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A potential relationship between dysregulation of immune/inflammatory pathways and cognitive impairment has been suggested in
severe mental illnesses (SMI), such as schizophrenia (SZ) and bipolar (BD) spectrum disorders. However, multivariate relationships
between peripheral inflammatory/immune-related markers and cognitive domains are unclear, and many studies do not account for
inter-individual variance in both cognitive functioning and inflammatory/immune status. This study aimed to investigate covariance
patterns between inflammatory/immune-related markers and cognitive domains and further elucidate heterogeneity in a large SMI and
healthy control (HC) cohort (SZ= 343, BD= 289, HC= 770). We applied canonical correlation analysis (CCA) to identify modes of
maximum covariation between a comprehensive selection of cognitive domains and inflammatory/immune markers. We found that
poor verbal learning and psychomotor processing speed was associated with higher levels of interleukin-18 system cytokines and beta
defensin 2, reflecting enhanced activation of innate immunity, a pattern augmented in SMI compared to HC. Applying hierarchical
clustering on covariance patterns identified by the CCA revealed a high cognition—low immune dysregulation subgroup with
predominantly HC (24% SZ, 45% BD, 74% HC) and a low cognition—high immune dysregulation subgroup predominantly consisting of
SMI patients (76% SZ, 55% BD, 26% HC). These subgroups differed in IQ, years of education, age, CRP, BMI (all groups), level of
functioning, symptoms and defined daily dose (DDD) of antipsychotics (SMI cohort). Our findings suggest a link between cognitive
impairment and innate immune dysregulation in a subset of individuals with severe mental illness.

Molecular Psychiatry (2023) 28:1284–1292; https://doi.org/10.1038/s41380-022-01924-w

INTRODUCTION
Schizophrenia (SZ) and bipolar (BD) spectrum disorders are complex
severe mental illnesses (SMI) with shared genetic risk factors and
neurobiological mechanisms [1]. Cognitive impairments are pre-
valent and considered a core feature of SMI [2]. These deficits may
precede the onset of mental illness [3–5], often persist throughout
the illness course [6, 7], and predict poor clinical and functional
outcomes [8–11]. Although cognitive impairments are less severe in
BD than in SZ, there is substantial heterogeneity within diagnostic
categories [12, 13]. It is unclear what underlies the variation in
cognitive functioning in SMI, though it is likely due to the complex
interplay between genetic susceptibility, biological mechanisms, and
environmental factors [14].
One potential biological correlate to cognitive impairment is

systemic immune abnormalities such as dysregulated inflamma-
tory pathways. Chronic, low-grade inflammation and immune
activation is a risk factor for cognitive impairment in the general
population [15–18]. Furthermore, dysregulated inflammatory

pathways have been associated with the pathophysiology of
SMI [19, 20]. Evidence of immune involvement is supported by
genome-wide association studies (GWAS) identifying immune-
related genotypes [21–23], and observations of dysregulated
levels of inflammatory/immune markers in SMI [20, 24–27].
Such observations have been linked to the more frequent
occurrence of somatic comorbidities, particularly cardiovascular
disease [28, 29]. Importantly, inflammatory and immune-related
processes may influence the central nervous system (CNS)
through alteration of the blood-brain barrier (BBB) and modula-
tion of immunocompetent brain cells such as astrocytes and
microglia [30–33]. Experimental studies indicate that abnormal
glial cell activation may impair neuronal development and
homeostasis [34–37]. Thus, it has been suggested that dysregu-
lated immune and inflammatory processes may contribute to
cognitive impairments in SMI [38, 15–17].
A recent meta-analysis however, only showed weak associations

between immune activation and cognition in case-control SMI
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studies [18]. Notably, previous studies have focused on individual
markers, neglecting the complex interaction between different
inflammatory and immune-related signalling systems [39]. Further-
more, recent studies indicate substantial inter-individual differences
and potential subgroups of cognitive and inflammatory/immune
profiles, which case control studies fail to detect [13, 16, 40]. Such
findings are promising as identifying subgroups could help
determine who may benefit from personalized treatments.
Recent work has identified subgroups based on comprehensive

assessment of inflammatory/immune markers [41–45]. These
studies have consistently identified two inflammatory subtypes,
with a higher frequency of SMI and healthy controls (HC) in the
high and low subtype, respectively. Moreover, the high inflamma-
tion subtype in SMI has been associated with poorer response to
antipsychotic treatment, greater cortical thickness, and cognitive
impairment, but with no differences in symptom severity
[16, 41, 43, 44, 46, 47]. While these studies have increased our
knowledge of inflammatory subtypes in SMI, interpretation and
clinical relevance is limited due to low sample sizes.
Identifying subgroups based on biological data alone could

capture variability unrelated to core SMI features such as cognitive
functioning. One solution is to investigate immune/inflammatory
markers that share variance with cognition [48]. To our knowl-
edge, no previous studies have identified subgroups based on
both cognitive functioning and inflammatory/immune markers in
SMI. This could help elucidate whether cognitive impairment and
elevated levels of immune/inflammatory markers co-occur. This
approach has shown merit in SMI studies based on other
biological and behavioral data [49, 50], using canonical correlation
analysis (CCA), which is a dimension reduction technique that can
identify multivariate associations between two sets of variables.
Output from CCA can subsequently be used to identify subgroups
that have potential clinical relevance [49].
The present study aimed to further elucidate the association

between cognitive functioning and inflammation/immune activation
in SMI and investigate heterogeneity across diagnostic categories.
Using a novel multivariate approach, CCA, we investigated patterns
of covariance between cognitive domains and a broad range of
inflammatory/immune markers in a large SMI and HC cohort. This
approach has the potential of shedding light on immune- and
inflammatory pathways relevant for cognitive functioning. We then
applied hierarchical clustering on their patterns of covariance to
investigate heterogeneity across diagnostic categories. Here we
include nine core cognitive domains that are sensitive to the range
of cognitive impairments in SMI [6]. We investigate a large array of
both novel and previously established immune/inflammatory
markers associated with SMI that may link peripheral and
neuroinflammation. These include markers related to neuroinflam-
mation, BBB integrity, cell adhesion molecules (CAMs) that facilitate
migration of leukocytes across the BBB, defensins secreted by
neutrophils that may modulate innate and adaptive immune
responses within the brain and potentially cause collateral damage
to the BBB, chemokines that may promote migration to, and across,
the BBB, and markers reflecting both adaptive and innate immunity
including markers of the interleukin (IL)-18 family as part of the
inflammasome system. We address previous concerns related to
CCA and clustering techniques [48, 51] by performing cross-
validation and stability analyses to evaluate model performance.

METHODS
Sample
The current study is part of the ongoing Thematically Organized Psychosis
(TOP)-study at the Norwegian Center for Mental Disorders Research
(NORMENT) aimed at investigating the underlying mechanisms of SMI.
Amongst other themes, the study evaluates specific research questions on
the role of inflammation and immune activation in SMI, and the current
study is part of this aim. Participants meeting the Diagnostic Manual of

Mental Disorders (DSM)-IV criteria for SZ or BD spectrum disorders are
recruited from psychiatric units (out-patient and in-patient) in the larger
Oslo area. The public health care system in Norway offers treatment to all
individuals with mental health problems within a given catchment area,
resulting in a relatively high degree of patient representativity in the TOP-
study. HC from the same catchment area are randomly selected through
statistical records and invited by letter to participate. Exclusion criteria for all
participants are: (1) outside the age range 18–65, (2) previous moderate to
severe head injury, (3) severe somatic or neurological disease interfering
with brain functioning, (4) not fluent in a Scandinavian language, and (5)
pronounced intellectual disability (IQ < 70). In addition, HC were screened
for drug abuse the past 12 months, current or previous history of mental
illness, and first-degree relatives with SMI. For the current study,
participants with signs of acute infections were excluded (CRP > 20mg/L).
The final sample with available cognitive and inflammatory/immune marker
data included a total of 1402 individuals with SZ (n= 343) and BD (n= 289)
spectrum disorders, and HCs (n= 770). Data was collected between 2004
and 2018. The study was conducted in accordance with the Declaration of
Helsinki and approved by the Regional Ethics Committee, and all
participants provided written informed consent.

Clinical assessments
Diagnoses were set by trained clinical psychologists or medical doctors using
the Structured Clinical Interview for DSM-IV axis 1 disorders (SCID-I) [52], and
included schizophrenia (n= 175), schizoaffective (n= 43), schizophreniform
(n= 31), psychosis not otherwise specified (NOS, n= 94), bipolar I (n= 173),
bipolar II (n= 103) and bipolar NOS (n= 14) disorders. Current positive,
negative, disorganized, excited, and depressive symptom levels were
assessed with the Positive and Negative Syndrome Scale (PANSS) [53, 54],
and manic symptoms were assessed with the Young Mania Rating Scale
(YMRS) [55]. Level of functioning was assessed using the split version of the
Global Assessment of Functioning scale (GAF) [56], including symptoms
(GAF-S) and function (GAF-F). Age at onset (AAO) of illness was defined as the
age of the first SCID-verified psychotic episode for schizophrenia spectrum
disorders and manic/hypomanic episode for bipolar spectrum disorders.
Duration of illness was estimated by subtracting the AAO from age at
assessment. All participants underwent physical examination with blood
sampling including measurements of height and weight for calculation of
body mass index (BMI). Clinical interviews, physical examination and
cognitive testing all occurred within 35 days. The defined daily dose (DDD)
of psychopharmacological treatment (antipsychotics, antidepressants, anti-
epileptics and lithium) was estimated according to guidelines from the World
Health Organization Collaborating Center for Drug Statistics Methodology
(https://www.whocc.no/atc_ddd_index). Somatic medication use (including
anti-inflammatory/immunomodulatory; yes/no) in the SMI group is provided
in Supplementary Table 1.

Cognitive assessments
Cognitive assessment was administered by clinical psychologists (clinical
groups) and trained research personnel (HC). We used two test batteries:
Battery 1 (from 2004–2012) and Battery 2 (from 2012–2018). To ensure a
comprehensive selection of cognitive domains and the highest possible N,
corresponding tests from the two batteries were merged to cover nine
domains in addition to intellectual functioning: Intellectual functioning was
assessed using the Matrix Reasoning and Vocabulary subtests of the
Wechsler Abbreviated Scale of Intelligence (WASI) [57]. Fine-motor speed
was assessed with the Grooved Pegboard test [58], Psychomotor processing
speed with the Digit-Symbol Coding task from the Wechsler Adult
Intelligence Scale (WAIS-III) [59] or the Digit Symbol task from the MATRICS
Consensus Cognitive Battery (MCCB) [60, 61]. Mental processing speed
(without a motor component) was measured with the color naming and
reading subtests from the Color-Word Interference test, Delis Kaplan
Executive Functioning System (D-KEFS) [62]. Attention was measured using
Digit Span forward from the WAIS-III. Verbal learning was measured using
total recall from the California Verbal Learning Test (CVLT-II) [63], or the
Hopkins Verbal Learning Test- Revised (HVLT-R) from the MCCB. Verbal
memory was measured using long-delay free recall from the CVLT-II, or
delayed recall from HVLT-R [64]. For Semantic fluency the Category fluency
subtest from the Verbal Fluency tests in D-KEFS or MCCB were used.
Working memory was measured using the total score from the Letter
Number Sequencing tests from MCCB or WAIS-III. Finally, cognitive control
was assessed using the subtests inhibition and inhibition/switching from
the Color-Word Interference Test in D-KEFS. See Supplementary Table 2 for
descriptives of tests in Battery 1 and Battery 2.
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Peripheral inflammatory and immune markers
Blood was sampled from the antecubital vein in EDTA vials, stored at 4 °C
overnight, before isolation of plasma that was stored at −80 °C. Average
freezer storage time was 6 years (range 1–14), with shorter duration in HC
(included as covariate). Markers associated with neuroinflammation
included serpin family A member 3 (SA3), alpha-2-macroglobulin (A2M),
B-cell activating factor (BAFF), and A proliferation-inducing ligand (APRIL).
Neuronal-glial markers reflecting neuroimmune modulation and related to
BBB integrity were S100 calcium binding protein B (S100b), furin, glial
fibrillary acidic protein (GFAP), neuron specific enolase (NSE/ENO2). The
CAMs included were mucosal vascular addressin cell adhesion molecule-1
(MAdCAM-1), junctional adhesion molecule-A (JAMA), intercellular adhe-
sion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and
P-selectin (PSEL). The IL-18 system markers analyzed were IL-18 and its
binding protein (IL-18BP), as well as IL-18 receptor 1 (IL-18R1), and IL-18
accessory protein (IL-18RAP) reflecting systemic inflammasome activity.
The defensins were human neutrophil peptides 1–3 (HNP1–3), beta
defensin 1 (BD-1) and beta defensin 2 (BD-2). Lastly, the chemokines
included growth-regulated oncogene alpha (GROα/CXCL1), stromal cell-
derived factor 1 alpha (SDF1α/CXCL12), eotaxin (CCL11), and regulated
upon activation normal T-cell expressed and secreted (RANTES/CCL5).
Case-control studies on CAMs, NSE, BAFF, APRIL and IL-18 system
components, as well as composite scores based on all markers with
overlapping samples have been previously published [65–69].
Plasma levels of the above biomarkers were measured in duplicate by

enzyme immunoassays (EIA) by applying commercially available anti-
bodies (R&D Systems, Minneapolis, MN, USA) in a 384-format using a
combination of SELMA (Jena, Germany) and a BioTek (Winooski, VT, USA)
dispenser/washer. Absorption was read at 450 nm with wavelength
correction set to 540 nm using an ELISA plate reader (Bio-Rad, Hercules,
CA, USA). All EIA’s had intra- and inter-assay coefficients <10%. A validation
of the stability of the markers regarding effects of diurnal and postprandial
variation has been published previously [69] and in Supplementary Table 3,
we show data from 4 samples exposed to 4 °C for 24 h before processing,
indicating marginal effects of storage.

Statistical procedure
Data preprocessing. All preprocessing, statistical analyses and visualiza-
tion of results were conducted in the R- environment (https://www.r-
project.org/; v.4.0.3; R-packages reported in Supplementary methods 1).
We used a complete-case approach for the cognitive tests which were
z-score standardized and some were combined to create the relevant
cognitive domain. The inflammatory/immune markers were standardized,
outliers removed and replaced with NA using 1.5 x IQR below or above the
25th and 75th percentile, respectively. Missing data on the biomarkers
were imputed using Multiple Imputation by Chained Equations (MICE),
with predictive mean matching (m= 5). No variable had >15% missing
data (Supplementary Table 4 for missing per variable; Supplementary Fig. 1
for MICE output). One-way analyses on plasma levels of the measured
inflammatory/immune markers and cognitive domain test scores are found
in Supplementary Tables 5, 6. Sample and clinical characteristics were
compared across groups using permutation (n= 10,000) based t-tests and
one-way analysis of variance (ANOVA) for continuous variables, and chi-
squared tests for categorical variables.

Canonical correlation analysis. We applied canonical correlation analysis
(CCA) to identify patterns of covariation between cognitive functioning
and inflammatory/immune markers [70]. The new linear combinations (i.e.
canonical variates) of the variables generated by the CCA reflect modes of
covariance (i.e. canonical variate pairs) between the variable sets. The
significance of each mode was assessed by permutation testing
(n= 10,000), repeating the CCA on the entire sample for each permutation
by randomly shuffling the rows of the inflammatory marker data. The
participant loading scores (i.e. mode weights) for the cognitive and
inflammatory/immune canonical variates on significant modes were used
for interpretation, plotting and in further analyses to investigate the
presence of subgroups in the data. Further details on CCA and permutation
testing are found in Supplementary Methods 2.

Out-of-sample cross-validation. To get a more unbiased estimate of the
performance of the CCA model in an out-of-sample variable set, we
performed a 10-fold cross-validation procedure with 100 repetitions. For
each iteration, a new fold was allocated as the test set (20% of the
participants), and the remaining 80% of the participants (training set) was

submitted to CCA. We then calculated the average canonical correlation
from the training set and applied it to the out-of-sample test set to assess
generalizability.

Stability of canonical loadings. The stability of the canonical loadings (i.e.
contribution of each variable on significant modes) was examined
following the procedure reported by Dinga and colleagues [48], using
their shared R-code at github (https://github.com/dinga92/niclin2019-
biotypes). We resampled the data, using their delete-one jack-knife
procedure, and replotted the distribution of the canonical loadings for
each resample to assess the stability of the loadings.

Assessing the influence of covariates on significant modes. Associations
between individual loading scores for canonical variates and diagnosis (HC,
BD, SZ) were assessed using linear regression, adjusting for age, sex, DDD of
psychopharmacological treatments (antipsychotics, antidepressants, antiepi-
leptics and lithium), and BMI, and freezer storage time (where relevant). In
addition, as we wanted to pinpoint specific inflammatory pathways as
reflected by the wide array of inflammatory markers, we also adjusted for
CRP, as a robust marker of non-specific subclinical inflammation.

Hierarchical clustering. We performed hierarchical clustering to investi-
gate the presence of subgroups in the cognitive and inflammatory/
immune canonical variates by generating a distance matrix using the
Euclidean distance between the loading scores. To minimize the total
within cluster variance, the agglomerative coefficient for several linkage
methods (average-linkage, single-linkage, complete-linkage, and Ward’s
linkage method) was evaluated. The optimal number of clusters was
determined by inspecting the corresponding dendrogram, the elbow
method and the average silhouette index. Pairwise-comparisons of clusters
with inflammatory/immune marker levels, cognitive domains and demo-
graphic characteristics were performed using permutation-based t-tests
(Bonferroni corrected).

Clustering significance and stability. The significance of the observed
silhouette index was tested using a previously reported procedure [48].
Briefly, we first simulated a bivariate Gaussian distribution by taking random
samples (n= 1000) of the covariance matrix for the canonical variates. Next,
we applied hierarchical clustering to each random sample and the highest
silhouette index was obtained. We then compared the number of times the
silhouette index was smaller for the null distribution, compared to the
observations on non-simulated data. Clustering stability was assessed using a
bootstrapping resampling procedure. Replicates of the loading scores from
the CCA were generated by randomly picking out observations and then
replacing them (n bootstraps= 1000). Hierarchical clustering was performed
on each bootstrapped resample. We then computed the Jaccard similarity
index ranging from 0–100% and considered an index >0.7 as stable.

RESULTS
Sample demographics
Sample demographics are provided in Table 1.

Canonical correlation analysis (CCA)
CCA significance and out-of-sample cross-validation. The CCA
revealed two significant modes of covariation between the
cognitive and inflammatory/immune markers after permutation
testing. The first mode had a canonical correlation of 0.34
(p < 0.001), and the second mode had a canonical correlation of
.22 (p < 0.001). The null distribution of the canonical correlations
from the permutation test is visualized in Supplementary Fig. 2.
Cross-validation showed that the first mode performed better on
unseen data (canonical correlation: meantraining= 0.34, meantest=
0.26), compared to the second mode where the canonical
correlation was substantially lower (meantraining= 0.22, meantest=
0.09). Due to poor performance of the second mode in the out-of-
sample variable set, suggestive of low generalizability, we only
considered the first mode moving forward. The variables in each
variable set with the largest contributions to the canonical
correlation are depicted in Fig. 1A, B.
The significant mode of covariation captured verbal learning

and psychomotor processing speed which was correlated with a
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combination of markers of innate immune activation including IL-
18, IL-18BP, BD-2 and VCAM-1, with 11% of variance explained.
The directionality of the loading scores and the positive
correlation indicates that as loading scores decrease on both
canonical variates, there is lower cognitive functioning and more
severe immune dysregulation (except VCAM-1), including higher
inflammasome activation (higher circulating levels of IL-18 system
cytokines). Likewise, as loading scores increase, there is higher
cognitive functioning and lower degree of immune activation. The
scatter plot of the individual loading scores for each canonical
variate (Fig. 1C), indicates inter-individual heterogeneity and
potential subgroups. Small perturbations in the data by leaving
one participant out of the CCA did not cause large variations in
the canonical loadings, suggesting robust loadings even in the
presence of outliers (Supplementary Fig. 3).

Influence of covariates
We next investigated the association between the loading scores for
the cognitive canonical variate and diagnosis, while controlling for
age, sex and DDD of psychopharmacological treatment (Fig. 1C, D).
Both the BD group (loading score estimate=−0.35 ± 0.07, t=−4.9,
p< 0.001) and SZ group (loading score estimate=−0.97 ± 0.07,
t=−13.7, p< 0.001) had significantly lower loading scores on the
cognitive canonical variate relative to the HC group. The same
pattern was observed for the inflammatory/immune canonical
variate for both BD (loading score estimate=−0.41 ± 0.07,
t=−5.2, p< 0.001) and SZ (loading score estimate=−0.70 ± 0.08,
t=−8.5, p< 0.001), also after controlling for CRP, BMI, and freezer
storage time.

Hierarchical clustering
Clustering structure and significance. Out of the linkage methods
evaluated, Ward’s came out with the highest agglomerative

coefficient (0.99). A 2-cluster solution had the highest average
silhouette index (0.37), which was also indicated by visual
inspection of the corresponding dendrogram and the elbow
method (Supplementary Fig. 4). Using a previously described
simulation approach [48], the average silhouette index was
statistically significant (p= 0.03), indicating a presence of clusters
in the data. The stability analysis suggested a relatively robust
cluster assignment, with an average Jaccard similarity Index ~0.73
(73% overlap) for cluster 1, and ~0.77 (77% overlap) for cluster 2.
The first cluster identified a subgroup of participants (total n= 625;

SZ= 264 [76%], BD= 160 [55%], HC= 201 [26%]) with negative
loading scores on both the cognitive and inflammatory/immune
marker canonical variates, whereas the second cluster (total n= 777;
SZ= 79 [24%], BD= 129 [45%], HC= 569 [74%]) was characterized
by positive loading scores (all p < 0.001). The first subgroup (cluster 1)
was characterized by higher IL-18, IL-18BP and BD-2 levels, lower
VCAM-1 levels, and lower cognitive scores on verbal learning and
psychomotor processing speed relative to the subgroup in cluster 2
(all p < 0.001). See Fig. 2 for differences across clusters. Next, we
investigated differences between the clusters across demographic
and clinical data (SMI only). The subgroup in cluster 1 had lower IQ
and years of education, and higher age, CRP, and BMI, relative to the
subgroup in cluster 2 (all p< 0.001). Among the participants with SMI,
the subgroup in cluster 1 had lower functioning (GAF-S, GAF-F), more
positive, negative, and disorganized symptoms and used a higher
DDD of antipsychotics compared to the subgroup in cluster 2 (all
p< 0.001). See Table 2 for comparisons.

DISCUSSION
In a large SMI and HC cohort, we identified shared covariance
between verbal learning and psychomotor processing speed and
markers of innate immune activation, including IL-18, IL-18BP, BD-

Table 1. Sample demographics.

SZ (N= 343) BD (N= 289) HC (N= 770) p-value Group comparisons

Age 30.2 (10.2) 32.8 (11.5) 32.9 (9.1) p < 0.001 SZ < HC, BD

Sex (m/f) 188/155 114/175 423/347 p < 0.001 SZ, HC ~ BD

Education (years) 12.3 (2.3) 13.6 (2.2) 14.5 (2.2) p < 0.001 SZ < BD < HC

WASI IQ (2-subtests) 101 (13.6) 109 (11.8) 113 (10.4) p < 0.001 SZ < BD < HC

BMI (kg/m2) 26.3 (5.5) 25.9 (4.6) 24.7 (3.7) p < 0.001 SZ, BD > HC

CRP 3.3 (3.5) 2.7 (3.0) 2.2 (2.7) p < 0.001 SZ > HC, BD

PANSS Negative 13.4 (5.8) 8.4 (3.4) p < 0.001 SZ > BD

PANSS Positive 9.8 (4.2) 5.8 (2.8) p < 0.001 SZ > BD

PANSS Disorganized 5.6 (2.6) 4.3 (1.6) p < 0.001 SZ > BD

PANSS Excited 5.7 (2.1) 5.2 (1.6) p < 0.001 SZ > BD

PANSS Depressed 8.3 (3.3) 7.7 (2.8) ns -

YMRS 4.3 (4.8) 3.4 (4.8) ns -

GAF Symptom 45.1 (13.1) 57.9 (11.2) p < 0.001 BD > SZ

GAF Function 45.4 (13.0) 55.8 (13.1) p < 0.001 BD > SZ

Age at onset 23.8 (8.6) 25.2 (9.5) ns -

Duration of illness (years) 6.7 (8.0) 7.4 (9.2) ns -

Antipsychotics, DDD 1.0 (0.9) 0.4 (0.7) p < 0.001 SZ > BD

Antidepressants, DDD 0.4 (0.8) 0.4 (0.8) ns -

Antiepileptics, DDD 0.1 (0.2) 0.3 (0.5) p < 0.001 BD > SZ

Lithium, DDD 0.0 (0.1) 0.2 (0.5) p < 0.001 BD > SZ

Total, DDD 1.5 (1.4) 1.3 (1.2) ns -

Presented are means and standard deviations and results from pairwise comparisons.
HC healthy controls, SZ schizophrenia, BD bipolar disorder, WASI Wechsler Abbreviated Scale of Intelligence, BMI body mass index, CRP C-reactive Protein,
PANSS Positive and Negative Syndrome Scale, YMRS Young Mania Rating Scale, GAF Global Assessment of Functioning scale, DDD defined daily dosage.
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2, and VCAM-1. Furthermore, the covariance patterns indicated
two transdiagnostic subgroups with distinct cognition—immune
dysregulation with differing demographics and clinical severity.
Our findings suggest innate immune activation and cognitive
impairment co-occur in a subgroup predominantly consisting of
SMI, highlighting the importance of considering inter-individual
variance in future research.
The cognitive domains that shared covariance with markers of

innate immune activation, verbal learning and psychomotor
processing speed, are among the most affected cognitive domains
in SZ and BD [71–76]. Impairments are evident in clinical high-risk
individuals with subsequent conversion to SMI [77] and potentially
qualify as endophenotypes in both SZ and BD [71, 78]. A recent
meta-analysis demonstrated modest correlations between IL-6 and
it’s downstream mediator CRP and impairment in both of these
domains [18]. However, as CRP is a non-specific marker of systemic
inflammation, enhanced levels could reflect a range of comorbid
conditions seen in SMI such cardio-metabolic disease, increased fat
mass and gut microbiome dysbiosis. We therefore controlled for CRP
and BMI, and our findings suggest that more specific markers
reflecting other pathogenic processes, such as activation of innate
immune responses, may be relevant for cognitive functioning.
Based on our findings we can begin to speculate about

potential inflammatory/immune-related mechanisms that may
influence cognitive functioning. IL-18 system components reg-
ulate innate immune responses and are broadly expressed by
neurons, astrocytes and microglia, and may influence permeability
of the BBB and induce neuroinflammatory states [79]. We have
recently demonstrated increased levels of these IL-18 system
components in SMI, associated with increased gene expression of
the inflammasome components NLRP3 and NLRC4 in circulating
immune cells [67]. The inflammasome is a key innate immune

system function that is associated with many human diseases [80].
A growing number of studies suggest that inflammasome
activation can influence cognitive functioning, particularly in
autoimmune and neurodegenerative diseases [80–83]. In addition,
experimental studies have shown promise in mitigating cognitive
impairment by inhibiting inflammasome activation, which could
be a potential treatment target for several pathologies [84].
Similar to IL-18, the small antimicrobial peptide BD-2, mainly

produced by neutrophils and epithelial cells as well as macrophage
cells, plays an important role in regulating innate immune responses.
While representing a protective component against bacterial, viral
and fungal infections, defensins may cause collateral damage in host
cells by disrupting cellular membranes and have been shown to
diffuse across the BBB [85]. Dysregulated expression of BD-2 in
microglia and astrocytes has been suggested to prolong dendritic
cell activity, which could mediate release of pro-inflammatory
cytokines ultimately promoting loss of neuronal function and
impacting cognition [86]. Based on the increased BD-2 levels
indicated by the CCA, we speculate that similar mechanisms could
be relevant in SMI. BD-2 has pleiotropic effects, acting as a
chemokine binding to CCR6 with effects on T cells and dendritic
cells [87], linking innate (inflammation) and adaptive (lymphocyte
activation) immune responses. Furthermore, BD-2 induces IL-18
release in keratinocytes [88] and conversely, IL-18 may trigger BD-2
release in innate cells such as macrophages [89].
While we recently reported similar levels of sVCAM-1 in SMI

and HC [90], our finding that low sVCAM-1 was associated with
cognitive impairment could indicate an alternative role for the
soluble form of this protein. VCAM-1 may mediate adhesion
of monocytes, lymphocytes, and neutrophils to the vascular
endothelium including immune cell trafficking via the BBB [91].
While increased VCAM-1 expression is a key marker for endothelial

Fig. 1 Multivariate mode of covariation between cognitive and inflammatory/immune marker data in SZ, BD and HC. A, B Shows the
highest contributions (in orange) of each variable in the cognitive and inflammatory/immune marker datasets (numbers in bold represents
the loading score for the variables with the highest contributions). C Scatterplot of the individual loading scores, including density plots (top
= cognitive loading scores, right = inflammatory/immune marker loading scores). D, E Violin/box plots showing differences in the loading
scores between SZ, BD and HC.
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activation during vascular/systemic inflammation [92], inflammatory
challenge may enhance shedding of VCAM-1 from human brain
endothelial cells [93]. Additionally, in vitro, sVCAM-1 may act as a
competitive inhibitor of ligand binding, blocking leukocyte adhesion
to activated human brain endothelial cells [94]. Chronically elevated
levels of circulating IL-18 may also downregulate sVCAM-1 in both
immune and non-immune cells [95]. Taken together, we speculate
that chronic dysregulation of innate immune regulatory loops in SMI
could enhance systemic IL-18 signaling, together with BD-2 and
sVCAM1 expression, impacting BBB permeability and neuroinflam-
mation, thereby influencing cognition.
We identified two groups reflecting heterogeneity in cognitive

functioning and inflammatory/immune status in SMI and HC.
While there was a larger proportion of SMI participants in the
more compromised group (low cognition – high immune
dysregulation subgroup), they were also represented in the less
compromised subgroup. We additionally found a proportion of HC
in the compromised group sharing several characteristics with
SMI. This is in line with findings of inter-individual variance in
cognitive functioning and inflammatory/immune status in SMI and
in the general population [96–98].
Importantly, our approach suggests that SMI individuals with

lower cognitive functioning and higher immune/inflammatory
dysregulation may experience more symptoms, worse functioning
and have higher DDD of antipsychotics. Symptom severity has not
previously been linked with subtypes based on inflammatory
markers alone [16, 41, 43, 44, 47]. Additionally, we found no
differences between subgroups for AAO or DOI, which could
suggest a common cognitive and inflammatory/immune activa-
tion pattern independent of illness stage. This supports findings of
cognitive deficits and increased inflammation in both first-episode
psychosis and chronic illness [41, 99]. Notably, differences across
studies based on the selection bias of inflammatory/immune
markers and cognitive outcomes could contribute to differing
observations from subgroup-studies.
Some limitations should be acknowledged. While cognitive

functioning and immune/inflammatory markers can be influenced

by multiple factors, an open question is whether they simply
co-occur or whether there is a causal relationship between them.
Due to the cross-sectional design and measures of peripheral
inflammatory/immune markers we are unable to draw conclusions
regarding causality. Longitudinal studies, and evaluation of the
inflammatory and immune markers in CNS (i.e. cerebrospinal fluid)
are needed to clarify this. An untargeted approach with omics
technologies or using other inflammatory markers that have been
shown dysregulate in SMI could give different answers but was
not feasible in our large population. Hence, our findings do not
disclude the importance of other inflammatory markers or
pathways. The storage duration of samples is a limitation as we
cannot exclude that some protein degradation has occurred,
which could vary from protein to protein. However, we have
previously measured CRP during isolation of plasma and CRP
determined years later during bulk analysis in the same sample,
finding a high degree of correlation (r= 0.86) [100]. In addition,
we included freezer storage time in our models. The blood
sampling protocol, with isolation of plasma the next day, was not
optimal. However, our validation experiments found no systematic
effects on the measured proteins during storage at 4 °C for up to
24 h. Another limitation includes the use of two different cognitive
test batteries. Four domains were measured using identical tests
in the two test batteries while five domains were measured
employing different but very similar tests using the same stimuli
and administration procedures, but with slight variations in time
given to complete task (Psychomotor processing speed) or
number of stimuli (Verbal learning). The study has several
strengths including a robust methodology, a transdiagnostic
approach, a large sample, and a comprehensive selection of
cognitive domains and a large inflammatory/immune screening
assay. Cross-validation, stability analyses, and evaluation of the
cluster solution, further strengthen our findings, although replica-
tion in independent datasets is needed.
In conclusion, we identified patterns of covariance between

cognitive functioning and inflammatory/immune markers, linking
poor verbal learning and psychomotor processing skills to increased

Fig. 2 Hierarchical clustering of CCA data in SZ, BD and HC. A Percentage of SZ, BD and HC in cluster 1 and cluster 2. B Boxplots showing
differences between the subgroup cluster 1 and cluster 2 on the cognitive domains and inflammatory/immune markers identified from the CCA.
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innate immune activation markers, including IL-18 system cytokines
and BD-2, with the strongest associations in SMI. Based on
covariance patterns we identified two subgroups of cognitive
functioning and inflammation associated with differing patterns of
functioning and symptom levels that transcended diagnostic
categories. Our findings suggest that the IL-18 system, and perhaps
inflammasome activation, could be an interesting path for future
investigation of cognitive impairment in SMI.

CODE AVAILABILITY
Main analysis code is available at https://osf.io/qpdse/.
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