
Extracting Rules from Neural Networks

with Partial Interpretations

Cosimo Persia, Ana Ozaki

Department of Informatics
University of Bergen, Norway

Abstract

We investigate the problem of extracting rules, ex-
pressed in Horn logic, from neural network models.
Our work is based on the exact learning model, in
which a learner interacts with a teacher (the neu-
ral network model) via queries in order to learn an
abstract target concept, which in our case is a set
of Horn rules. We consider partial interpretations
to formulate the queries. These can be understood
as a representation of the world where part of the
knowledge regarding the truthness of propositions
is unknown. We employ Angluin’s algorithm for
learning Horn rules via queries and evaluate our
strategy empirically.

1 Introduction

Neural networks have been used to achieve impor-
tant milestones in artificial intelligence [4, 10, 12, 8],
but it is difficult to understand how predictions of
the models are made, and this limits their usability.
In this work, we propose an approach for extract-
ing rules from black-box machine learning models,
such as neural networks. It is often the case that
not all values in a dataset are known or trustable.
For this reason, our approach assumes settings in
which the dataset used to train the neural network
contains missing values.

We first binarize a given dataset and we train
a neural network with it. Then, we run the LRN
algorithm [9]. This algorithm poses queries to the
neural network, seen as a teacher, in order to ex-
tract rules encoded in it. Rules are represented
using Horn logic, for example, they can be of the
form ((horse∧wings)→ pegasus). With Horn rules,

we can carry automated reasoning in polynomial
time, and it is feasible to check the quality of the
model.

We perform an empirical study using the hep-
atocellular carcinoma (HCC) dataset [16], which
describes survivability of patients diagnosed with
hepatocellular carcinoma according to clinical in-
formation. HCC contains many missing values of
attributes of patients. We compare the hypoth-
esis built with our approach with the hypothesis
built by a state-of-the-art implementation of the
incremental decision tree algorithm [7]. Our rule
extraction procedure correctly extracts meaningful
rules and it is two times faster than the decision
tree algorithm.

Related Work. A similar work [20] extracts prob-
abilistic automata from neural networks by asking
queries, and a recent work [15] focuses on how to
better simulate queries asked to black-box mod-
els. We can also find methods that verify binarized
neural networks by extracting a binary decision di-
agram [17] through queries. The interpretability
field is large and there are many approaches to in-
terpret neural networks models [21]. Our technique
belongs to the global and active approach that ex-
plains the already trained model as a whole, as op-
posed to changing the network architecture for in-
terpretability (passive), or explaining through fea-
ture studies or correlation (local).

2 Preliminaries

We provide basic definitions for (propositional)
logic and the exact learning model.

https://doi.org/10.7557/18.6301

The author(s). Licensee Septentrio Academic Publishing, Troms, Norway. This is an open access article distributed
under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

1

https://doi.org/10.7557/18.6301
http://creativecommons.org/licenses/by/4.0/

2.1 Logic and Neural Networks

Let V be a finite set of boolean variables. A literal
over V is either a variable v ∈ V or its negation
¬v. A literal is positive, if it is a variable, and
negative otherwise. A clause over V is a disjunction
(∨) of literals over V. It is Horn if at most one
literal is positive. A (propositional) formula over
V is a conjunction of clauses over V (in conjunctive
normal form). It is Horn if its clauses are Horn.

An interpretation is a function that maps all vari-
ables V to either 0 (false) or 1 (true). It also maps
the constant symbol > to 1 and ⊥ to 0. We write
v ∈ I if I(v) = 1. We may omit ‘over V’ in formu-
las, clauses, literals, and interpretations. A variable
v ∈ V is satisfied by I if v ∈ I, otherwise it is fal-
sified. A negative literal ¬v is satisfied by I iff v
is falsified by I. A clause c is satisfied by I iff at
least one literal in c is satisfied by I and a formula
t is satisfied by I iff every clause in t is satisfied
by I. A partial interpretation extends the notion
of an interpretation by allowing some values to be
“missing” or “unknown”, denoted ‘?’. In detail, it
is a function which maps V to {0, 1, ?}. A partial
interpretation I satisfies a formula t if there is a
way to replace each ? in its image by either 0 or 1
and the resulting function satisfies t.

Horn clauses c can be written as rules of the
form ant(c) → con(c), where ant(c) (antecedent) is
the set of variables that occur negated in c or the
constant symbol > if none is negated; and con(c)
(consequent) is the positive literal in c or ⊥ if none
is positive.

If an interpretation I satisfies a literal, a clause or
theory x, we write I |= x, otherwise, I 6|= x. Let t
be a theory and let c be a clause. If, for every I, we
have that I |= t implies I |= c, then we write t |= c
and we say that t entails c. If t entails every clause
in a theory t′, then we also write t |= t′. If t′ |= t
also holds, then t and t′ are logically equivalent
and we write t ≡ t′. We say that a formula φ is
satisfiable if there is an interpretation I such that
I |= φ and falsifiable if its negation ¬φ is satisfiable.

Neural network models in this work can be un-
derstood as an alternative way of representing a
formula in propositional logic. A neural network
model N is a function that receives a vector in the
|V| dimensional space, with values in {0, 1, ?} (with
‘?’ standing for an ‘unknown value’), and outputs
a classification of this input. The mapping from in-

terpretations to vectors is defined as follows. Given
an interpretation I over V, we assume a total order
on the elements of V and denote by vector(I) the
vector in the |V| dimensional space where the ele-
ment at position i is 1 if vi ∈ I and 0 otherwise. In
this work, a dataset is a set of elements of the form
(vector(I), l), where l is either 0 or 1 and I is a
partial interpretation. For every neural network N
trained on a given dataset, there is a propositional
formula tN such that N(vector(I)) = 1 iff I |= tN .
In this sense, N can be seen as an alternative rep-
resentation of tN .

2.2 Learning via Queries

To formally define the problem setting, we use the
notion of a learning framework F as pair (E ,H),
where H is the set of all formulas in propositional
logic and E is the set of all partial interpretations
(over variables in V). We say that F is Horn if H
is restricted to the set of all Horn formulas. For
any h ∈ H, I ∈ E is a positive example for h, if
I |= h, and, a negative example for h if I 6|= h. For
any h, t ∈ H, a counterexample for t and h is an
example I ∈ E such that either I |= t and I 6|= h
(a positive counterexample), or I |= h and I 6|= t (a
negative counterexample).

We study the problem of identifying an unknown
target t ∈ H by posing queries to two kinds of ora-
cles [9] (implementation in Section 3.1). A member-
ship oracle MQF,t is a function that takes as input
I ∈ E and it outputs ‘yes’ if I |= t, ‘no’ other-
wise. An equivalence oracle EQF,t takes as input
a hypothesis h ∈ H and it outputs ‘yes’ if h ≡ t,
otherwise, it outputs a counterexample for t and
h. A membership query is a call to MQF,t and an
equivalence query is a call to EQF,t.

Definition 1 (Exact Learning). A learning frame-
work F (E ,H) is exactly learnable if there is a deter-
ministic algorithm A that takes as input the set of
variables V used to formulate the target t ∈ H, asks
membership and equivalence queries, and outputs
a hypothesis h ∈ H equivalent to t. We say that F
is exactly learnable in polynomial time if the num-
ber of steps used by A is bounded by a polynomial
on |t| and the largest counterexample seen so far.
Each query counts as one step of computation.

2

3 Extracting Horn Rules with
Partial Interpretations

The goal of our work is to find rules hidden in a
black box machine learning model such as a trained
neural network model. We present an adaptation
of the LRN algorithm [9] that learns from partial
interpretations instead of entailments, as originally
proposed by the authors of the mentioned paper.
This algorithm is able to exactly identify any un-
known target Horn theory by posing queries to or-
acles that can answer membership and equivalence
queries. The algorithm is guaranteed to terminate
in polynomial time with respect to the number of
variables into consideration.

3.1 The LRN∗ Algorithm

We adapted LRN so that it is able to learn rules
from partial interpretations. Membership queries
take as input partial interpretations and counterex-
amples to equivalence queries are also partial inter-
pretations. Algorithm 2 shows the main steps of
the modified algorithm.

Algorithm 1 LRN∗

1: Input: It is assumed that the learner knows F
(that is, it knows that the hypothesis should be
a Horn theory) but not the target t.

2: Output: h such that h ≡ t.
3: Let S be the empty sequence.
4: Denote with Ii the i-th element of S.
5: Let h be the empty hypothesis.
6: while EQF,t(h) returns a counterexample I do
7: if there is Ii ∈ S such that Ii ∩ I ⊂ Ii and

MQF,t(Ii ∩ I) = ‘no’ then
8: replace the first such Ii with Ii ∩ I in S
9: else

10: append I to S
11: end if
12: h :=

⋃
I∈S
{(

∧
v∈I

v)→ u | u ∈ RHS(V,
∧
v∈I

v)}

13: end while
14: return h

LRN poses equivalence queries until it receives
‘yes’ as an answer. It keeps track of important par-
tial interpretations that falsify the target. Each
such partial interpretation corresponds to a rule

Algorithm 2 RHS

1: Input: V: variables. α ⊆ V
2: Output: A subset of V ∪ {⊥}
3: return {v | v ∈ V ∪ {⊥} \ α, MQF,t(

∧
u∈α

u →

v) = ‘yes’}

entailed by the target [6]. Upon receiving a nega-
tive counterexample, the algorithm asks member-
ship queries to find more specific antecedents of
rules entailed by the target. After that, it adds to
the hypothesis rules entailed by the target by ask-
ing membership queries and the process repeats.
Correctness and termination of Algorithm 2 can be
proven simi‘larly as with the LRN algorithm [9].
This is possible because we can simulate mem-
bership and equivalence queries from the learning
from entailments setting to the learning from par-
tial interpretations setting (and vice-versa) [6, The-
orem 16].

To simulate the membership oracle MQF,tN , we
directly use the classifier N . Whenever the algo-
rithm calls MQF,tN with input a partial interpreta-
tion I, we check if N(vector(I)) = 1, which means
that I |= tN . If so, we return the answer ‘yes’ to
the algorithm, ‘no’ otherwise. Simulating an equiv-
alence query oracle EQF,tN is not as straightforward
as we are checking if the hypothesis constructed is
equivalent to tN .

We simulate EQF,tN by generating a set of exam-
ples randomly and classifying the examples using
membership queries. Then, we can search for ex-
amples in this set that the hypothesis constructed
by LRN misclassifies. Depending on the size of
the set of examples randomly generated [2, Sec-
tion 2.4], if the hypothesis does not misclassify any
example then one can ensure that with high prob-
ability the total number interpretations misclas-
sified (considering the entire space of partial in-
terpretations) is low. More precisely, if the size
of the set of examples generated randomly is at

least 1
ε log2(|H|δ) [19], then one can ensure that the

hypothesis constructed is probably approximately
correct [18]. The parameter ε ∈ (0, 1) indicates the
probability that the hypothesis misclassifies an in-
terpretation w.r.t. the target and δ ∈ (0, 1) is the
probability that the learned hypothesis errs more
than ε.

If H corresponds to the class of formulas only

3

expressible with Horn logic and variables V, then
the number of logically different hypothesis in H is
close to [1, 3]:

2(|V|
b|V|/2c). (1)

This number follows from the fact that Horn logic
is closed under intersection: if I and I ′ satisfy a
Horn theory then I ∩ I ′ also does [11].

3.2 Representing constraints

We explain how we can express constraints that
are going to be extracted in the experimental sec-
tion. Horn rules r are of the form ant(r)→ con(r):
(sunny ∧ happy) → jogging where all the variables
both in the antecedent and in the consequent are
not negated. This means that with Horn logic we
cannot express rules of the form:

(¬sunny ∧ happy)→ boardgame night.
(empty fridge ∧ hungry)→ ¬happy.

To express a ‘weak’ form of negation, we dupli-
cate all the variables in V and treat every new vari-
able as the negation of a variable in V. For example,
let v̂i be the duplicated variable of any vi ∈ V. We
can express the rule

(ˆsunny1 ∧ happy)→ boardgame night.

Usually, when duplicating variables in this way, we
would like to avoid that both paired variables are
true in a partial interpretation (since they represent
each other’s negation). For this reason, we assume
that Horn rules of the form

(v ∧ v̂)→ ⊥ (2)

always hold, for every v ∈ V.

4 Experiments

In this section we show experimental results us-
ing the approach presented in the previous section
where a trained neural network is treated as an or-
acle for the LRN algorithm. We implemented the
algorithm in a Python 3.9 script and we used the
SymPy library [13] to express rules and check for
satisfiability of formulas. For the neural networks,
we used the Keras library [5]. Our LRN implemen-
tation can start with an empty hypothesis or with

a set of Horn formulas as background knowledge
(assumed to be true properties of the domain at
hand). The background knowledge can also be used
to check if the neural network model respects some
desirable properties. We conduct the experiments
on an Ubuntu 18.04.5 LTS with i9-7900X CPU at
3.30GHz with 32 logical cores, 32GB RAM.

We experiment our approach of extracting Horn
theories from partial interpretations on a dataset
in the medical domain [16]. This dataset contains
missing values for attributes. We can consider each
instance as a partial interpretation that sets some
variables (attributes of that instance) to true, some
to false, and other variables to “unknown”.

4.1 HCC Dataset

Hepatocellular carcinoma (HCC) causes liver can-
cer, and it is a serious concern for global health.
The HCC dataset [16] consists of 165 instances of
many risk factors and features of real patients di-
agnosed with this illness.

There are 49 features selected according to
the EASL-EORTC (European Association for the
Study of the Liver - European Organisation for
Research and Treatment of Cancer). From these
features, 26 are quantitative variables, and 23
are qualitative variables. Missing values represent
10.22% of the whole dataset and only 8 patients
have complete information in all fields (4.85%).
The target class of each patient is binary. Each
patient is classified positively if they survive after
1 year of having been diagnosed with HCC, and
negatively otherwise. 63 cases are labelled neg-
atively (the patient dies) and 102 positively (the
patient survives). Quantitative variables describe,
for example, the amount of oxygen saturation in
the human body, the concentration of iron in the
blood, or number of cigarettes packages consumed
per year. The range of the values that each variable
can assume varies, but it is specified. Qualitative
variables can only have two different values in this
dataset (either 0 or 1). Usually they describe cat-
egorical information such as if the patient comes
from an endemic country, or if it is obese, etc.

The LRN∗ algorithm expects to receive coun-
terexamples in the form of a partial interpretation
that specifies the truth values of boolean variables.
For this reason, we encode quantitative variables
in a binary representation format. The interval of

4

values of each quantitative variable is partitioned
into three sub-intervals. These intervals divide the
values of the quantitative variable into “low”, “mid-
dle”, and “high” values. For example, the interval
of values of the variable that describes the num-
ber of cigarettes packages consumed by the pa-
tient per year is [0, 510] can be partitioned into
[0, 50], (50, 200], (200, 510].

The binarised dataset has in total 26∗3+23+1 =
102 variables and it can be considered a set of par-
tial interpretations. A missing value in the new
dataset is denoted with ‘?’ similarly as in the orig-
inal one, otherwise the value is 1 (0) if the variable
is set to true (false). Each partial interpretation I
matches a rule (not necessarily Horn) of the form

(l1 ∧ · · · ∧ ln−1)→ ln (3)

where each li is a positive literal if the variable i is
set to true in I and false otherwise. The literal lk
is not present in the rule if lk has a missing value.

As explained in the previous section, by dupli-
cating the number of variables and pairing them
such that one represents the negation of another
variable, we can express the previous rule with a
Horn formula. For this reason, we further mod-
ify the dataset by duplicating variables. Each new
variable semantically represents the negated con-
cept of its paired variable. So, we form a dataset
D of partial interpretations with 204 variables.

We can express each example in D with Horn
rules like in Formula 3. We denote by T the set of
such rules that can be formed by looking at all par-
tial interpretations in the extended dataset. To ex-
press disjointness constraints between paired vari-
ables, we assume T to also have the additional Horn
rules of the form (vi ∧ v̂i)→ ⊥ (Formula 2).

Finally, the dataset used for training the neural
network is formed by randomly generating partial
interpretations (with 204 variables) whose classifi-
cation label is 0 if they do not satisfy a rule in T ,
1 otherwise.

4.2 Model selection

By only randomly generating partial interpreta-
tions (with 204 variables), we can create a very un-
balanced dataset with most partial interpretations
classified as positive by the target Horn theory T
(note: T is defined in the previous subsection). We

Hidd. Layers L. rate Accuracy
32, 16, 8, 16, 32 0.1 0.9612
32, 32, 32, 8 0.1 0.9592
32, 32, 32 0.1 0.9382
32, 8, 32, 16 0.1 0.9217

Table 1: Architecture and learning rate of the top
four neural networks in ascending order with re-
spect accuracy. The model in the first row was the
selected one.

#Equiv. t h t nn h nn t tree
100 9.2% 6.0% 5.8% 8.4%

Table 2: The outcome of the rule extraction pro-
cess with the HCC dataset. The numbers are the
percentages of interpretations classified differently
between the target t (Section 4.1), neural network
nn, LRN∗ hypothesis h, and the tree.

solve this problem by oversampling interpretations
with negative label that are created by violating
rules that match interpretations in the binarised
dataset. In total, there are 200 negative examples
and 200 positive examples in the training dataset.
80% of the (balanced) binarised dataset was used
for training and validation. We used 3-fold. As T
is a Horn theory, there is no noisy data generated
in this process.

We built a sequential neural network model,
where the number of nodes in the input layer is
204, which is the number of variables in a partial
interpretation. We used the library “Keras ver-
sion 2.4.3” [5] and we empirically searched for the
sequential architecture with the best performance
varying the number of hidden layers, nodes in hid-
den layers and the learning rate.

We searched our model with the following hyper-
parameters: 2,3,4,5 numbers of hidden layers, 4,
8, 16, 32 nodes per layer, and 0.001, 0.01, 0.1 as
the learning rate. The model with the best perfor-
mance had 5 hidden layers, 32, 16, 8, 16, 32 nodes
per layer, and 0.1 learning rate. In total we tested
(No.learning rates x No. node-layer combinations)
= 3 · (42 +43 +44 +45) = 4080 configurations. This
means that we carried in total 3 · 4080 = 12240
training and evaluation runs. The best performing
architectures are showed in Table 1.

5

4.3 Test Setting

In our experiments, we run the LRN∗ algorithm and
we set a limit of 100 equivalence queries that the al-
gorithm can ask before terminating with the built
hypothesis as its output. To simulate an equiva-
lence query, we randomly generate a sample of par-
tial interpretations and we classify each interpre-
tation using the neural network. Afterwards, we
search for a counterexample to return to h as the
answer of the query.

We compare the quality of the LRN∗ hypothesis
with the hypothesis formed by an incremental de-
cision tree [7], an established white box machine
learning model. We use “Hoefffding Decision Tree”
implementation present in the “skmultiflow” frame-
work [14]. It is possible to generate a set of proposi-
tional rules by visiting every branch of the tree from
the root to leafs labelled negatively. The sampling
idea for finding negative counterexamples for LRN∗

is also used for extracting a decision tree from the
neural network.

We generate partial interpretations randomly
and they are classified by the neural network. We
check if at least one of those classified partial inter-
pretations is misclassified by the decision tree al-
gorithm. If this is the case, we incrementally train
the tree with the entire sample. This process is
repeated until all classified interpretations in the
sample are correctly classified by the tree.

Since the considered number of variables is 204,
it is not feasible to have the size of the sample for
simulating equivalence queries as dictated by For-
mula 1 (this number is of the order 2204). Moreover,
a size of the sample too small often fails in finding
a counterexample. When it is the case, the LRN∗

algorithm will terminate and output a hypothesis
with few (if not zero) rules, and the tree will only
be one node with label 1. This problem is especially
noticeable in our current scenario as there are many
variables but relatively few interpretations that are
negatively labelled by the neural network. The se-
lected size of the sample is therefore

s :=

⌈
1

ε
log2(

2|V|
2.1

δ
)

⌉
, both for training the decision tree and for answer-
ing queries asked by the LRN∗ algorithm.

When the LRN∗ hypothesis and the tree have
been extracted, we compute a partial truth table

of 204 variables of size 2s. We classify these in-
terpretations according to the target T , the neu-
ral network, the LRN∗ hypothesis and the decision
tree. We then compare the truth tables and count
the number of times an interpretation is classified
differently between the different models.

4.4 Results

Table 2 shows the outcome of our experiment. The
columns t h, t nn, h nn, t tree are, respectively, the
percentage of interpretations that are labelled dif-
ferently between the target and the hypothesis, the
target and the neural network, the hypothesis and
the neural network, and the tree and the target.
The running time of the LRN∗ algorithm with at
most 100 equivalence queries was around 60 hours.
The time for extracting an incremental decision
tree is twice, around 120 hours.

The type of rules that the LRN∗ algorithm ex-
tracted are of the form:

{medium hemoglobin ∧ · · · ∧ ˆobese→ survives}

with around 40 different variables in the an-
tecedent. With 100 equivalence queries, the hy-
pothesis extracted has 20 rules of this type that
are also present in the target T . Other rules that
are entailed by T can be found in the hypothesis.
Examples labelled negatively with many missing
values contain more information about the depen-
dency between variables that must be respected.
Indeed, we noticed an increase of the accuracy of
the neural network trained on more missing val-
ues ensuring ensured balanced classes. As a conse-
quence, also the quality of the extracted rules im-
proves.

5 Conclusion

In this work we presented an approach for extract-
ing Horn rules from neural network models using
partial interpretations. It is often the case that not
all values in a dataset are known or trustable. Our
method based on partial interpretations covers such
scenarios and generalizes the case with (full) inter-
pretations. We test our approach empirically using
a real world dataset in the medical domain.

6

Acknowledgements

Ozaki is supported by the Research Council of Nor-
way, project number 316022.

References

[1] V. Alekseev. On the number of intersection
semilattices [in russian]. DiskretnayaMat.1,
page 129–136, 1989.

[2] D. Angluin. Queries and concept learning.
Machine Learning, 2(4):319–342, 1988. ISSN
0885-6125. doi: 10.1023/A:1022821128753.

[3] G. Burosch, J. Demetrovics, G. Katona,
D. Kleitman, and A. Sapozhenko. On the num-
ber of closure operations. pages 91–105. János
Bolyai Mathematical Society, Budapest, 1993.

[4] M. Campbell, A. J. H. Jr., and F. Hsu. Deep
blue. Artif. Intell., 134(1-2):57–83, 2002. doi:
10.1016/S0004-3702(01)00129-1.

[5] F. Chollet et al. Keras, 2015. URL https:

//github.com/fchollet/keras.

[6] L. De Raedt. Logical settings for concept-
learning. Artificial Intelligence, 95(1):187–
201, 1997. ISSN 0004-3702. doi: 10.1016/
S0004-3702(97)00041-6.

[7] P. M. Domingos and G. Hulten. Mining high-
speed data streams. In KDD, pages 71–80.
ACM, 2000. doi: 10.1145/347090.347107.

[8] D. Ferrucci. Introduction to “this is watson”.
IBM Journal of Research and Development,
56:1:1–1:15, 05 2012. doi: 10.1147/JRD.2012.
2184356.

[9] M. Frazier and L. Pitt. Learning from entail-
ment: An application to propositional horn
sentences. In ICML, 1993. doi: 10.1007/
3-540-49730-7 11.

[10] S. Hölldobler, S. Möhle, and A. Tigunova.
Lessons learned from alphago. In YSIP2, pages
92–101. CEUR-WS.org, 2017.

[11] A. Horn. On sentences which are true of direct
unions of algebras. The Journal of Symbolic
Logic, 16(1):14–21, 1951. ISSN 00224812. doi:
10.2307/2268661.

[12] Q. V. Le, M. Ranzato, R. Monga, M. Devin,
G. Corrado, K. Chen, J. Dean, and A. Y. Ng.
Building high-level features using large scale
unsupervised learning. In ICML. icml.cc /
Omnipress, 2012. doi: 10.48550/arXiv.1112.
6209.

[13] A. Meurer et al. Sympy: symbolic computing
in python. PeerJ Comput. Sci., 3:e103, 2017.
doi: 10.7717/peerj-cs.103.

[14] J. Montiel et al. Scikit-multiflow: A multi-
output streaming framework. Journal of Ma-
chine Learning Research, 19(72):1–5, 2018.
doi: 10.48550/arXiv.1807.04662.

[15] T. Okudono et al. Weighted automata extrac-
tion from recurrent neural networks via regres-
sion on state spaces. In AAAI, pages 5306–
5314. AAAI Press, 2020. doi: 0.1609/aaai.
v34i04.5977.

[16] M. S. Santos et al. A new cluster-based over-
sampling method for improving survival pre-
diction of hepatocellular carcinoma patients.
Journal of Biomedical Informatics, 58:49–59,
2015. ISSN 1532-0464. doi: 10.1016/j.jbi.2015.
09.012.

[17] A. Shih, A. Darwiche, and A. Choi. Veri-
fying binarized neural networks by angluin-
style learning. In SAT, 2019. doi: 10.1007/
978-3-030-24258-9 25.

[18] L. G. Valiant. A theory of the learnable. Com-
mun. ACM, 27(11):1134–1142, 1984. ISSN
0001-0782. doi: 10.1145/1968.1972.

[19] V. Vapnik and A. Y. Chervonenkis. On the
uniform convergence of relative frequencies of
events to their probabilities. 1971. doi: 10.
1007/978-3-319-21852-6 3.

[20] G. Weiss, Y. Goldberg, and E. Yahav. Ex-
tracting automata from recurrent neural net-
works using queries and counterexamples. In
ICML, volume 80, pages 5244–5253. PMLR,
2018. doi: 10.48550/arXiv.1711.09576.

[21] Y. Zhang, P. Tiňo, A. Leonardis, and K. Tang.
A survey on neural network interpretabil-
ity. IEEE Transactions on Emerging Topics
in Computational Intelligence, 5(5):726–742,
2021. doi: 10.1109/TETCI.2021.3100641.

7

https://github.com/fchollet/keras
https://github.com/fchollet/keras

	Introduction
	Preliminaries
	Logic and Neural Networks
	Learning via Queries

	Extracting Horn Rules with Partial Interpretations
	The LRN Algorithm
	Representing constraints

	Experiments
	HCC Dataset
	Model selection
	Test Setting
	Results

	Conclusion

