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 The potential utility of room temperature ionic liquids as 

electrolytes in current electrochemical applications has been 

explored.  Hence, the electrochemical behavior of [Ni(tmc)]Br2 

complex at a glassy carbon electrode in the absence or in the 

presence of unsaturated halides in the ionic liquids, 1-ethyl-3-

methylimidazolium ethylsulfate, C2mimC2SO4 and N,N,N-

trimethyl-N-(2-hydroxyethyl) ammonium 

bis(trifluoromethylsulfonyl)imide, N1 1 1 2(OH)NTf2, has been 

examined by cyclic voltammetry.  It was observed that 

[Ni(tmc)]2+ complex is reduced in a reversible one-electron step 

and the electrogenerated [Ni(tmc)]+ complex catalytically reduces 

the carbon-halogen bond of unsaturated halides. 

 The potencial use of natural ionic conducting polymer 

matrixes was also investigated.  Samples of natural 

macromolecules-based electrolytes with the ionic liquid 1-ethyl-

3-methylimidazolium ethylsulfate, C2mimC2SO4, were 

prepared and characterized.  The preliminary studies carried out 

with electrochromic devices (ECDs) incorporating optimized 

compositions have confirmed that these materials may perform as 

satisfactory multifunctional component layers in the field of 

ECD-based devices. 

 

 

Introduction 

 

Environmental concerns motivate the search for novel efficient methods where less 

toxic fluid alternatives can replace the usually toxic or hazardous solvents.  Room 

temperature ionic liquids (RTILs) may be considered an attractive alternative for 

reducing solvent emissions to the atmosphere comparatively to volatile organic solvents 

(VOCs) (1). 

During the last decade, a large number of publications have appeared that deal with 

electrochemistry in ionic liquids due to their thermal stability, good conductivity, almost 

null volatility (2), wide electrochemical window, recyclability and non-flammability 

(3).  Hence, there is currently interest in the use of those materials for a wide range of 

applications, namely in electrochemical synthetic processes (4) without any added 

supporting electrolyte and in the evaluation of the redox behavior of electroactive 
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substrates (5,6) as well as in others diverse electrochemical technologies such as, 

batteries, fuel cells, solar cells, photovoltaic devices and metal deposition (7). 

In this work, we present some selected research involving current electrochemical 

applications of RTILs. 

Hence, we have explored the potential utility of those media as electrolytes for 

electrosynthesis. The preliminary studies of electrochemical behavior of [Ni(tmc)]Br2 

complex at a glassy carbon electrode in the absence and in the presence of unsaturated 

halides in different RTILs has been examined by cyclic voltammetry.  

We have also investigated the potentiality of RTILs as solvent-free electrolytes in 

natural polymer matrix. Samples of solvent-free electrolytes were prepared and 

characterized by ionic conductivity measurements, thermal analysis, and 

electrochemical stability.  

 

 

Experimental section 

 

Materials 

 

Ionic liquids. The ionic liquids used in this work were 1-ethyl-3-methylimidazolium 

ethylsulfate, C2mimC2SO4 which was purchased from IoLiTec with a stated purity 

of more than 99% and N,N,N-trimethyl-N-(2-hydroxyethyl) ammonium 

bis(trifluoromethylsulfonyl)imide, [N1 1 1 2(OH)][NTf2] which was synthetised with a 

purity better than 99% as described in a previous paper (8).  

In order to reduce water and volatile compounds to negligible values, all samples were 

dried under vacuum (0.1 Pa) and vigorously stirred at moderate temperature (330 K) for 

at least a day. Coulometric Karl-Fischer titrations revealed levels of water, always 

below 300 ppm. This value is a conservative estimate that takes into account the 

uncertainty associated with the handling of the samples. 

 

 

Polymer electrolyte preparation 

 

Samples were prepared according to an optimized procedure described elsewhere by 

E. Raphael et al (9, 10). 

 

Measurements 

 

Cyclic voltammetry. Cyclic voltammograms were carried out with the aid of an 

AUTOLAB model PGSTAT12 potentiostat–galvanostat.  The data from the above 

experiments were acquired and stored by GPES 4.9 software, which controlled a data 

acquisition board installed in a personal computer. 

Cyclic voltammograms were recorded in a three-electrode, two-compartment cell as 

described in earlier publications (11). The working electrodes were fabricated from 3-

mm-diameter glassy carbon rods press-fitted into Teflon shrouds to provide planar, 

circular working electrodes with areas of 0.07 cm2. Before use, the electrodes were 

cleaned with an aqueous suspension of 0.05-µm alumina (Buehler) on a Master-Tex 

(Buehler) polishing pad.  The counter electrode was a Pt spiral in the same 

compartment. The experimental reference electrode was a Ag / AgCl / 3 mol dm-3 KCl 

in water, separated from the working electrode by a sinter and Luggin capillary.  All 

solutions were deoxygenated with a fast stream of argon before each experiment.   



All potentials are quoted with respect to a Ag / AgCl / 3 M KCl in water reference 

electrode (-0.036 vs SCE). 

 

Polymer electrolyte characterization. The total ionic conductivity of the samples was 

determined by locating an electrolyte disk between two 10 mm diameter ion-blocking 

gold electrodes (Goodfellow, > 99.95 %) to form a symmetrical cell.  

Samples of dry films were subjected to thermal analysis under a flowing argon 

atmosphere between -60 and 200 ºC and at a heating rate of 5 ºC.min-1 using a Mettler 

DSC 821e. Samples for thermogravimetric studies were prepared in a similar manner, 

transferred to open crucibles and analyzed using a Rheometric Scientific TG1000 

thermobalance operating under flowing argon, between 30 and 700 ºC and at a heating 

rate of 10 ºC.min-1. 

The evaluation of the electrochemical stability window of electrolyte compositions 

was carried out under an argon atmosphere using a 25 µm gold microelectrode.  

Electrochromic devices with the configurations glass/ITO/WO3/ electrolyte/CeO2-

TiO2/ITO/glass were obtained by assembling the 2 pieces of coated glasses. The 

electrochemical measurements were performed with Autolab 302N with FRA 2 module. 

 

 

Results and Discussion 

 

Characterization of RTIL C2mimC2SO4 as electrolyte in natural polymer matrix 

 

Thermal behavior. The DSC results obtained with the polymer electrolytes based on 

gelatin and agar with C2mimC2SO4 are illustrated in Fig. 1 and confirm that all the 

polymer electrolytes produced are totally amorphous. The amorphous nature of these 

electrolytes provides a clear advantage relative to the PEO based system (12), since the 

absence of crystallinity results in improvements in optical, mechanical and 

electrochemical behavior.  

 
Figure 1. DSC curves of electrolyte systems. 

 

 

The onset temperature of thermal decomposition was estimated by 

thermogravimetric analysis (Fig. 2) using extrapolation of the baseline and tangent of 

the curve of thermal events to identify the initiation of sample weight loss. In the region 

of 220-400 ºC, a film of agar showed a very accentuated mass loss of 65 %, which 

marks the decomposition of sample, and slowly continues as the temperature is 



increased up to 700 ºC. In the case of samples with ILs, the loss mass behavior as a 

function of temperature is different. The degradation process occurs on two stages for 

the agar based electrolyte with [C2mim] [C2SO4], assuming that the negligible initial 

mass loss observed (<5 %) is exclusively associated with the release of solvents, such as 

water adsorved or coordinated. The first stage starts at 200 ºC for a mass loss of 90 % 

and the second starts at 300 ºC for a mass loss of 68 %, ends at 550 ºC and slowly 

continues until 700 ºC. These stages are due to the agaropectin and agarose presence in 

the samples and the different interactions with IL. The remaining residue was 15 % in 

mass of the starting materials, for agar and for the sample based on [C2mim] [C2SO4].  

For the systems based on gelatin, the decomposition occurs up to 400 oC, and slowly 

continues as the temperature is increased up to 700 ºC. The remaining residue was 20 % 

in mass of starting material for gelatin and gelatin [C2mim] [C2SO4]. TGA analysis (Fig. 

2) is consistent with a minimum thermal stability of 200 ºC, a value considered 

acceptable for most applications under normal operating conditions. 

 

 
Figure 2. TGA curves of electrolyte systems. 

 

 

Electrochemical properties. High ionic conductivity (higher than 10-5 S cm-1) is 

definitely one of the most important requirements that need to be fulfilled in a polymer 

electrolyte system if practical applications in electrochemical devices are envisaged. 

The ionic conductivities of various polymer electrolytes over the temperature range 

from 25 to 105 ºC are illustrated in Fig. 3. All samples exhibit non-linear variation of 

conductivity with temperature, which is typical of polymer electrolytes with 

predominantly amorphous morphology. For instance, while at 30 ºC the conductivity of 

the gelatin [C2mim] [C2SO4] is ca. 9.73x10-5 S cm-1, at about 100ºC it attains 2.37 x10-3 

S cm–1. This value is similar to the one reported by Singh et al (13) for the ionic liquid 



2,3-dimethyl-1-octylimida-zolium triflate (DMOImTf) in PEO electrolyte system but, 

higher than those reported by Vieira et al (14) for the gelatin based system. The 

conductivity of the electrolyte system with agar and [C2mim] [C2SO4] is 1.10 x 10-5 S 

cm-1 (T = 30 ºC). At 100ºC, this electrolyte exhibits a conductivity of about 7.24 x 10-4 S 

cm-1. The differences in the conductivity values of the samples may be due to the type 

of matrix, its dielectric constant, viscosity, interaction with IL and molecular weight 

(15, 16). As expected, the incorporation of ionic liquids into the matrix increases the 

ionic conductivity over the entire temperature range investigated. The temperature 

dependence of the ionic conductivity was well-described by the Vogel-Tamman-Fulcher 

(VTF) equation in the temperature range of 25 to 100 ºC. The VTF expression implies 

that the main mechanism of ion conduction can be related to the free volume theory. 

The fitted values of the Ea for gelatin [C2mim] [C2SO4] is 18.48 kJ mol-1, and for agar 

[C2mim] [C2SO4] is 24.30 kJ mol-1, which are in perfect agreement with the 

conductivity data. The Ea values decrease with the addition of IL compared to matrix. 

This is in agreement with the fact that the amount of ions in polymer electrolyte 

increases, and the energy barrier to the ion transport decreases, leading to a decrease in 

the activation energy (17). 

 

 
Figure 3. Conductivity curves of different electrolyte systems. 

 

 

Cyclic voltammetry was employed to evaluate the chemical and electrochemical 

stability of the solid polymer electrolytes. In the cyclic voltammetric analysis the sweep 

potential was firstly scanned in the positive direction and then the reversed direction. 



The addition of ionic liquid does not deplete the electrochemical stability of the 

electrolytes. A very low current flow was observed up to the anodic breakdown voltage, 

thus supporting for the high purity of the RTIL- based polymer electrolytes. 

 

 
Figure 4. Voltammogram of the polymer electrolytes at a 25 m diameter gold 

microelectrode versus Li/Li+. Initial sweep direction is anodic and the sweep rate was 

100 mVs−1.  

 

 

Features of a prototype ECD. A preliminary assessment of the potential interest of 

the samples introduced here as electrolytes in an all solid-state ECDs was performed 

using the four layer-sandwich configuration (Fig. 5). 

The charge density response measured by chronoamperometry (- 2.5 V / + 2.0 V; 15 

s) of ECD containing solid electrolyte based on gelatin [C2mim][C2SO4] for the cycles 

10th, 200th, 400th was obtained (not shown). The charge extraction occurs faster and the 

ECD is already transparent after applying +2.0 V potential during 2 s. This extraction is 

also faster than that obtained with ECDs containing gelatin without IL (18).  



 

 
 

Figure 5. Schematic illustration of the electrochromic structure device. 

 

 

Electrochemical investigation of N1 1 1 2(OH)NTf2 and C2mimC2SO4 as electrolytes 

in the study of catalytic behavior of [Ni(tmc)]Br2  

 

Cyclic voltammetric behavior of N1 1 1 2(OH)NTf2 and C2mimC2SO4. The 

electrochemical stability of the media in the cathodic range is determined by the cation 

and it was approximately -2.3 V vs Ag/AgCl for N1 1 1 2(OH)NTf2 and -2.0 V vs 

Ag/AgCl for C2mimC2SO4. Therefore both ILs are potentially suitable for the 

electrochemical reduction of [Ni(tmc)]Br2 complex which occurs in the potential range 

from -0.40 to -1.50 V vs Ag/AgCl (19,20). 

 

Cyclic voltammetric behaviour of [Ni(tmc)]Br2. The electrochemical behavior of 

[Ni(tmc)]Br2 (2) was performed in N1 1 1 2(OH)NTf2 and C2mimC2SO4.  
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Shown in Fig. 6, curve A, is a cyclic voltammogram obtained with vitreous carbon 

electrode at 100 mV s-1 for the reduction of 1.0 mM solution of [Ni(tmc)]Br2 in N1 1 1 

2(OH)NTf2. The [Ni(tmc)]2+ complex undergoes a reversible one-electron reduction 

and the values of Epc and Epa are -0.96 and -0.89 V, respectively. These peak potentials 

are more negative than those found in DMF (19) and in EtOH (20).  Similar results were 

found for the cyclic voltammetric studies carried out in C2mimC2SO4.  



 
 

Figure 6. Cyclic voltammograms recorded with a glassy carbon electrode (area = 0.07 

cm2) at 100 mV s–1 in [N1 1 1 2(OH)][NTf2]: (A) 1,0 mM [Ni(tmc)]Br2; (B) 1,0 mM 

[Ni(tmc)]Br2 and 5,0 mM 1. 

 

 

The formal potentials were -0.92 and -0.94 V vs Ag/AgCl in N1 1 1 2(OH)NTf2 and 

C2mimC2SO4, respectively.  

The diffusion coefficient of [Ni(tmc)]Br2 was determined in both ILs and it was 4.3 

x 10-8 cm2 s-1 in N1 1 1 2(OH)NTf2 and 1.8 x 10-7 cm2 s-1 in C2mimC2SO4, which are 

much smaller than the value found in DMF (4.7 x 10-6 cm2 s-1) containing 0.10 M 

Et4NBF4 (19).  The smaller diffusion coefficient can be attributed to the higher viscosity 

of the ionic liquids. Furthermore, these values are similar to those reported in 

microemulsions (21). 

 

Catalytic reduction of ethyl 2-bromo-3-(3,4-dimethoxyphenyl)-3-propargyloxy-

propanoate (1) by electrogenerated [Ni(tmc)]+ complex. Afterwards, to test the use of 

electrogenerated [Ni(tmc)]+ as a catalyst, it was carried out the cyclic voltammetric 

behavior of [Ni(tmc)]2+ complex in the presence of bromoalkoxylated 1 in both ionic 

liquids. 
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Fig. 6, curve B, shows the cyclic voltammogram obtained at 100 mV s-1 for the 

reduction of 1.0 mM [Ni(tmc)]2+ complex in the presence of 5.0 mM  1 in [N1 1 1 

2(OH)][NTf2].  It can be seen that the cathodic peak current for the reduction of 

[Ni(tmc)]2+ complex increases and the anodic peak current is absent. The catalytic 

current observed is due to the regeneration of [Ni(tmc)]2+ complex after cleavage of the 

carbon-bromine bond. 

Under the same experimental conditions, the direct reduction of 1 occurs at 

potentials below -1.40 V vs Ag/AgCl.  Similar results were found in the cyclic 

voltammetric experiments performed in C2mimC2SO4.  The data obtained from those 

experiments at several potential scan rates are presented in Table I.  These experimental 

results suggest that the ionic liquids can be used in synthetic electrochemistry providing 

a new environmentally media for electrosynthesis without any added supporting 

electrolyte. 

In future work we intend to explore the indirect electroreductive cyclization of 

bromoalkoxylated derivatives of type 1 using nickel(II) complexes as catalysts to 

identify and quantify the products obtained from these catalytic processes in ionic 

liquids. 

 

 
TABLE I. Data of the ratio Ic/Id obtained from the cyclic voltammetry experiments of 1.0 mM 

[Ni(tmc)]Br2 in the presence of 5.0 mM 1 in different RTILs.   

RTIL 
 Ic/Id

a  

 = 50 mV s-1  = 100 mV s-1  = 200 mV s-1 

[N1 1 1 2(OH)][NTf2] 5.06 6.38 5.87 

[C2mim][C2SO4] 9.01 8.54 8.06 
a Ic - catalytic peak current intensity of the catalyst in the presence of substrate and Id - peak current 

intensity of the catalyst in the absence of substrate. 

 

 

In conclusion: (i) the preliminary results obtained show that the indirect 

electrochemical cyclization approach in RTILs can be a good alternative to the 

conventional synthetic methods; (ii) a new gelatin/agar host matrix with ILs guest 

species has been used to prepare free-standing electrolytes. The materials introduced in 

this presentation are clearly still at a very preliminary stage in their development and 

further characterization, including detailed studies of electrochemical stability and the 

behaviour of prototype electrochromic devices.  
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