflow is suitable for different modalities and sequences. For
other data sets, we would have to adapt the settings for the auto-
matic shape matching.

One possible line of future work could be to allow for segmenta-
tion mask adaptation or even interactive segmentation from scratch
in the same environment. Furthermore, a neural network approach
could replace the automatic shape matching based on dual anneal-
ing, where the segmentation masks placed by an expert user could
be used as training data, for example in an active learning context.
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