
Journal of Computational Physics 470 (2022) 111572
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Entropy stability for the compressible Navier-Stokes equations 

with strong imposition of the no-slip boundary condition

Anita Gjesteland ∗, Magnus Svärd

Department of Mathematics, University of Bergen, Postbox 7800, 5020 Bergen, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 October 2021
Received in revised form 19 August 2022
Accepted 23 August 2022
Available online 29 August 2022

Keywords:
No-slip boundary condition
Injection method
Entropy stability
Linear stability

We consider the compressible Navier-Stokes equations subject to no-slip adiabatic wall 
boundary conditions. The main goal is to investigate stability properties of schemes 
imposing the no-slip condition strongly (injection) and the temperature condition weakly 
by a simultaneous approximation term. To this end, we propose a low-order summation-
by-parts scheme. By verifying the complete linearisation procedure, we prove linear 
stability for the scheme. In addition, and assuming that the interior scheme is entropy 
stable, we also prove entropy stability for the full scheme including the boundary 
treatment. Furthermore, we propose a linearly stable 3rd-order scheme with the same 
imposition of the wall conditions. However, the 3rd-order scheme is not provably non-
linearly stable. A number of simulations show that the boundary procedure is robust for 
both schemes.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The compressible Navier-Stokes equations describe the motion of a compressible, viscous and heat conducting fluid. 
Together with appropriate boundary and initial conditions, they model e.g. aerodynamic problems. Here, we consider the 
case where the fluid is interacting with solid walls. At walls, the equations are augmented with the no-slip condition leading 
to the formation of boundary layers that may become unstable and even generate turbulence. These complex phenomena 
are often studied using computational fluid dynamics. To reliably obtain accurate numerical approximations, the problem 
must be well-posed and its discrete approximation scheme stable. Unfortunately, well-posedness is, by and large, unknown 
for the Navier-Stokes equations. However, for smooth solutions, [24] ensures that numerical solutions produced by linearly 
stable schemes converge.

Linear theory is well developed and one can readily employ the energy method to prove well-posedness of initial-
boundary-value problems (IBVP) (see e.g. [8]). Since the continuous energy method relies heavily on the integration-by-parts 
rule, spatial operators that satisfy the corresponding discrete property, summation-by-parts (SBP), have been developed (see 
e.g. [14], [29], [5]). These are used to prove energy stability and convergence of linear schemes ([9]). The linear theory has 
successfully been used to design schemes appropriate for subsonic smooth flows.

In the non-linear regime, however, the linear theory is not sufficient to guarantee stability, let alone well-posedness. 
To obtain non-linear bounds on the solution, the second law of thermodynamics, stating that the entropy within a closed 
system cannot decrease, can be used. In mathematical terms, this takes the form of an additional inequality and solutions 
that satisfy this inequality are termed entropy solutions (see Harten [10] and Tadmor [32] for the Cauchy problem and 

* Corresponding author.
E-mail addresses: anita.gjesteland@uib.no (A. Gjesteland), magnus.svard@uib.no (M. Svärd).
https://doi.org/10.1016/j.jcp.2022.111572
0021-9991/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcp.2022.111572
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111572&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:anita.gjesteland@uib.no
mailto:magnus.svard@uib.no
https://doi.org/10.1016/j.jcp.2022.111572
http://creativecommons.org/licenses/by/4.0/


A. Gjesteland and M. Svärd Journal of Computational Physics 470 (2022) 111572
[23,27] for boundary treatments). Analogously, a numerical scheme is termed entropy stable if it satisfies a discrete equivalent 
of the continuous entropy inequality.

For both linear and non-linear problems, special attention must be paid to the boundaries, to ensure stability of the 
numerical scheme. SBP operators, together with the simultaneous approximation terms (SAT) to weakly impose boundary 
conditions, are applicable to a large class of problems, and are frequently used in the literature see [2,30,29,5,4,23,31]). 
In contrast to SAT, the injection method, which is the topic of this article, imposes the boundary conditions strongly. In 
practice, it does so by overwriting the boundary nodes with the boundary data after each time step (and/or Runge-Kutta 
stage). The injection method is appealing due to its simple nature, but may lead to unstable schemes (see e.g. [8,21]).

Here, we study SBP finite difference discretisations of the compressible Navier-Stokes equations augmented with the 
no-slip, i.e., homogeneous Dirichlet, boundary condition for the velocities and a homogeneous Neumann condition for the 
temperature. The no-slip condition is implemented strongly using the injection method, while the Neumann condition is 
implemented weakly with the SAT technique. Our primary objective is to demonstrate that this boundary procedure is 
entropy stable. Furthermore, this combination of boundary procedures has previously been considered in [22], where a 
stability proof for the symmetrised, constant-coefficient Navier-Stokes equations in two spatial dimensions was given. Our 
secondary objective is to investigate the nature of such linear stability proofs. Hence, we study the complete chain of 
arguments, from the linearisation of the full non-linear approximation scheme to a variable-coefficient problem and on to a 
symmetrisable frozen-coefficient problem. In particular, we focus on the validity of the last step.

The remaining article is organised as follows. First, we introduce linear well-posedness and stability, before we introduce 
the SBP operators and provide an example of the injection technique. Next, we review the linear well-posedness theory 
for the Navier-Stokes system. Thereafter, we prove stability for a scheme approximating the symmetric constant-coefficient 
version of the Navier-Stokes equations. (This is what is commonly referred to as linear stability analysis.) Next, we introduce 
the numerical scheme approximating the non-linear equations, and analyse its linear stability. In particular, we relate it to 
the constant-coefficient scheme. Next, we prove entropy stability of the scheme in one and two spatial dimensions. Lastly, 
we provide some numerical simulations that substantiate the findings of our stability proofs.

2. Preliminaries for the linear analysis

A general variable-coefficient initial-boundary-value problem (IBVP) can be written as

∂u

∂t
= P (∂x, x, t)u + F (x, t), 0 < x < 1, t ≥ 0,

Lu = g(t),

u(x,0) = f (x),

(1)

where P is a spatial differential operator; F is a forcing function and L is an operator acting on the boundary. We will also 
need the standard L2-norm defined by ‖u‖2 = ∫ 1

0 |u|2 dx.

Definition 2.1 (Well-posedness, [8]). The initial-boundary-value problem (1) is well-posed if for F = g = 0 there exists a 
unique solution satisfying

‖u(·, t)‖ ≤ K eαt‖ f (·)‖,
where K and α are constants independent of f (x). �

Next, define a computational grid with N + 1 equidistant grid points on the domain 0 ≤ x ≤ 1: xi = ih, h > 0. Let u, 
f , F and g be grid functions corresponding to the continuous functions u, f , F and g , respectively. That is, [u(t)]i is the 
approximation of u(xi, t) etc. Let

du

dt
= Dhu + F ,

Bu = g(t),

u(0) = f ,

(2)

be a semi-discrete approximation of the IBVP (1). Dh is an approximation of the differential operator, P , and B an approx-
imation of the boundary operator, L. For the semi-discrete schemes, we use the discrete analog to the L2-norm defined 
by ‖u‖2

H = uT Hu, where H is a symmetric positive-definite matrix with elements of size O(h). Herein, we only consider 
diagonal H matrices.

Definition 2.2 (Stability, [8]). The problem (2) is stable if for F = g = 0, the solution satisfies

‖u(t)‖H ≤ K eαt‖ f ‖H ,
2
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where K and α are constants independent of f and h. �

Stability of the semi-discrete scheme implies stability of the fully discrete scheme if the spatial scheme is advanced in 
time with an appropriate Runge-Kutta method (see [15] for a proof).

Remark. For many problems, stability in the sense of Definition 2.2 for the variable-coefficient problem follows from stabil-
ity of the “frozen-coefficient” problem. This was stated as a Conjecture in [9] (page 82).

3. Spatial discretisation

An SBP operator approximating the first derivative takes the form D = H−1 Q , where the matrices have the following 
properties:

i) H is a symmetric positive-definite matrix with elements of O(h),
ii) Q is an almost skew-symmetric matrix, satisfying the relation Q + Q T = B = diag(−1, 0, . . . , 0, 1).

(For an introduction to SBP operators, see for example the review papers [5,29].)
For concreteness, we use the (2,1)-SBP operator that is second-order accurate in the interior and first-order accurate on 

the boundary. The operator takes the form

D = 1

2h

⎛
⎜⎜⎜⎜⎜⎝

−2 2 0 . . .

−1 0 1 . . .

. . .

−1 0 1
0 −2 2

⎞
⎟⎟⎟⎟⎟⎠ , Q = 1

2

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 . . .

−1 0 1 . . .

. . .

−1 0 1
0 −1 1

⎞
⎟⎟⎟⎟⎟⎠ , (3)

and H = h · diag(1/2, 1, . . . , 1, 1/2) (this operator can be found in e.g. [16]).

Example 3.1. To introduce the injection technique we consider the system of equations

ut + vx = 0,

vt + ux − 2vx = 0,
(4)

with the boundary condition v = 0 at x = 1 (neglecting the left boundary for simplicity), and the semi-discretisation

ut + D v = 0, (5)

vt + Du − 2D v = 0, (6)

where u and v are the numerical solution vectors.
In the injection method, v(1, t) = 0 is enforced by v N = 0. A common approach to enforce injection is to remove the 

equation for v N from the scheme by removing the boundary element of the solution vector and the last row and column of 
the spatial differential operator, D (see e.g. [8]). However, for coupled systems such as (4) this may inadvertently introduce 
extra boundary conditions. Here, we enforce injection indirectly by approximating (v N)t = 0. To achieve this, we introduce 
a new operator by setting all elements in the last row of D in (3) to zero, i.e.,

D̃ = 1

2h

⎛
⎜⎜⎜⎜⎜⎝

−2 2 0 . . . 0
−1 0 1 . . . 0

. . .

−1 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

We term D̃ a Dirichlet-SBP operator. The Dirichlet-SBP operator satisfies a new SBP-type property replacing ii):

Q̃ + Q̃ T = B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

. . .
...

0 1
2

0 0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

2

3
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We alter the scheme (5)-(6), to take the boundary condition v(1, t) = 0 into account, as follows,

ut + D v = 0, (7)

vt + D̃u − 2D̃ v = 0. (8)

Note that the last row of the v-equation is, (v N )t = 0. Thus, since v N(0) = 0, it follows that v N (t) ≡ 0. To prove that (7)-(8)
is a stable scheme, we use the energy method (see e.g. [5,29]). For (7) we have

d

dt
‖u‖2

H = −2uT Q v,

and for (8), we obtain

d

dt
‖v‖2

H = −v T H D̃u − (v T H D̃u)T + 2v T H D̃ v + 2(v T H D̃ v)T ,

= −2v T Q̃ u + 2v T (Q̃ + Q̃ T )v = −2v T Q̃ u + 2v T B̃ v.

Adding the two estimates (and neglecting the left boundary terms emerging from (7)), we obtain

d

dt

(
‖u‖2

H + ‖v‖2
H

)
= −2uT Q v − 2v T Q̃ u − 2v2

0 + 2v N v N−1. (9)

Since v N ≡ 0 the following relations hold: v N v N−1 = 0, v T Q̃ u = v T Q u and v T Q u = v T (B − Q T )u = v T Bu − v T Q T u =
−v T Q T u. Furthermore, −v T Q T u = −(uT Q v)T , and we conclude that v T Q̃ u = −uT Q v . Hence, the two first terms on the 
right-hand side of (9) cancel, and our estimate reads

d

dt

(
‖u‖2

H + ‖v‖2
H

)
= −2v2

0 ≤ 0,

which demonstrates that the semi-discrete scheme (7)-(8) is stable.

Remark. Note that the Dirichlet-SBP operator, D̃ , need not be implemented. The same result is achieved by using D every-
where in (7)-(8) and setting v N = 0 after each Runge-Kutta stage. �

4. The linearised compressible Navier-Stokes equations

Consider the compressible Navier-Stokes equations in one spatial dimension. These can be stated as

ut + fI(u)x = fV(u,ux)x, x ∈ � = (0,1), 0 < t < T , (10)

where u = (ρ, m, E)T are the conserved variables density, momentum (m = ρv) and energy, and v denotes the velocity. 
fI = (

m,ρv2 + p, v(E + p)
)T

, is the inviscid flux where p denotes the pressure, which is related to the conserved quan-
tities through p = (γ − 1) 

(
E − 1

2 ρv2
)
, where γ = cp

cv
is the ratio of the specific heats at constant pressure and volume. 

Furthermore, fV = (0, (2μ + λ)vx, (2μ + λ)v vx + κTx)
T is the viscous flux, where T denotes the temperature, given by the 

ideal gas law T = p
Rρ , where R is the gas constant. Moreover, μ and λ denote the viscosity parameters, and we assume 

Stokes hypothesis, λ = − 2
3 μ, with μ > 0. Lastly, κ denotes the thermal conductivity. (Below, we use c to denote the speed 

of sound.) The equations are augmented with the adiabatic wall boundary conditions,

v = 0 (no-slip) and, Tx = 0. (11)

To investigate linear well-posedness, the system (10) may be linearised and subsequently symmetrised with the sym-
metrising matrices found in [1]. (Since the details of the derivations are omitted in [1], we include them in Appendix A.1
for the reader’s convenience.)

We repeat this procedure briefly. To linearise the equations, we decompose the primitive variables, v = (ρ, v, p)T , into 
their exact (known smooth and bounded) solution and a small smooth perturbation, e.g. ρ = ρex + ρ ′ , which yields a 
variable-coefficient problem. Then, we freeze the coefficients. Well-posedness of the variable-coefficient problem follows 
if all admissible frozen-coefficient problems are well-posed (see [9,13] for further information). The resulting linearised 
constant-coefficient problem is

ρ ′
t + v∗ρ ′

x + ρ∗v ′
x = 0,

v ′
t + v∗v ′

x + 1
ρ∗ p′

x = 2μ+λ
ρ∗ v ′

xx,

p′
t + γ p∗v ′

x + v∗p′
x = − γμp∗

∗2 ρ ′
xx + γμ

Prρ∗ p′
xx,

(12)
Prρ

4
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where the star superscript, ‘∗’, indicates a frozen coefficient. Finally, we symmetrise the equations using the matrices S p

and S−1
p from [1]. Using the linearised gas law (see Appendix A.2), we obtain

wt +Awx = Bwxx, (13)

where

w =
(

c∗
√

γ ρ∗ ρ ′, v ′, γR
c∗√γ

√
γ − 1

T′
)T

and

A =

⎛
⎜⎜⎝

v∗ c∗√
γ 0

c∗√
γ v∗

√
γ −1
γ c∗

0
√

γ −1
γ c∗ v∗

⎞
⎟⎟⎠ , B =

⎛
⎜⎝0 0 0

0 2μ+λ
ρ∗ 0

0 0 γμ
Prρ∗

⎞
⎟⎠ ,

with Pr = cpμ
κ denoting the Prandtl number and cp = γR

γ −1 .
For completeness, we proceed by reviewing the well-posedness analysis found in e.g. [28]. Consider (13) on the spatial 

domain � = (0, 1) with L2-bounded initial data. The linearised boundary conditions (11), take the form

v ′({0,1}, t) = 0, v∗({0,1}, t) = 0, T′
x({0,1}, t) = 0. (14)

(Note that admissible solutions satisfy the no-slip condition, whence v∗({0, 1}, t) = 0.) The energy method and (14) lead to

d

dt
‖w‖2 + 2

∫
�

wT
x Bwx dx = 2wT Bwx|10 − wT Aw|10 = 0.

Hence our problem is well-posed in the sense of Definition 2.1.

Remark. The Dirichlet condition T′({0, 1}) = 0 would give the same result, but since the non-linear analysis later in this 
article requires T′

x({0, 1}) = 0, we only consider the latter.

4.1. The semi-discrete scheme

Turning to the semi-discretisation of the problem (12) subject to the boundary conditions (14), we divide the spatial 
domain into N + 1 equidistant grid points with grid spacing h = 1/N . Bold-face letters denote the numerical solution 
vectors.

To enforce the no-slip condition at both boundaries, the Dirichlet-SBP operator is defined by

D̃ = 1

2h

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . .

−1 0 1 . . .

. . .

−1 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎠ , B̃ = Q̃ + Q̃ T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
2 0 . . . 0 0

− 1
2 0 0 . . . 0 0

0 0 0 . . . 0 0
...

. . .
...

0 1
2

0 0 0 . . . 1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

We introduce ρ̂ = c∗√
γ ρ∗ ρ ′ and T̂ = − c∗

ρ∗√
γ

√
γ −1

ρ ′ +
√

γ
γ −1

1
ρ∗c∗ p′ = γR

c∗√
γ

√
γ −1

T′ and consider the following semi-discrete 
numerical scheme to approximate the system (12).

ρ̂t + v∗Dρ̂ + c∗√
γ D v ′ = 0, (16)

v ′
t + c∗√

γ D̃ρ̂ + v∗ D̃ v ′ +
√

γ −1
γ c∗ D̃T̂= 2μ+λ

ρ∗ D̃ D v ′, (17)

T̂t +
√

γ −1
γ c∗D v ′ + v∗DT̂= γμ

Prρ∗ D DT̂+ SAT, (18)

where

SAT = − γμ
Prρ∗ H−1 B(DT̂− 0), (19)

imposes the homogeneous Neumann condition for the temperature weakly. We observe the following
5
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• Since v ′ ≡ 0 at the boundaries initially, the use of the Dirichlet-SBP operator, D̃ , in (17) ensures that v ′
0, v

′
N remains 

zero for all t ≥ 0.
• Note that in (16) and (18), ρ̂0,N and T̂0,N are unknowns that are updated in time.
• Note that the Dirichlet-SBP operator is applied only once for the second-derivative approximation in the right-hand side 

of (17). Using the Dirichlet-SBP operator twice would inadvertently impose the improper boundary condition v ′
x = 0.

• When implementing the scheme, the D̃ is not necessary. One can equivalently compute all derivatives using D and 
reset the velocity to zero after each Runge-Kutta stage.

Remark. A similar scheme for the non-dimensional linearised and symmetrised Navier-Stokes equations was demonstrated 
to be stable using SAT to impose the no-slip conditions in [28]. The modifications of the SBP operator described here only 
affect the wall boundaries. Far-field boundaries may be handled in a stable manner using SAT, see [30].

Proposition 4.1. The semi-discrete scheme (16) - (18) is energy stable.

Remark. Linear stability of a numerical scheme using the injection method for imposing the no-slip condition and SAT to 
impose the temperature condition for the linearised and symmetrised constant-coefficient problem (13) was proven in [22]. 
However, in the present analysis, we use a different methodology for the injection method.

Proof. We carry out the energy analysis for each equation separately, before adding the three preliminary results to obtain 
the final energy estimate. (We neglect the right boundary for the rest of this analysis to reduce notation. Its treatment 
resembles the left boundary.) For (16), we obtain

d

dt
‖ρ̂‖2

H = −v∗ρ̂T
(Q + Q T )ρ̂ − 2 c∗√

γ ρ̂T Q v ′.

Utilising the SBP-properties and subsequently v∗ = 0 yield

d

dt
‖ρ̂‖2

H = v∗ρ̂2
0 − 2 c∗√

γ ρ̂T Q v ′ = −2 c∗√
γ ρ̂T Q v ′. (20)

Next, Equation (17) results in

d

dt
‖v ′‖2

H = −2 c∗√
γ v ′ T Q̃ ρ̂ − 2

√
γ −1
γ c∗v ′ T Q̃ T̂−v∗v ′ T (Q̃ + Q̃ T )v ′ + 2 2μ+λ

ρ∗ v ′ T Q̃ D v ′︸ ︷︷ ︸
A1

.
(21)

Using (15), we obtain

A1 = −v∗v ′ T B̃ v ′ + 2 2μ+λ
ρ∗ v ′ T (B̃ − Q̃ T )D v ′,= v∗v ′

0 v ′
1 + 2μ+λ

ρ∗
(
−v ′

1(D v ′)0 − v ′
0(D v ′)1 − 2(D̃ v ′)T H D v ′) ,

and, using v ′
0 = 0,

A1 = 2μ+λ
ρ∗

(
−v ′

1
v ′

1 − v ′
0

h
− 2(D̃ v ′)T H D v ′

)
≤ − 2μ+λ

ρ∗
(

2(D̃ v ′)T H D v ′) .

The estimate (21) therefore reduces to

d

dt
‖v ′‖2

H ≤ −2 c∗√
γ v ′ T Q̃ ρ̂ − 2

√
γ −1
γ c∗v ′ T Q̃ T̂− 2 2μ+λ

ρ∗ (D̃ v ′)T H D v ′. (22)

The energy method for (18) with (19) gives

d

dt
‖T̂‖2

H = −2
√

γ −1
γ c∗T̂Q v ′ −v∗T̂T (Q + Q T )T̂+ 2 γμ

Prρ∗ T̂T Q DT̂− 2 γμ
Prρ∗ T̂T B DT̂︸ ︷︷ ︸

A2

.
(23)

Using Q + Q T = B and v∗ = 0, yield

A2 = v∗T̂2
0 + 2 γμ

Prρ∗
(
T̂T (B − Q T )DT̂− T̂T B DT̂

)
= v∗T̂2

0 − 2 γμ
Prρ∗ T̂T Q T DT̂= −2 γμ

Prρ∗ (DT̂)T H(DT̂).

Hence, (23) results in

d ‖T̂‖2
H = −2

√
γ −1
γ c∗T̂T Q v ′ − 2 γμ

Prρ∗ (DT̂)T H(DT̂). (24)

dt

6
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We add all the preliminary estimates (20), (22) and (24) to obtain

d

dt

(
‖ρ̂‖2

H + ‖v ′‖2
H + ‖T̂‖2

H

)
≤ −2 c∗

γ

(
ρ̂T Q v ′ + v ′ T Q̃ ρ̂

)
− 2

√
γ −1
γ c∗ (v ′ T Q̃ T̂+ T̂T Q v ′)

−2 2μ+λ
ρ (D̃ v ′)T H D̃ v ′ − 2 γμ

Prρ (DT̂)T H DT̂.

(25)

Consider the term v ′ T Q̃ ρ̂ . As in Example 3.1, it follows from v ′
0 = v ′

N ≡ 0 that v ′ T Q̃ ρ̂ ≡ v ′ T Q ρ̂ = v ′ T Bρ̂ − v ′ T Q T ρ̂ =
−(ρ̂T Q v ′)T . Since −(ρ̂T Q v ′)T is a scalar we obtain v ′ T Q̃ ρ̂ = −ρ̂T Q v ′ . The same argument holds for the term v ′ T Q̃ T̂, 
and the two first terms in (25) therefore vanish. Lastly, since (D̃ v ′)0 = 0, we have (D̃ v ′)T H D v ′ = (D̃ v ′)T H D̃ v ′ , and we 
obtain

d

dt

(
‖ρ̂‖2

H + ‖v ′‖2
H + ‖T̂‖2

H

)
+ 2 2μ+λ

ρ∗ ‖D̃ v‖2
H + 2 γμ

Prρ∗ ‖DT̂‖2
H ≤ 0. (26)

Hence, the scheme is stable in the sense of Definition 2.2. �
5. The non-linear Navier-Stokes equations

The semi-discrete scheme approximating (10) is given by

ut +DIfI = DVfV + SAT, (27)

where u = (ρ, v, E)T is the numerical solution vector. The convective term of (10) is, once again ignoring the right boundary, 
approximated by

(DIfI)i =
⎧⎨
⎩

fI1/2−fI0
h/2 , i = 0,

fIi+1/2−fIi−1/2
h , i = 1, . . . , N − 1,

(28)

where

fI
i+1/2 = fI

i+1 + fI
i

2
− δi+1/2 (ui+1 − ui)

2
(29)

is the approximation of the inviscid flux and fI
i = fI(ui). The second term is artificial diffusion and for δ sufficiently large, 

the approximation is entropy stable in the sense of (52) below (see also [32]). Furthermore, the components of fI
0 are

fI,ρ0 = (ρ.v)0, (30)

fI,m0 = fI,m
1/2, (31)

fI,E
0 = (v.(E + p))0, (32)

where the superscripts ρ, m, E denote which equation the vector element corresponds to, and the dot symbolises element-
wise vector multiplications.

Remark. Note that (31) implies that the flux difference (28) is identically equal to zero at grid point x0 for the momentum 
equation.

Next, the diffusive term of (10) is conveniently approximated on matrix form by

DVfV =
(

0, D̃((2μ + λ)D v), D((2μ + λ)
b,x
v .D v + κ DT)

)T

, (33)

(the definition of 
b,x
v .D v is given in (36)-(37)) and the SAT is given by

SAT = (
0,0,−κ H−1 B(DT− 0)

)T
. (34)

Remark. The scheme for the momentum equation is mt = 0 on the boundary, i.e., m0(t) ≡ 0 such that v0 ≡ 0 for all t ≥ 0.

Remark. It is also possible to handle a heat-entropy flow boundary condition, where the temperature condition in (11) is 
replaced with κ Tx

T = g . The corresponding SAT would then take the form SAT = H−1(κ B DT − T g), which would yield an 
entropy stable scheme for appropriately chosen g .
7
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In (33) we use

(D(a.b))i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1b1−a0b0
h = a1(Db)0 + b0(Da)0 = b1(Da)0 + a0(Db)0 i = 0,

ai+1bi+1−ai−1bi−1
2h = ai+1+ai−1

2 (Db)i + bi+1+bi−1
2 (Da)i i = 1, . . . , N − 1,

aN bN−aN−1bN−1
h = aN(Db)N + bN−1(Da)N = bN(Da)N + aN(Db)N i = N.

(35)

To distinguish between the two boundary rules, we introduce the following notation

b,x
a = (

a0,
a2+a0

2 , . . . ,
aN +aN−2

2 , aN
)
,

i,x
a = (

a1,
a2+a0

2 , . . . ,
aN +aN−2

2 , aN−1
)
,

(36)

and

(
b,x
a .(Db)

)
i
=

⎧⎪⎪⎨
⎪⎪⎩

a0(Db)0, i = 0,

ai+1+ai−1
2 (Db)i, i = 1, . . . N − 1,

aN(Db)N , i = N,

(37)

(
i,x
a.(Db)

)
i
=

⎧⎪⎪⎨
⎪⎪⎩

a1(Db)0, i = 0,

ai+1+ai−1
2 (Db)i, i = 1, . . . N − 1,

aN−1(Db)N , i = N.

(38)

Here, superscript b signifies that a is taken at the boundary node and superscript i signifies that a is taken at the first 
neighbouring interior node. A similar relation holds for the averages taken in the y-direction. Using (37) and (38), we can 
rewrite (35) as

Dx(a.b) = b,x
a .(Dxb) + i,x

b.(Dxa) = b,x

b .(Dxa) + i,x
a.(Dxb),

D y(a.b) = b,y
a .(D yb) +

i,y

b .(D ya) =
b,y

b .(D ya) + i,y
a .(D yb),

(39)

where Dx and D y approximate the x- and y-derivative, respectively.
Lastly, a similar rule holds for quotients

(
D
(a

b

))
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1
b1

− a0
b0

h = b0(Da)0−a0(Db)0
b0b1

= b1(Da)0−a1(Db)0
b0b1

i = 0,

ai+1
bi+1

− ai−1
bi−1

2h = 1
bi+1bi−1

(
bi+1+bi−1

2 (Da)i − ai+1+ai−1
2 (Db)i

)
, i = 1, . . . , N − 1

aN
bN

− aN−1
bN−1

h = bN (Da)N−aN (Db)N
bN bN−1

= bN−1(Da)N−aN−1(Db)N
bnbN−1

, i = N.

(40)

The inviscid term in (27) can equivalently be recast on matrix form. To this end, the artificial diffusion can be recognised 
as a second-derivative SBP operator with variable coefficients (see [18] and [19]). Define D(δ)

2 = H−1(−DT
(δ)
̃D(δ) + 
̄S), 

where D(δ)
2 , D(δ) , 
̃ = h

2 diag(δ1/2, δ3/2, . . . , δN−1/2) and 
̄ = diag(−δ0, 0, . . . , 0, δN ) correspond to the matrices D2, D , B̃
and B , respectively, given in [18]. Then the artificial diffusion (AD) terms in (29) can be recast as

ADρ = −hH−1 DT
(δ)
̃D(δ)ρ,

ADm = −hH−1 D̃T
(δ)
̃D(δ)(ρ.v),

AD E = −hH−1 DT
(δ)
̃D(δ) E,

(41)

where D̃T
(δ) is the Dirichlet-SBP operator corresponding to DT

(δ) , i.e., it is DT
(δ) with the elements of first and last row set to 

zero. Then, using the SBP operators (3) and (15), (28) can be restated as,

DIfI =
⎛
⎝ DfI,ρ − ADρ

D̃fI,m − ADm

DfI,E − AD E

⎞
⎠ , (42)

where fI,ρ = ρ.v , fI,m = ρ.v.2 + p, and fI,E = v.(E + p).
8
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5.1. Linear stability of the non-linear scheme

To demonstrate the linear stability of the scheme (27), we consider its linearisation and relate it to the scheme in 
Proposition (4.1). Using (41) and (42), the scheme (27) is recast as

ρt + D(ρ.v) + hH−1 DT
(δ)
̃D(δ)ρ = 0,

(ρ.v)t + D̃(ρ.v.2 + p) + hH−1 D̃T
(δ)
̃D(δ)(ρ.v) = (2μ + λ)D̃ D v,

Et + D(v.(E + p)) + hH−1 DT
(δ)
̃D(δ) E = (2μ + λ)D(

b,x
v .D v) + κ(D DT− H−1 B DT).

(43)

In analogy with the continuous problem, we insert into the scheme the decomposition, vT = (ρ, v, p) = (ρex, vex, pex) +
(ρ ′, v ′, p′). (Smooth exact solution and a perturbation. Cf. Appendix A.1.) In the subsequent linearisation process, we neglect 
terms that are quadratically small in the perturbations and we omit zeroth-order terms since they do not affect stability 
(see [9]). The smooth exact solution satisfies the scheme up to a bounded truncation error, which is benign with respect 
to stability. Furthermore, linearisation of the variable-coefficient second-derivative approximations, yields terms on the form 
DT

(δ)
̃
′D(δ)βex (where βex is any of the independent variables). Due to the form of 
̃ ∼ v + T, these terms are bounded by 

the corresponding principal terms emanating from the momentum and energy equation. (All the terms that are assumed 
to be bounded or linear in the principal variable in the linearisation are denoted as O(1, v) in the derivations below.) The 
linearised equation scheme (43) becomes:

ρ ′
t + D(ρex.v

′ + ρ ′.vex) + hH−1 DT
(δ)
̃D(δ)ρ

′ = O(1,v),

v ′
t + 1

ρex
.D̃(2ρex.vex.v

′ + ρ ′.vex.
2 + p′) − vex.

ρex
.D(ρex.v

′ + ρ ′.vex)

− vex.
ρex

.hH−1 DT
(δ)
̃D(δ)ρ

′ + 1
ρex

.hH−1 D̃T
(δ)
̃D(δ)(ρex.v

′ + ρ ′.vex) = 2μ+λ
ρex

.D̃ D v ′ +O(1,v),

p′
t

γ − 1
+ 1

2 vex.
2 D(ρex.v

′ + ρ ′.vex) − vex.D̃(2ρex.vex.v
′ + ρ ′vex.

2 + p′)

+D
(

γ
γ −1 (v ′ pex + vex p′) + 3

2ρex.vex.v
′ + 1

2ρ ′vex.
3
)

+ 1
2 vex.

2hH−1 DT
(δ)
̃D(δ)ρ

′ − vex.hH−1 D̃T
(δ)
̃D(δ)(ρex.v

′ + ρ ′.vex)

+hH−1 DT
(δ)
̃D(δ)(

p′
γ −1 + ρex.vex.v

′ + 1
2ρ ′.vex.

2) = (2μ + λ)

(
D(

b,x
v ex.D v ′) − vex.D̃ D v ′

)

+ κ
R

(
D D

(
p′.
ρex

− pex.ρ ′.
ρex.2

)
− H−1 B D

(
p′.
ρex

− pex.ρ ′.
ρex.2

))
+O(1,v).

Next, we use a result found in the proof of Lemma 2.2 of [20]: For a known continuously differentiable function, aex(x, t),

D(aex.b
′) = aex.Db′ + zeroth-order terms of b′.

The zeroth-order terms can then be included in the O(1, v) terms. Furthermore, we obtain first-derivative approximations 
of v ′, p′ and ρ ′ in the pressure equation, but as in the continuous analysis, they are bounded by the corresponding principal 
terms, see Appendix A.1. Hence, the part of the scheme that affects the linear stability reduces to

ρ ′
t + ρex.D v ′ + vex.Dρ ′ + hH−1 DT

(δ)
̃D(δ)ρ
′ = O(1,v),

v ′
t + vex.D̃ v ′ + 1

ρex
.D̃ p′ + hH−1 D̃T

(δ)
̃D(δ)v ′ = 2μ+λ
ρex

.D̃ D v ′ +O(1,v),

p′
t + vex.D p′ + γ pex.D v ′ + hH−1 DT

(δ)
̃D(δ) p′ = (2μ + λ)(γ − 1)(
b,x
v ex − vex).D̃ D v ′

+ κ(γ −1)
R

(
1

ρex
.D D p − pex.

ρex.2
.D Dρ ′ − 1

ρex
.H−1 B D p′

+ pex.

ρex.2
.H−1 B Dρ ′

)
+O(1,v).

In order to symmetrise the system, we must freeze the coefficients. That is, we assume that the variable coefficients are 
constants. Specifically, with vex = constant , the difference (

b,x
v ex − vex) = 0, since 

b,x
v ex is an arithmetic mean of vex. This 

would immediately take us to (16)-(18) (plus some benign terms), which we already know is stable. However, the method of 
freezing the coefficients is only allowed if it implies stability of the variable-coefficient problems.
9
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Remark. Consider the advection equation, ut + a(x, t)ux = 0 whose estimate is ∂t‖u‖2 + au2|10 + ∫ 1
0 axu2 dx = 0, and analo-

gously for any SBP semi-discretisation. Clearly, if a bound is obtained for any constant a within the range of a, and |ax| is 
bounded, the variable-coefficient problem is also bounded.

Here, it is straightforward that the above principle applies to most terms. However, we can not immediately omit the 
term with (

b,x
v ex − vex) in the “freezing” process, since it is a part of a second-derivative term of velocity in the temperature 

equation. Hence, we keep it as a variable coefficient while all other coefficients are frozen (signified with the superscript 
star). By applying the symmetrising matrices from [1] and introducing ρ̂ = c∗√

γ ρ∗ ρ ′ and T̂= − c∗
ρ∗√γ

√
γ −1

ρ ′ +
√

γ
γ −1

1
ρ∗c∗ p′ =

γR
c∗√

γ
√

γ −1
T′ to reduce notation, we arrive at

ρ̂t + v∗Dρ̂ + c∗√
γ D v ′ + hH−1 DT

(δ)
̃D(δ)ρ̂ = O(1,v), (44)

v ′
t + c∗√

γ D̃ρ̂ + v∗ D̃ v ′ +
√

γ −1
γ c∗ D̃T̂+ hH−1 D̃T

(δ)
̃D(δ)v ′ = 2μ+λ
ρ∗ D̃ D v ′ +O(1,v), (45)

T̂t +
√

γ −1
γ c∗D v ′ + v∗DT̂+ hH−1 DT

(δ)
̃D(δ)T̂=
√

γ
√

γ −1
ρ∗c∗ (2μ + λ)(

b,x
v ex − vex).D̃ D v ′

+ γμ
Prρ∗

(
D DT̂− H−1 B DT̂

)+O(1,v). (46)

Note the resemblance to (16)-(18).

Proposition 5.1. The non-linear scheme (43) is linearly stable.

Proof. Linearising and symmetrising the non-linear scheme (43) leads to (44)-(46). Linear stability can then be established 
by employing the discrete energy method. In this process, the terms that differ from the analysis in Proposition 4.1 are 
the artificial diffusion terms, the O(1, v)-terms and the additional (velocity dependent) diffusive term in (46). The last 
one is the only non-trivial term. Hence, we only consider the temperature equation (the artificial diffusion terms and the 
O(1, v)-terms are handled in the same way in (44) - (45)).

In the energy analysis for equation (46) we multiply by T̂T H and add the transpose. We focus on the terms that differ 
from the scheme (18),

2hT̂T H H−1 DT
(δ)
̃D(δ)T̂− 2

√
γ

√
γ −1

ρ∗c∗ (2μ + λ)T̂T H

(
(

b,x
v ex − vex).D D v ′

)
+ 2T̂T HO(1,v)

= 2h(D(δ)T̂)T 
̃D(δ)T̂+ 2
√

γ
√

γ −1
ρ∗c∗ (2μ + λ)(D(

b,x
v ex − vex).T̂)T H

(
D v ′)+ 2T̂T HO(1,v). (47)

The first term is quadratic with positive sign since 
̃ is diagonal and 
̃ii = δi+1/2 ≥ 0. Moreover, the last term will at most 

contribute with a finite growth in the final estimate. The only term that requires attention is: (D(
b,x
v ex − vex).T̂)T H(D v ′). 

Since 
b,x
v ex is an average of the smooth function vex, (

b,x
v ex − vex) ∼ O(h). Hence, (D(

b,x
v ex − vex).T̂)T H(D v ′) ≤ C‖DT̂‖‖L(v ′)‖

where L(v ′) represents a vector whose entries are linear combinations of the elements of v ′ . Hence, these terms do not 
cause an unbounded growth in the final estimate for all components. (They enter the estimate corresponding to (26) as 
‖DT̂‖2 and ‖v ′‖2 terms.) �

It is common to demonstrate linear stability of non-linear schemes by directly considering (16)-(18). Here, we have 
rigorously proven that the non-linear scheme (43) indeed reduces to (16)-(18).

Remark. A 3rd-order version of (43) is obtained as follows: Replace the difference operators D , with the diagonal-norm 
(4,2)-scheme that is 4th-order in the interior and 2nd-order near the boundaries, and D̃ with its counterpart obtained by 
zeroing the first and last row in the (4,2)-operator. (See [8] for information on the (4,2)-operator and [17] for high-order 
version of artificial diffusion.) We have verified the linearisation process for this scheme leading to (16)-(18) (now with the 
(4,2)-operators) and proven stability for the symmetrised scheme. (Note that the high-order scheme produce a different set 
of boundary terms in the energy estimate.)

5.2. Entropy

For the non-linear analysis, we give a brief summary of the theory of entropy and refer the reader to the papers of 
Harten ([10]) and Tadmor ([32]) for a more comprehensive introduction.

Hyperbolic conservation laws take the form

ut + f (u)x = 0, x ∈R. (48)
10
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A strictly convex scalar function, U (u), is said to be an entropy function of the problem (48), if it satisfies the relation 
U T

u fu = Fu , where F is the entropy flux function. Uu = w are the entropy variables, which symmetrises the problem (48)
(see e.g. [12]). Furthermore, the scalar function ψ = w T f − F is called the entropy potential. By multiplying by the entropy 
variables, the equation (48) can be recast as

U (u)t + F (u)x = 0,

which is satisfied for smooth solutions of the problem (48). However, it is well-known that solutions of (48) can develop 
shocks (even from continuous data), and we therefore have to consider weak solutions that satisfy∫

R

φut dx −
∫
R

φx f (u) dx = 0,

for any φ ∈ C∞ with compact support. Weak solutions are generally not unique, however, the physically relevant solution 
satisfies the Second Law of Thermodynamics, which states that the entropy within a closed system cannot decrease. In 
mathematical terms, this can be stated as the entropy inequality

U (u)t + F (u)x ≤ 0. (49)

Solutions that satisfy the entropy inequality (49) are called entropy solutions (see e.g. [32]).

5.3. Entropy stability

In order to carry the concept of entropy over to the semi-discrete setting, we consider a scheme of the form

(ui)t + gi+1/2 − gi−1/2

hi
= 0, (50)

where hi is the distance between grid node i + 1 and i. Furthermore, gi+1/2 = f i+1+ f i−δi+1/2(ui+1−ui)

2 is the approximation of 
the flux f (u), where δi+1/2(ui+1 − ui), with δi+1/2 ≥ 0, is an artificial dissipation term. Schemes such as (50) are termed 
entropy stable, if they satisfy the discrete entropy inequality

(Ui)t + Fi+1/2 − Fi−1/2

hi
≤ 0, for all i, (51)

where Fi+1/2 = 1
2

(
(w T

i+1 + w T
i )g i+1/2

)− 1
2 (ψi+1 + ψi), and ψi = ψ(ui). This holds true for schemes where δ is chosen such 

that the flux approximation satisfies Tadmor’s shuffle condition,

〈
wi+1/2, gi+1/2〉 ≤ 
ψi+1/2 = ψi+1 − ψi, (52)

where 
wi+1/2 = wi+1 − wi . See [32] for more details.

5.4. Entropy analysis for the 1-D Navier-Stokes equations

Consider the continuous problem (10) augmented with the no-slip wall boundary condition v(0, t) = 0, and a Neumann 
condition on the temperature; Tx(0, t) = 0 (neglecting the right boundary), and L2-bounded initial data. (The entropy esti-
mate for this problem is derived in e.g. [23] and also [31], but we repeat it here for completeness.)

For the compressible Navier-Stokes equations, there is only one entropy function ([11]); U (u) = −ρS with F (u) = −mS
and ψ = (γ − 1)m, where S = ln

(
p

ργ

)
, and S is the specific entropy. For this entropy function, the entropy variables are 

given by

w T = − 1

cvT

(
v2

2
+ cvT(S − γ ),−v,1

)
.

To obtain an entropy estimate, multiply Equation (10) by the entropy variables, w T , and integrate over the spatial domain 
� = (0, 1),∫

�

U (u)t dx +
∫
�

F (u)x dx =
∫
�

w T fV(u,ux)x dx,

which leads to∫
U (u)t dx − F (u)|0 = −w T fV(u,ux)|0 −

∫
w T

x fV(u,ux) dx.
� �

11
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Since F = −mS , we have that F (u)|0 = 0, due to the no-slip boundary condition. Furthermore, the term w T fV(u, ux)|0
reduces to

w T fV(u,ux)
∣∣
0 = − (γ − 1)κ

R
Tx

T

∣∣∣∣
0
= 0,

(see e.g. [23]). The last equality is due to the Neumann condition at x = 0. Hence, the estimate reads∫
�

U (u)t dx = −
∫
�

1

cvT2

(
(2μ + λ)v2

xT+ κT2
x

)
dx. (53)

Since admissible solutions satisfy T > 0, the entropy is bounded from above.

5.4.1. Non-linear stability
We now turn to the non-linear analysis of the scheme (27), and show that it is entropy stable.

Proposition 5.2. If fI satisfies (52) for i = 1, . . . , N − 1, then the semi-discrete scheme (27)

ut +DIfI = DVfV + SAT, (27)

with (28)-(34), approximating system (10) is entropy-stable in the sense of (51).

Remark. The scheme (27) is inspired by the one proposed in [31] and [25].

Remark. Possible entropy stable choices of fI are for instance the local- and global Lax-Friedrichs schemes and entropy-fixed 
Roe schemes. An entropy conservative flux can be recast into the form of (29). For linear stability, it is evident that we need 
δi+1/2 ≥ 0 for all i, (cf. (47)) which is not necessarily true for entropy conservative fluxes (see [6]). However, the non-linear 
analysis presented below holds also for entropy conservative fluxes.

Proof. For each grid point, multiply the scheme (27) by the corresponding entropy variable w T
i = − 1

cvTi

(
v2

i
2 + cvTi(Si −γ ),

−vi, 1
)

and the norm element Hii (the i-th diagonal element of H), and sum over all nodes (and neglect the right boundary 
for brevity)

N−1∑
i=0

w T
i Hii(ui)t +

N−1∑
i=0

w T
i Hii(DIfI)i =

N−1∑
i=0

w T
i Hii(DVfV)i +

N−1∑
i=0

w T
i HiiSATi . (54)

For the convective flux approximation, we perform the analysis using index notation in order to use the entropy stability 
results in [32]. The left-hand side of (54) is recast as

N−1∑
i=0

w T
i Hii(ui)t +

N−1∑
i=0

w T
i Hii(DIfI)i =

N−1∑
i=0

Hii(Ui)t + w T
0 H00(DIfI)0 +

N−1∑
i=1

w T
i Hii

(
DIfI

)
i︸ ︷︷ ︸

A

.
(55)

Utilising (28) and the theory of [32], we manipulate A as

A = w T
0 H00(DIfI)0 −

N−1∑
i=1

Fi−1/2 +
N−1∑
i=1

Fi+1/2

−
N−1∑
i=1

(
1

2
(w i − w i−1)

T fI
i−1/2 − 1

2
(ψi − ψi−1)

)
−

N−1∑
i=1

(
1

2
(w i+1 − w i)

T fI
i+1/2 − 1

2
(ψi+1 − ψi)

)
,

where Fi+1/2 = w T
i+1+w T

i
2 fI

i+1/2 − ψi+1+ψi
2 . All F ’s except F1/2 cancel due to the series’ telescoping nature. Assuming that 

Tadmor’s shuffle condition (52) is fulfilled, A reduces to

A ≥ w T
0 H00(DIfI)0 − F1/2 = w T

0 H00
fI
1/2 − fI

0

h/2
− F1/2 = w T

0 (fI
1/2 − fI

0) − F1/2 ≥ −w T
0 fI0 + ψ0,

where we in the last step have used similar manipulations as for the interior nodes. Thanks to v0 = 0, the entropy variable 
corresponding to the momentum equation is wm

0 = v0
cvT0

= 0, ψ = (γ − 1)(ρ.v)0 = 0 and by (30) and (32), fI,ρ

0 = (ρ.v)0 = 0

and fI,E = (v.(E + p))0 = 0 respectively, such that we obtain A ≥ 0. Equation (54) therefore reduces to
0

12
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N∑
i=0

Hii(Ui)t ≤
N∑

i=0

w T
i Hii(DVfV)i +

N∑
i=0

w T
i HiiSATi . (56)

For the analysis of the diffusive term, we introduce the following vectors

wm = (
wm

0 , wm
1 , wm

2 , . . . , wm
N

)T = ( v0
cvT0

, v1
cvT1

, v2
cvT2

, . . . , v N
cvTN

)T
,

w E = (
w E

0, w E
1, w E

2, . . . , w E
N

)T =
(
− 1

cvT0
, − 1

cvT1
, − 1

cvT2
, . . . , − 1

cvTN

)T
,

(57)

where the superscript denotes which equation the vector acts on. Using (33) and (34) the right-hand side of (56) can be 
restated using matrix notation as

N−1∑
i=0

(
w T

i Hii(DVfV)i + w T
i HiiSAT

)
= (wm)T H D̃ ((2μ + λ)D v)︸ ︷︷ ︸

A1

+ (w E)T H

(
D

(
(2μ + λ)

b,x
v .D v + κ DT

)
− κ H−1 B DT

)
︸ ︷︷ ︸

A2

. (58)

Utilising that H D̃ = Q̃ = B̃ − Q̃ T = B̃ − (H D̃)T and (15) we obtain

A1 = (2μ + λ)(wm)T B̃ D v − (2μ + λ)(D̃ wm)T H D v

= − (2μ + λ)

2

(
wm

1 (D v)0 + wm
0 (D v)1

)− (2μ + λ)(D̃ wm)T H D v.

Insert wm
1 = v1

cvT1
and v0 = 0 to obtain

A1 = − (2μ + λ)

2h

1

cvT1
v1(v1 − v0) − (2μ + λ)(D̃ wm)T H D v,

= − (2μ + λ)

2h

1

cvT1
v2

1 − (2μ + λ)(D̃ wm)T H D v ≤ −(2μ + λ)(D̃ wm)T H D v. (59)

Next, we turn to A2 on the right-hand side of equation (58). Utilising the SBP properties, H D = Q and Q = B − Q T

yields

A2 = (w E)T B

(
(2μ + λ)

b,x
v .D v + κ DT

)
− κ(w E)T B DT− (w E)T Q T

(
(2μ + λ)

b,x
v .D v + κ DT

)
,

= −(D w E)T H

(
(2μ + λ)

b,x
v .D v + κ DT

)
, (60)

where we used 
b,x
v 0 = v0 = 0 in the last step.

Combining the preliminary results (56), (59) and (60) leads to

N∑
i=0

Hii(Ui)t ≤ −(2μ + λ)

(
(D̃ wm)T H D v + (D w E)T H(

b,x
v .D v)

)
︸ ︷︷ ︸

A3

−κ(D w E)T H DT︸ ︷︷ ︸
A4

.

Using (57) and the discrete product rule (39) result in

A3 = 1

cv

(
D̃(v.T−1)

)T
H D v − 1

cv

(
DT−1)T

H(
b,x
v .D v),

= 1

cv

⎛
⎝( i,x

T−1.D̃ v

)T

H D v +
(

b,x
v .D̃T−1

)T

H D v − (
DT−1)T

H(
b,x
v .D v)

⎞
⎠ .

The first term in the last row is a discrete equivalent of the L2-norm, 

(
i,x

T−1.D̃ v

)T

H D v = ∑N
i=0(

i,x

T−1)i(D̃ v)i Hii(D v)i =

‖
√

i,x

T−1.D̃ v‖2
H ≥ 0, (T > 0). (Note that (D̃ v)0(D v)0 = (D̃ v)2

0 = 0.) Furthermore, it is easily verified that the two last terms 
cancel.
13
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Lastly, by the discrete quotient rule (40), we have

A4 = κ(D w E)T H DT= − 1

cv
κ
(

DT−1)T
H DT= κ(

x

T2)−1

cv
. (DT)T H DT= κ

cv
‖
√

(
x

T2)−1.DT‖2
H ,

where (
x
T)2

0 = T0T1 and (
x
T)2

i = Ti−1Ti+1, i = 1, . . . , N − 1. This term is non-negative as long as all Ti ’s > 0.
Finally, our entropy estimate (54) reads

N∑
i=0

Hii(Ui)t ≤ −(2μ + λ)‖
√

i,x

T−1.D̃ v‖2
H − κ

cv
‖
√

(
x

T2)−1.DT‖2
H ≤ 0.

Hence, we conclude that our scheme is entropy stable. �
5.5. Non-linear analysis for the 2-D Navier-Stokes equations

Let � = (0, 1) × (0, 1) be the spatial domain with boundary ∂�. The compressible Navier-Stokes equations in two space 
dimensions are stated as

ut + fIx + gI
y = fV(u,ux,uy)x + gV(u,ux,uy)y, (x, y) ∈ � = (0,1)2, 0 < t < T , (61)

where u = (ρ, m, n, E)T are the conserved variables and

fI =
(

m,ρv2
1 + p,ρv1 v2, v1(E + p)

)T
,

gI =
(

n,ρv1 v2,ρv2
2 + p, v2(E + p)

)T
,

fV = (
0,2μv1x + λ

(
v1x + v2y

)
,μ
(

v1y + v2x

)
, v1

(
2μv1x + λ

(
v1x + v2y

))+ μv
(

v1y + v2x

)+ κTx
)T

,

gV = (
0,μ

(
v1y + v2x

)
,2μv2y + λ

(
v1x + v2y

)
, v2

(
2μv2y + λ

(
v1x + v2y

))+ μv1

(
v1y + v2x

)+ κTy
)T

,

are the inviscid and viscous fluxes; n = ρv2 is the momentum in the y-direction and v1, v2 denote the velocity components 
in the x- and y-directions, respectively. Equation (61) is augmented with no-slip boundary conditions and homogeneous 
Neumann conditions for the temperature, i.e.

v1|∂� = 0, v2|∂� = 0,
∂T

∂n
|∂� = 0, (62)

and appropriate initial conditions. In 2-D, the entropy fluxes are Fx = w T fI
x and G y = w T gI

y , where F = −mS and G = −nS . 
Following the same procedure as for the one-dimensional case, we can demonstrate that this problem satisfies the entropy 
inequality (49) (see again [23] or [31] for the derivation in 3-D). That is, multiply equation (61) by the entropy variables 

w T = − 1
cvT

(
v2

1+v2
2

2 + cvT(S − γ ),−v1,−v2,1

)
and integrate over the spatial domain. Apply integration-by-parts to the 

entropy flux function and the viscous flux. Ignoring the boundaries at x = 1 and y = 1, this results in∫
�

Ut d� −
∫

∂�,x=0

F dy −
∫

∂�,y=0

G dx = −
∫

∂�,x=0

w T fV dy −
∫

∂�,y=0

w T gV dx −
∫
�

w T
x fV + w T

y gV d�.

In view of (62), F = G = 0 at the boundaries. Using the temperature condition in (62), the boundary integrals take the form∫
∂�,x=0

w T fV dy = − κ

cv

∫
∂�,x=0

Tx

T
dy = 0,

∫
∂�,y=0

w T gV dx = − κ

cv

∫
∂�,y=0

Ty

T
dx = 0.

Furthermore, by contracting the derivatives of the entropy variables with fV and gV , and using λ = − 2
3 μ we obtain

w T
x fV + w T

y gV = 1

cvT

(
2
3μ

(
v1x − v2y

)2 + 2
3μv2

1x
+ 2

3μv2
2y

+ μ
(

v1y + v2x

)2
)

+ κ

cv

T2
x + T2

y

T2
≥ 0,

as long as T > 0. Hence, we have proved that 
∫

Ut d� ≤ 0.

�
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5.6. Entropy stability for the semi-discrete scheme

For the discretisation in two spatial dimensions, we use the formalism found in e.g. [29]. We divide the spatial domain 
into (N + 1)(M + 1) grid points, such that xi = ihx , i = 0, 1, . . . N , where hx = 1/N and yi = ihy , i = 0, 1, . . . , M where 
hy = 1/M . We denote ui, j(t) as the approximation of u(xi, y j, t), and the solution vectors are ordered in the following way

uT = (u0,0, u1,0, . . . , uN,0, u0,1, u1,1, . . . , uN,1, . . . , u0,M , u1,M , . . . , uN,M).

The 2-D differential operators are defined by Kronecker products as Dx = IM ⊗ D N , where IM is the (M + 1) × (M + 1)

identity matrix, and D N is the (N + 1) × (N + 1) (2,1)-SBP operator. Similarly, we have D y = D M ⊗ IN .
To impose the no-slip boundary conditions by injection, we introduce the initial velocity solution vectors as

(v1)T = (0,0,0, . . . ,0, 0, v1
1,1, v1

2,1, . . . ,0, 0, v1
1,M−1, v1

2,M−1, . . . , v1
N,M−1, 0,0,0, . . . ,0),

(v2)T = (0,0,0, . . . ,0, 0, v2
1,1, v2

2,1, . . . ,0, 0, v2
1,M−1, v2

2,M−1, . . . , v2
N,M−1, 0,0,0, . . . ,0),

i.e., v1 and v2 have all elements along x = 0, x = 1, y = 0 and y = 1 set to zero. In addition, we define the SBP-operators 
for the momentum equations so that they do not act on the boundary nodes.

D̃x = ( ĨM ⊗ D̃ N), D̃ y = (D̃ M ⊗ Ĩ N),

where D̃ N and D̃ M are Dirichlet-SBP operators corresponding to D N and D M , respectively. Moreover, Ĩ N and ĨM are almost the 
identity matrices, but with the upper left and lower right elements set to zero. The norm matrix for the two-dimensional 
grid is given by H = H y ⊗ Hx , where H y and Hx are equal to the 1-D norms defined in Section 3, with elements of size hy

and hx and matrix sizes (M + 1) × (M + 1) and (N + 1) × (N + 1), respectively.
Similarly as for the one-dimensional case, the SBP operators satisfy a discrete product - (39) and quotient (40) rule.

5.7. Entropy stability for the semi-discrete scheme

The 2-D inviscid fluxes are approximated by

fI
i+1/2, j = fI

i+1, j + fI
i, j

2
− δi+1/2, j

(
ui+1, j − ui, j

)
2

,

gI
i, j+1/2 = gI

i, j+1 + gI
i, j

2
− δi, j+1/2

(
ui, j+1 − ui, j

)
2

,

and the convective terms by the flux differences

(DI
xfI)i, j = fI

i+1/2, j − fI
i−1/2, j

hx
, i = 1, . . . , N − 1, j = 0, . . . , M,

(DI
ygI)i, j = gI

i, j+1/2 − gI
i, j−1/2

hy
, i = 0, . . . , N, j = 1, . . . , M − 1,

(63)

in the interior and by

(DI
xfI)0, j = fI

1/2, j − fI
0, j

hx/2
, i = 0, j = 0, . . . , M,

(DI
ygI)i,0 = gI

i,1/2 − gI
i,0

hy/2
, i = 0, . . . , N, j = 0,

(64)

at the boundaries x = 0, y = 0 (once again, we neglect the right and upper boundaries to reduce notation). As in the 1-D 
case, we have

fI,ρ

0, j = (ρ.v1)0, j, fI,m
0, j = fI,m

1/2, j, fI,n
0, j = fI,n

1/2, j, fI,E
0, j = (v1.(E + p))0, j,

and similarly for gI
i,0.

Next, we approximate the viscous terms by

DV
x fμ =

⎛
⎜⎜⎜⎝

0
D̃x
(
1x.
(
2μDx v1 + λ(Dx v1 + D y v2)

))
D̃x
(
1x.
(
μ(D y v1 + Dx v2)

))
D
(
1 .
( b,x

v1
(
2μD v1 + λ(D v1 + D v2)

)+ μ
b,x

v2(D v1 + D v2)
))

⎞
⎟⎟⎟⎠ , (65)
x x x x y y x
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DV
ygμ =

⎛
⎜⎜⎜⎝

0
D̃ y
(
1y .

(
μ(D y v1 + Dx v2)

))
D̃ y
(
1y .

(
2μD y v2 + λ(Dx v1 + D y v2)

))
D y
(
1y .
(b,y

v2
(
2μD y v2 + λ(Dx v1 + D y v2)

)+ μ
b,y

v1(D y v1 + Dx v2)
))

⎞
⎟⎟⎟⎠ , (66)

where we have used the approximation of 1 from [31]:

[1x]i, j = T−1
i, j

i,x

T−1
i, j

, [1y]i, j = T−1
i, j

i,y

T−1
i, j

. (67)

Note that the operator Dx,y uses D̃x,y for the momentum equations where the no-slip condition is imposed by injection, 
and uses Dx,y for the continuity equation and the equation for total energy.

Lastly, the approximations of the heat diffusive fluxes are given by

DV
x fκ = (

0,0,0, κ Dx DxT
)T

, DV
ygκ = (

0,0,0, κ D y D yT
)T

. (68)

Then, a semi-discretisation of (61) is given by

ut +DI
xfI +DI

ygI = DV
x fμ +DV

x fκ +DV
ygμ +DV

ygκ + SAT, (69)

with SAT = (
0,0,0,−κ

(
(IM ⊗ H−1

x B)(DxT− 0) + (H−1
y B ⊗ IN)(D yT− 0)

))T
.

Remark. Our scheme resembles the ones proposed in [31], where the no-slip condition was imposed using SAT, and [25].

Proposition 5.3. The 2D semi-discrete scheme (69) approximating the problem (61) is entropy stable.

Before stating the proof, we prove several lemmas to simplify the presentation. Similarly as in the proof of Propo-
sition (5.2), we perform the calculations for the convective terms using index notation. To this end, we define w T

i, j =
1

cvTi, j

(
(v1

i, j)
2+(v2

i, j)
2

2 + cvTi, j(Si, j − γ ),−v1
i, j,−v2

i, j,1

)
.

Lemma 5.4. The convective flux approximations (63) and (64) satisfy

N,M∑
i, j=0

w T
i, j Hk(DI

xfI)i, j +
N,M∑

i, j=0

w T
i, j Hk(DI

ygI)i, j ≥ 0, (70)

(where k = ( j(N + 1) + i) and Hk denotes the diagonal elements of H).

Proof. (70) follows by applying the same technique as for A in (55) to all j’s in the x-direction for fI and to all i’s in the 
y-direction for gI . �

For the diffusive terms, we define H = diag(H, H, H, H)T and w T = (
(wρ)T , (wm)T , (wn)T , (w E)T

)T
where

wρ = 1
cv
T−1.

(
v1.v1 + v2.v2

2
+ cvT

−1.(S − γ )

)
,

wm = − 1
cv
T−1.v1,

wn = − 1
cv
T−1.v2,

w E = 1
cv
T−1,

(71)

and [T−1]i, j = 1
Ti, j

. (Recall that the dot product is the component wise vector multiplication.)

Lemma 5.5. Contracting the entropy variables with the viscous fluxes, we obtain

w T H(DV
x fμ +DV

ygμ) ≤ 0. (72)
16
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Proof. Consider the viscous flux in the x-direction given by (65). Contracting the vector (65) by the entropy variables in 
(71) and H, we obtain

A1 = w T HDV
x fμ,

= (wm)T H D̃x
(
1x.
(
2μDx v1 + λ(Dx v1 + D y v2)

) )+ (wn)T H D̃x
(
1x.
(
μ(D y v1 + Dx v2)

) )
+ (w E)T H Dx

(
1x.
( b,x

v1.
(
2μDx v1 + λ(Dx v1 + D y v2)

)+ μ
b,x

v2.(D y v1 + Dx v2)
))

.

Utilise that H D̃x = H̃ y ⊗ B̃ N − H̃ y ⊗ (Hx D̃ N)T = H̃ y ⊗ B̃ N − D̃T
x H , and the analogous properties of Dx , to obtain

A1 = (wm)T (H̃ y ⊗ B̃ N)
(
1x.
(
2μDx v1 + λ(Dx v1 + D y v2)

) )+ (wn)T (H̃ y ⊗ B̃ N)
(
1x.
(
μ(D y v1 + Dx v2)

) )︸ ︷︷ ︸
B1

−(D̃x wm)T H1x.
(
2μDx v1 + λ(Dx v1 + D y v2)

)− (D̃x wn)T H
(
μ(D y v1 + Dx v2)

)
+(w E)T (H y ⊗ B N)

(
1x.
( b,x

v1.
(
2μDx v1 + λ(Dx v1 + D y v2)

)+ μ
b,x

v2.(D y v1 + Dx v2)
))

−(Dx w E)T H1x.
( b,x

v1.
(
2μDx v1 + λ(Dx v1 + D y v2)

)+ μ
b,x

v2.(D y v1 + Dx v2)
)
.

Consider the boundary terms, B1. Using the result (B.1) obtained in Appendix B, we find that

B1 = (2μ + λ)hy(wm)T (0, B̃ N(1x.Dx v1)i,1, B̃ N(1x.Dx v1)i,2, . . . B̃ N(1x.Dx v1)i,M−1, 0
)T︸ ︷︷ ︸

B1,1

+λhy(wm)T (0, B̃ N(1x.D y v2)i,1, B̃ N(1x.D y v2)i,2, . . . B̃ N(1x.D y v2)i,M−1, 0
)T︸ ︷︷ ︸

B1,2

+μhy(wn)T (0, B̃ N(1x.D y v1)i,1, B̃ N(1x.D y v1)i,2, . . . B̃ N(1x.D y v1)i,M−1, 0
)T︸ ︷︷ ︸

B1,3

+μhy(wn)T (0, B̃ N(1x.Dx v2)i,1, B̃ N(1x.Dx v2)i,2, . . . B̃ N(1x.Dx v2)i,M−1, 0
)T︸ ︷︷ ︸

B1,4

.

Consider B1,1 +B1,2. As they depend on the same component of the entropy variables, the terms can be rewritten as

B1,1 + B1,2 = (2μ + λ)hy

M−1∑
j=1

(wm)T
i, j(B̃ N(1x.Dx v1)i, j) + λhy

M−1∑
j=1

(wm)T
i, j(B̃ N(1x.D y v2)i, j).

Consider an arbitrary node j �= {0, M}, and neglect the parameters. Then we have

B1,1 + B1,2 =

⎛
⎜⎜⎜⎜⎝

wm
0, j

wm
1, j

...
wm

N−1, j

wm
N, j

⎞
⎟⎟⎟⎟⎠

T⎛⎜⎜⎜⎜⎝
0 − 1

2 0 0 0 ... 0

− 1
2 0 0 0 0 ... 0

...
. . .

...
0 ... 0 0 0 0 1

2

0 ... 0 0 0 1
2 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(1x.Dx v1)0, j

(1x.Dx v1)1, j

...
(1x.Dx v1)N−1, j

(1x.Dx v1)N, j

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

wm
0, j

wm
1, j

...
wm

N−1, j

wm
N, j

⎞
⎟⎟⎟⎟⎠

T⎛⎜⎜⎜⎜⎝
0 − 1

2 0 0 0 ... 0

− 1
2 0 0 0 0 ... 0

...
. . .

...
0 ... 0 0 0 0 1

2

0 ... 0 0 0 1
2 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(1x.D y v2)0, j

(1x.D y v2)1, j

...
(1x.D y v2)N−1, j

(1x.D y v2)N, j

⎞
⎟⎟⎟⎟⎠,

= 1
2

(
−wm

1, j(1x.Dx v1)0, j − wm
0, j(1x.Dx v1)1, j + wm

N, j(1x.Dx v1)N−1, j + wm
N−1, j(1x.Dx v1)N, j

)
+ 1

2

(
−wm

1, j(1x.D y v2)0, j − wm
0, j(1x.D y v2)1, j + wm

N, j(1x.D y v2)N−1, j + wm
N−1, j(1x.D y v2)N, j

)
.

Since wm
0, j = v1

0, j = 0 and wm
N, j = v1

N, j = 0, due to the no-slip condition, this reduces to

B1,1 + B1,2 = 1
2

(
−wm

1, j(1x.Dx v1)0, j + wm
N−1, j(1x.Dx v1)N, j − wm

1, j(1x.D y v2)0, j + wm
N−1, j(1x.D y v2)N, j

)
.
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Next, we insert the specific form of the derivatives, which gives us

B1,1 + B1,2 = 1
2

(
−wm

1, j1x0, j

v1
1, j − v1

0, j

hx
+ wm

N−1, j1xN, j

v1
N, j − v1

N−1, j

hx

− wm
1, j1x0, j

v1
0, j+1 − v2

0, j−1

2hy
+ wm

N−1, j1xN, j

v2
N, j+1 − v2

N, j−1

2hy

)
.

Using the no-slip condition yet again, and inserting the specific expression of the entropy variable, we have

B1,1 + B1,2 = − 1

2hx

(
1x0, j

(v1
1, j)

2

T1, j
+ 1xN, j

(v1
N−1, j)

2

TN−1, j

)
≤ 0, (Ti, j > 0).

By analogous manipulations to B1,3 +B1,4, A1 reduces to

A1 ≤ −(D̃x wm)T H1x.
(
2μDx v1 + λ(Dx v1 + D y v2)

)− (D̃x wn)T H1x.
(
μ(D y v1 + Dx v2)

)
+ (w E)T (H y ⊗ B N)

(
1x.
( b,x

v1.
(
2μDx v1 + λ(Dx v1 + D y v2)

)+ μ
b,x

v2.(D y v1 + Dx v2)
))︸ ︷︷ ︸

B2

−(Dx w E)T H1x.
( b,x

v1.
(
2μDx v1 + λ(Dx v1 + D y v2)

)+ μ
b,x

v2.(D y v1 + Dx v2)
)
.

The boundary term, B2, is produced by the (2,1)-SBP operator, and from the SBP-properties in Section 3, we know it will 
extract boundary terms (in contrast to the B̃s, which extract terms along the boundaries and the neighbouring nodes). Since 
b,x

v1 =
b,x

v2 = 0 at the boundaries (see (37)), it follows that all boundary terms vanish. The resulting estimate is therefore

A1 ≤ −(D̃x wm)T H1x.
(
2μDx v1 + λ(Dx v1 + D y v2)

)− (D̃x wn)T H1x.
(
μ(D y v1 + Dx v2)

)
−(Dx w E)T H1x.

( b,x

v1.
(
2μDx v1 + λ(Dx v1 + D y v2)

)+ μ
b,x

v2.(D y v1 + Dx v2)
)
.

(73)

Similarly for the viscous flux in the y-direction, we multiply (66) by the entropy variables and the norm matrix, H , to 
end up with

A2 ≤ −(D̃ y wm)T H1y .(μ(D y v1 + Dx v2)) − (D̃ y wn)T H1y .(2μD y v2) + λ(Dx v1 + D y v2)

−(D y w E)T H1y .
(b,y

v2.(2μD y v2 + λ(Dx v1 + D y v2)) + μ
b,y

v1.(D y v1 + Dx v2)
) (74)

Combining (73) and (74), we obtain

w T HDV
x fμ + w T HDV

ygμ ≤ −(D̃x wm)T H1x.
(
2μDx v1 + λ(Dx v1 + D y v2)

)− (D̃x wn)T H1x.
(
μ(D y v1 + Dx v2)

)
−(Dx w E)T H1x.

( b,x

v1.
(
2μDx v1 + λ(Dx v1 + D y v2)

)+ μ
b,x

v2.(D y v1 + Dx v2)
)

−(D̃ y wm)T H1y .(μ(D y v1 + Dx v2)) − (D̃ y wn)T H1y .(2μD y v2) + λ(Dx v1 + D y v2)

−(D y w E)T H1y .
(b,y

v2.(2μD y v2 + λ(Dx v1 + D y v2)) + μ
b,y

v1.(D y v1 + Dx v2)
)
.

(75)

To recast (75) as a quadratic form, we use the entropy variables (71) and utilise that the derivative operators satisfy the 
discrete product rule (39). Then,

w T H(DV
x fμ +DV

ygμ) ≤ − 1

cv

(( b,x

v1.D̃xT
−1 +

i,x

T−1.D̃x v1
)T

H1x.
(
2μDx v1 + λ(Dx v1 + D y v2)

))

− 1

cv

(( b,x

v2.D̃xT
−1 +

i,x

T−1.D̃x v2
)T

H1x.
(
μ(D y v1 + Dx v2)

))

+ 1

cv

(
(DxT

−1)T H1x.
( b,x

v1.
(
2μDx v1 + λ(Dx v1 + D y v2)

)+ μ
b,x

v2.(D y v1 + Dx v2)
))

− 1

cv

((b,y

v1.D̃ yT
−1 +

i,y

T−1.D̃ y v1
)T

H1y .
(
μ(D y v1 + Dx v2)

))
18
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− 1

cv

((b,y

v2.D̃ yT
−1 +

i,y

T−1.D̃ y v2
)T

H1y .
(
2μD y v2 + λ(Dx v1 + D y v2)

))

+ 1

cv

(
(D yT

−1)T H1y .
(b,y

v2.(2μD y v2 + λ(Dx v1 + D y v2)
)+ μ

b,y

v1.(D y v1 + Dx v2)
))

.

A number of terms cancel (see the colour code above), and we end up with

w T H(DV
x fμ+DV

ygμ) ≤ − 1

cv

(
(

i,x

T−1.D̃x v1)T H1x.(2μDx v1+λ(Dx v1+D y v2))+(

i,x

T−1.D̃x v2)T H1x.(μ(D y v1+Dx v2))

)

− 1

cv

(
(

i,y

T−1.D̃ y v1)T H1y .(μ(D y v1+Dx v1))+(

i,y

T−1.D̃ y v2)T H1y .(2μD y v2+λ(Dx v1+D y v2))

)
.

Use the form of 1x and 1y from (67) and Stokes’ hypothesis, λ = − 2
3 μ, to obtain

w T H(DV
x fμ +DV

ygμ) ≤ − μ

cv

(
4
3 (D̃x v1)T H(T−1.Dx v1) − 2

3 (D̃x v1)T H(T−1.D y v2)

+ (D̃x v2)T H(T−1.D y v1) + (D̃x v2)T H(T−1.Dx v2)

+ (D̃ y v1)T H(T−1.D y v1) + (T−1.D̃ y v1)T H(Dx v2)

− 2
3 (D̃ y v2)T H(T−1.Dx v1) + 4

3 (D̃ y v2)T H(T−1.D y v2)
)

,

which can be further rearranged into

w T H(DV
x fμ +DV

ygμ) ≤ − μ

cv

(
2
3

(
(D̃x v1)T

(D̃ y v2)T

)T (
H −H

−H H

)(
T−1.Dx v1

T−1.D y v2

)
+
(

(D̃x v2)T

(D̃ y v1)T

)T (
H H
H H

)(
T−1.Dx v2

T−1.D y v1

)

+ 2
3 ‖
√
T−1.D̃x v1‖2

H + 2
3 ‖
√
T−1.D̃ y v2‖2

H

)
≤ 0, (T> 0)

i.e., (72) holds true. �
Lemma 5.6. The diffusive heat fluxes (68) satisfy

w T HDV
x fκ + w T HDV

ygκ + w T HSAT ≤ 0. (76)

Proof. Denote the left-hand side of (76) by A, then

A = κ
(
(w E)T H Dx DxT+ (w E)T H D y D yT

)
+ (w E)T HSAT,

= κ
(
(w E)T (H y ⊗ Hx)(I y ⊗ D N)DxT+ (w E)T (Hx ⊗ H y)(D M ⊗ Ix)D yT

)
+ (w E)T HSAT.

This can be stated more compactly as

A = κ
(
(w E)T (H y ⊗ Q N)DxT+ (w E)T (Q M ⊗ Hx)D yT

)
+ (w E)T HSAT.

Utilising that Q = B − Q T , we obtain

A =κ

(
−(w E)T (H y ⊗ Q T

N )DxT− (w E)T (Q T
M ⊗ Hx)D yT︸ ︷︷ ︸

A1

+ (w E)T (H y ⊗ B N)DxT+ (w E)T (B M ⊗ Hx)D yT

)
+ (w E)T HSAT︸ ︷︷ ︸

A2

.

Manipulations of A1 give us
19
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A1 = −κ
(
(w E)T (I y ⊗ D N)T (H y ⊗ Hx)DxT+ (w E)T (D M ⊗ Ix)

T (H y ⊗ Hx)D yT
)

,

= −κ
(
(Dx w E)T H DxT+ (D y w E)T H D yT

)
.

Recall that w E = − 1
cvT

, such that, by using the discrete quotient rule (40), the above is equivalent to

A1 = − κ

cv

(
((

x

T2)−1.DxT)T H DxT+ ((

y

T2)−1.D yT)T H D yT

)
= − κ

cv

⎛
⎝‖
√

(
x

T2)−1.DxT‖2
H + ‖

√
(

y

T2)−1.D yT‖2
H

⎞
⎠ ,

where (
x

T2)−1 and (
y

T2)−1 are vectors containing the coefficients produced by the quotient rule (40).
Next, consider the boundary terms A2, and insert the specific form of the SAT:

A2 = κ
(
(w E)T (H y ⊗ B N)DxT+ (w E)T (B M ⊗ Hx)D yT

)
− κ(w E)T (H y ⊗ Hx)

(
(IM ⊗ H−1

x B N)(DxT) + (H−1
y B M ⊗ IN)(D yT)

)
,

= κ(w E)T ((H y ⊗ B N)DxT+ (B M ⊗ Hx)D yT− (H y ⊗ B N)DxT− (B M ⊗ Hx)D yT
)= 0.

Hence, we have

w T HDV
x fκ + w T HDV

ygκ + w T HSAT = − κ

cv

⎛
⎝‖
√

(
x

T2)−1.DxT‖2
H + ‖

√
(

y

T2)−1.D yT‖2
H

⎞
⎠≤ 0. �

Proposition 5.7. The semi-discrete scheme (69) is entropy stable in the sense of (52).

Proof. Contract (69) with w T
i, j = − 1

cvTi, j

(
(v1

i, j)
2+(v2

i, j)
2

2 + cvTi, j(Si, j − γ ),−v1
i, j,−v2

i, j,1

)
, and the corresponding diagonal 

norm matrix element, Hk , (k = ( j(N + 1) + i)). Then sum over all grid points:

N,M∑
i, j=0

w T
i, j Hk(ui, j)t + w T

i, j Hk(DI
xfI)i, j + w T

i, j Hk(DI
ygI)i, j,

=
N,M∑

i, j=0

(
w T

i, j Hk(DV
x fμ)i, j + w T

i, j Hk(DV
x fκ )i, j + w T

i, j Hk(DV
ygμ)i, j + w T

i, j Hk(DV
ygκ )i, j + w T

i, j HkSATi, j

)
.

By Lemma 5.4 the inviscid flux approximations on the left-hand side have been demonstrated to be entropy stable, hence 
we have

N,M∑
i, j=0

Hk(Ui, j)t ≤
N,M∑

i, j=0

(
w T

i, j Hk(DV
x fμ)i, j+w T

i, j Hk(DV
x fκ )i, j+w T

i, j Hk(DV
ygμ)i, j+w T

i, j Hk(DV
ygκ )i, j+w T

i, j HkSATi, j

)
.

Note that the sum on the right-hand side is equivalent to the matrix multiplications:

N,M∑
i, j=0

(
w T

i, j Hk(DV
x fμ)i, j + w T

i, j Hk(DV
x fκ )i, j + w T

i, j Hk(DV
ygμ)i, j + w T

i, j Hk(DV
ygκ )i, j + w T

i, j HkSATi, j

)
,

= w T HDV
x fμ + w T HDV

ygμ + w T HDV
x fκ + w T HDV

ygκ + w T HSAT,

such that we can utilise the results of Lemma 5.5 and 5.6, and obtain

N,M∑
i, j=0

Hk(Ui, j)t ≤ 0. �

6. Numerical simulations

To demonstrate the properties of the schemes with special emphasis on the no-slip condition, we consider both a sub-
sonic and a supersonic case.
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Fig. 1. (a) v1 at t = 0.01 obtained with 2572 grid points and α = 1. (b) v2 at t = 0.01 obtained with 2572 grid points and α = 1.

Fig. 2. (a) v1 at t = 0.01 obtained with 2572 grid points and α = 0.4. (b) v2 at t = 0.01 obtained with 2572 grid points and α = 0.4.

6.1. Blast wave

Let � = [0, 1] × [0, 1], with homogeneous no-slip condition at all walls. We use a similar setup as in [26] with the 
following initial conditions

ρ = 1, v1 = 0, v2 = 0, p =
{

0.01, if (x, y) ∈ � \ B ((0.5,0.5),0.35) ,

1000, if (x, y) ∈ B ((0.5,0.5),0.35) ,

where B ((0.5,0.5),0.35) denotes a disk centred at (x, y) = (0.5, 0.5) with radius r = 0.35. Furthermore, we use the follow-
ing parameters

γ = 1.4, R = 286.84, μ = 0.1, Pr = 0.72, cp = 1005, κ = μcp

Pr
.

We use (69) with, δi+1/2, j = α max
(∣∣∣v1

i, j

∣∣∣+ ci, j,

∣∣∣v1
i+1, j

∣∣∣+ ci+1, j

)
. For α = 1, this is the entropy stable local Lax-

Friedrichs scheme, but to stress test the scheme we also run the non-provably entropy stable choice α = 0.4. For time 
discretisation, we apply the third-order strong stability preserving Runge-Kutta method (see [7]).

The entropy-stable numerical results computed with 2572 grid points and α = 1 are displayed in Fig. 1a and 1b at time 
t = 0.01. Fig. 2a and 2b display the numerical results obtained for the same problem, but with reduced artificial diffusion, 
α = 0.4.

Lastly, we have run a simulation on a coarse mesh (332 grid points) as a further demonstration of the robustness of the 
boundary treatment. The results for the velocity components are displayed in Fig. 3a and 3b.

We have furthermore compared the entropy decay for the cases α = 1 and α = 0.4 (for the coarse mesh to highlight the 
differences). The plot of the total entropy, i.e.,

∫
�

U (u) d� is depicted in Fig. 4. We have normalised the entropy at every 
time step by subtracting the initial entropy, 

∫
�

U (u) d�
∣∣
t=0. As we see from the plot, the entropy is decaying for both values 

of α, but the decay is faster for larger diffusion, which is as expected.
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Fig. 3. (a) v1 at t = 0.01 obtained with 332 grid points and α = 1. (b) v2 at t = 0.01 obtained with 332 grid points and α = 0.4.

Fig. 4. Plot of the (normalised) total entropy
∫
�

U (u) d�
∣∣
t=t − ∫

�
U (u) d�

∣∣
t=0 for the coarse grid with α = 1 and α = 0.4.

6.2. Lid-driven cavity flow

We have run a similar problem as in [3] on the spatial domain � = [0, 1] ×[0, 1]. The upper wall of the cavity is moving 
at a constant speed to the right, such that the boundary conditions for the velocity components become{

v1 = 1, v2 = 0, ∂� ∩ {y = 1},
v1,2 = 0, ∂� \ {y = 1}. (77)

The boundary condition for the temperature is given by (62). Furthermore, the problem parameters are given by Re = 100, 
Ma = 0.1, Pr = 0.72, γ = 1.4, and it is initialised by the conditions

ρ = 1, v1, v2 = 0, p = 1

Ma2γ
.

Note that at one wall, the lid-driven cavity problem has a non-homogeneous no-slip condition for one of the velocity 
components. Still, an entropy bound for the continuum solution is obtained as only the normal components of the velocities 
enter the estimate. (We have not been able to prove entropy stability for the discrete scheme with the boundary conditions 
(77).)

Fig. 5a shows the solution at t = 2 when using the scheme (69). We have also run the same problem using a 3rd-order 
scheme. (See remark at the end of Section 5.1.) We have verified linear stability in one spatial dimension, and the extension 
to two dimensions is straightforward. The 3rd-order numerical solution is shown in Fig. 5b.

Fig. 6a shows the solution at t = 2 for the lid-driven cavity flow with the heat-entropy flow boundary condition κ
T

∂T
∂n =

g = 2. The solution is qualitatively similar to the adiabatic case where ∂T
∂n = 0. Fig. 6b depicts the total entropy 

∫
�

U (u) d�, 
normalised by subtracting the initial entropy 

∫
�

U (u)|0 d�. We note that the entropy increases initially. This does not violate 
the entropy inequality since the system is not closed; there is a heat-entropy flow through the boundary.
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Fig. 5. (a) The velocity field displayed at t = 2 using 2572 grid points and α = 0.15. (Second-order scheme.) (b) The velocity field displayed at t = 2 using 
1292 grid points. (3rd-order SBP scheme.)

Fig. 6. (a) The velocity field displayed at t = 2 using 1292 grid points. (Second-order scheme using the heat entropy flow boundary condition.) (b) The 
velocity field displayed at t = 2 using 1292 grid points. (Second-order scheme using the heat entropy flow boundary condition.)

6.2.1. Comments for the implementation
Since one of the velocity components is non-zero at the boundary y = 1 for the lid-driven cavity, we must manually 

update this boundary after each Runge-Kutta stage even when using the proposed scheme with the Dirichlet-SBP operator. 
This is to take into account the contribution from the continuity equation into the momentum equation at the boundary. The 
momentum equation is updated as m|∂�,{y=1} = ρ|∂�,{y=1}v1|∂�,{y=1} , where ρ|∂�,{y=1} is given by the continuity equation 
and v1|∂�,{y=1} = 1.

7. Conclusions

In this article, we have investigated the injection method for strongly imposing the no-slip condition for finite-difference 
approximations of the compressible Navier-Stokes equations in 1-D and 2-D. Based on standard SBP operators, spatial oper-
ators (which we have termed Dirichlet-SBP operators) facilitating the injection procedure were introduced. The temperature 
condition, on the other hand, was enforced by a SAT. Thus, density, pressure and temperature are updated on the bound-
ary while the momentum is no longer a variable in the boundary points. In particular, we have considered the stability 
properties of the proposed schemes taking the mixed boundary treatment into account.

When proving linear stability of non-linear problems, it is common to immediately associate the scheme with a lin-
ear symmetric constant-coefficient version. Herein, we have rigorously performed all linearisation steps for two different 
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schemes; one with second-order interior accuracy and one with fourth-order. We prove that the procedure is valid for the 
proposed 1-D scheme, including the strong-weak imposition of the wall boundary conditions. The linearisation of the 2-D 
scheme requires considerable more work, but we do not see any additional difficulties beyond more involved algebra and 
it should also reduce to the same form as the 1-D scheme. Moreover, under the assumption that the interior scheme is 
entropy stable (52), we have proven that both the proposed 1-D and 2-D 2nd-order schemes, with the mixed boundary 
treatment, are non-linearly (entropy) stable. The non-linear stability proofs are straightforwardly extendable to 3-D.

Although our proofs rely on the introduction of the Dirichlet-SBP operator, we stress that this operator is not necessary in 
practice, and has only been introduced for purpose of the proofs. In implementations one can simply overwrite the velocity 
at the boundary nodes after each Runge-Kutta stage. (This makes the code significantly simpler than with SATs enforcing 
no-slip.)

Two numerical test cases have been considered; a blast wave and a lid-driven cavity flow. For the blast wave, two types 
of local Lax-Friedrichs type diffusions were considered: an entropy stable diffusion (α = 1) and a non-provably entropy 
stable diffusion (α = 0.4). In both cases, the total entropy was decaying, although a faster decay was observed for the more 
diffusive scheme (which is as expected). For the lid-driven cavity flow, a reduced local Lax-Friedrichs diffusion (α = 0.15) 
was considered for the 2nd-order scheme. Thereafter, the 3rd-order, linearly stable (but not provably non-linearly stable), 
scheme was run. The solutions were similar to those obtained in [3]. All test cases demonstrated that the combination of 
strongly and weakly imposed boundary conditions is robust, and corroborate the claim that the 2-D scheme is stable.

CRediT authorship contribution statement

Anita Gjesteland: Conceptualization, Formal analysis, Software, Writing – original draft, Writing – review & editing.
Magnus Svärd: Conceptualization, Formal analysis, Methodology, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Appendix A. Linearisation procedure

A.1. Linearisation of the compressible Navier-Stokes equations in 1D

We present the derivation of the linearised and symmetrised Navier-Stokes equations (13), since the details are not 
presented in [1].

We write the Navier-Stokes equations (10) in primitive variables v = (ρ, v, p)T :

ρt + (ρv)x = 0, (A.1)

vt + v vx + 1
ρ px = 2μ+λ

ρ vxx, (A.2)

pt + γ pvx + vpx = (γ − 1)(2μ + λ)v2
x + κ(γ − 1)Txx. (A.3)

We decompose each variable into its exact (known smooth and bounded) solution and a small smooth perturbation: 
ρ = ρex + ρ ′ , etc.

(ρex + ρ ′)t + (
(ρex + ρ ′)(vex + v ′)x

)= 0,

(ρex)t + ρ ′
t + (

ρex vex + ρex v ′ + ρ ′vex + ρ ′v ′)
x = 0,

(ρex)t + ρ ′
t + (ρex vex)x + (ρex)x v ′ + ρex v ′

x + ρ ′
x vex + ρ ′(vex)x + ρ ′

x v ′ + ρ ′v ′
x = 0.

By definition (ρex)t + (ρex vex)x = 0, and hence

ρ ′
t + (ρex)x v ′ + ρex v ′

x + ρ ′
x vex + ρ ′(vex)x + ρ ′

x v ′ + ρ ′v ′
x = 0.

The underlined terms are zeroth-order derivatives of ρ ′ and v ′ , and hence do not affect the well-posedness of the problem 
(see [9]), hence they are omitted. The linearisation is done by neglecting non-linear terms, i.e. ρ ′

x v ′ + ρ ′v ′
x . The final result 

is

ρ ′
t + ρex v ′

x + vexρ
′
x = 0.
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For the velocity equation, we have

(vex + v ′)t + (vex + v ′)(vex + v ′)x + 1

ρex + ρ ′ (pex + p′)x = 2μ + λ

ρex + ρ ′ (vex + v ′)xx,

(vex)t + v ′
t + vex(vex)x + vex v ′

x + v ′(vex)x + v ′v ′
x + (pex)x

ρex + ρ ′ + p′
x

ρex + ρ ′ = (2μ + λ)

(
(vex)xx

ρex + ρ ′ + v ′
xx

ρex + ρ ′

)
.

Factorise 1
ρex+ρ ′ = 1

ρex

1

1+ ρ ′
ρex

, and Taylor expand the second factor; 1

1+ ρ ′
ρex

= 1 − ρ ′
ρex

+ O((ρ ′/ρex)
2). Using that the exact 

solution satisfies Equation (A.2), we have

v ′
t + vexv ′

x + v ′(vex)x + v ′v ′
x + (pex)x

(
− ρ ′

ρ2
ex

+O(ρ ′/ρ2
ex)

)
+ p′

x

(
1

ρex
− ρ ′

ρ2
ex

+O(ρ ′/ρ2
ex)

)
,

= (2μ + λ)

(
(vex)xx

(
− ρ ′

ρ2
ex

+O((ρ ′)2/ρ3
ex)

)
+ v ′

xx

(
1

ρex
− ρ ′

ρ2
ex

+O((ρ ′)2/ρ3
ex)

))
.

We neglect the non-linear terms and omit zeroth-order terms. This yields

v ′
t + vex v ′

x + p′
x

ρex
= 2μ + λ

ρex
v ′

xx.

In the same way, the equation (A.3) becomes

(pex + p′)t + γ (pex + p′)(v + v ′)x + (vex + v ′)(pex + p′)x

=(γ − 1)(2μ + λ)(vex + v ′)2
x + κ(γ − 1)(Tex + T′)xx,

that after expansion becomes,

(pex)t + p′
t + γ (pex)(vex)x + γ (pex)v ′

x + γ p′(vex)x + γ p′v ′
x + vex(pex)x + vex p′

x + v ′(pex)x + v ′p′
x,

= (γ − 1)(2μ + λ)
(
(vex)

2
x + 2(vex)x v ′

x + v ′2
x

)
+ κ(γ − 1)(Tex + T)xx.

Next, consider the linearisation of the temperature

R((Tex)xx + T′
xx) = (pex)xx + p′

xx

ρex + ρ ′ − 2
((pex)x + p′

x)((ρex)x + ρ ′
x)

(ρex + ρ ′)2

+ 2
(pex + p′)((ρex)x + ρ ′

x)
2

(ρex + ρ ′)3
− (pex + p′)((ρex)xx + ρ ′

xx)

(ρex + ρ ′)2
,

= (pex)xx + p′
xx

ρex + ρ ′ − 2
(pex)x(ρex)x + (pex)xρ

′
x + p′

x(ρex)x + p′
xρ

′
x

(ρex + ρ ′)2

+2
pex(ρex)

2
x + 2pex(ρex)xρ

′
x + pexρ

′2
x + p′(ρex)

2
x + 2p′(ρex)xρ

′
x + p′ρ ′2

x

(ρex + ρ ′)3

− pex(ρex)xx + pexρ
′
xx + p′(ρex)xx + p′ρ ′

xx

(ρex + ρ ′)2
.

Taylor expanding yields

R((Tex)xx + T′
xx)

= ((pex)xx + p′
xx)

(
1

ρex
− ρ ′

ρ2
ex

+O((ρ ′)2/ρ3
ex)

)

−2
(
(pex)x(ρex)x + (pex)xρ

′
x + p′

x(ρex)x + p′
xρ

′
x

)( 1

ρ2
ex

− ρ ′

ρ3
ex

+O((ρ ′)2/ρ4
ex)

)

+2
(

pex(ρex)
2
x + 2pex(ρex)xρ

′
x + pexρ

′2
x + p′(ρex)

2
x + 2p′(ρex)xρ

′
x + p′ρ ′2

x

)( 1

ρ3
ex

− ρ ′

ρ4
ex

+O((ρ ′)2/ρ5
ex)

)

− (pex(ρex)xx + pexρ
′
xx + p′(ρex)xx + p′ρ ′

xx

)( 1

ρ2
− ρ ′

ρ3
+O((ρ ′)2/ρ4

ex)

)
.

ex ex
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The exact solution disappears and the quadratic terms are neglected in the linearisation procedure to obtain

RT′
xx = p′

xx

ρex
− 2

(pex)xρ
′
x + p′

x(ρex)x

ρ2
ex

+ 4pex(ρex)xρ
′
x

ρ3
ex

− pexρ
′
xx

ρ2
ex

.

Turning back to the pressure equation, and using that the exact solution satisfies (A.3), we end up with

p′
t + γ (pex)v ′

x + γ p′(vex)x + γ p′v ′
x + vex p′

x + v ′(pex)x + v ′p′
x,

= (γ − 1)(2μ + λ)
(

2(vex)x v ′
x + v ′2

x

)
+ κ(γ − 1)T′

xx.

Since non-principal parts of the viscous flux can be bounded by the principal part in the interior and do not affect the 
number of boundary conditions needed for linear well-posedness, we drop them together with all non-linear terms, and 
obtain

p′
t + γ pex v ′

x + vex p′
x = κ

R
(γ − 1)

(
p′

xx

ρex
− p

ρ2
ex

ρ ′
xx

)
.

Next, we freeze the coefficients (the exact solutions), and denote them by the superscript star. We end up with the 
linearised system

ρ ′
t + v∗ρ ′

x + ρ∗v ′
x = 0,

v ′
t + v∗v ′

x + 1
ρ∗ p′

x = 2μ+λ
ρ∗ v ′

xx,

p′
t + γ p∗v ′

x + v∗p′
x = − γμp∗

Prρ∗2 ρ ′
xx + γμ

Prρ p′
xx.

(This is the starting point in [1].)

A.2. Linearised gas law

Recall that p = ρRT. By the same procedure as above, we linearise this gas law as follows

pex + p′ = R
(
ρex + ρ ′) (Tex + T′)= R

(
ρexTex + ρexT

′ + ρ ′Tex + ρ ′T′) .
Since pex =RρexTex, by neglecting the non-linear term Rρ ′T′ , this reduces to

p′ = R
(
ρexT

′ + ρ ′Tex
)
.

Solving for T′ and freezing the coefficients yields

T′ = 1

R

(
p′

ρ∗ − p∗ρ ′

ρ∗2

)
.

Appendix B. Kronecker products

Let B̃ N be the (N + 1) × (N + 1) matrix given by

B̃ N =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 − 1
2 0 0 0 ... 0

− 1
2 0 0 0 0 ... 0

0 0 0 0 0 ... 0
...

. . .
...

0 ... 0 0 0 0 0
0 ... 0 0 0 0 1

2

0 ... 0 0 0 1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎠,

and B̃ M the (M + 1) × (M + 1) matrix with the same form as B̃ N . Furthermore, let H̃x = Hx ĨN , where Hx = hx ·
diag(1/2, 1, . . . , 1, 1/2) and Ĩ N is the (N + 1) × (N + 1) identity matrix, with the upper left and lower right element set 
to zero. H̃ y is defined similarly (see Section 5.6).

Next, for a two-dimensional grid, the solution vectors are ordered as

uT = (
uT

i,1 uT
i,1 uT

i,2 . . . uT
i,M

)
,

where uT = (
u0, j u1, j u2, j . . . uN, j

)
. This more compact form of writing the vectors will be convenient below.
i, j
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The Kronecker products, H̃ y ⊗ B̃ N and B̃ M ⊗ H̃x written as matrices can be stated more compactly in the following way

H̃ y ⊗ B̃ N = hy

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . . 0

0

⎛
⎜⎝

0 − 1
2 ... 0

− 1
2 0 ... 0

0 ... 0 1
2

0 ... 1
2 0

⎞
⎟⎠ 0 0 . . . 0

0 0

⎛
⎜⎝

0 − 1
2 ... 0

− 1
2 0 ... 0

0 ... 0 1
2

0 ... 1
2 0

⎞
⎟⎠ 0 . . . 0

...
. . .

...
...

. . .
...

0 . . . 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B̃ M ⊗ H̃x = hx

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
2

⎛
⎝ 0 0 0 ... 0

0 1 0 ... 0

. . .
0 ... 0 1 0
0 ... 0 0 0

⎞
⎠ 0 0 0 . . . 0

− 1
2

⎛
⎝ 0 0 0 ... 0

0 1 0 ... 0

. . .
0 ... 0 1 0
0 ... 0 0 0

⎞
⎠ 0 0 0 0 . . . 0

0 0 0 0 0 . . . 0
...

. . .
...

0 . . . 0 0 0 . . . 0

0 . . . 0 0 0 0 1
2

⎛
⎝ 0 0 0 ... 0

0 1 0 ... 0

. . .
0 ... 0 1 0
0 ... 0 0 0

⎞
⎠

0 . . . 0 0 0 1
2

⎛
⎝ 0 0 0 ... 0

0 1 0 ... 0

. . .
0 ... 0 1 0
0 ... 0 0 0

⎞
⎠ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the bold-face zero denotes a matrix of size (N + 1) × (N + 1) with all elements being zero.
Applying these products to a vector, u, yields

(H̃ y ⊗ B̃ N)u = hy
(

0 B̃ N ui,1 B̃ N ui,2 . . . B̃ N ui,M−1 0
)T

, (B.1)

(B̃ M ⊗ H̃x)u = (− 1
2 H̃xui,1 − 1

2 H̃xui,0 0 . . . 0 1
2 H̃xui,M

1
2 H̃xui,M−1

)T
. (B.2)

Note that in the above expressions, the underlined bold-face zeros denotes vectors of length N + 1 with all elements being 
zero.
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