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Abstract—One of the main purposes of Metabolic Engineering
is the quantitative prediction of cell behaviour under selected
genetic modifications. These methods can then be used to support
adequate strain optimization algorithms in a outer layer. The
purpose of the present study is to explore methods in which
dynamical models provide for phenotype simulation methods,
that will be used as a basis for strain optimization algorithms
to indicate enzyme under/over expression or deletion of a few
reactions as to maximize the production of compounds with
industrial interest. This work details the developed optimization
algorithms, based on Evolutionary Computation approaches, to
enhance the production of a target metabolite by finding an
adequate set of reaction deletions or by changing the levels
of expression of a set of enzymes. To properly evaluate the
strains, the ratio of the flux value associated with the target
metabolite divided by the wild-type counterpart was employed
as a fitness function. The devised algorithms were applied to the
maximization of Serine production by Escherichia coli, using a
dynamic kinetic model of the central carbon metabolism. In this
case study, the proposed algorithms reached a set of solutions
with higher quality, as compared to the ones described in the
literature using distinct optimization techniques.

I. INTRODUCTION

Progress in molecular biology technologies permitted un-
covering new molecular interactions aiding in the better char-
acterization of cells. Modeling a cell based on the understand-
ing of the interplay of its constituents, in connection with
information from different omics, is the purpose of Systems
Biology (SB) as advocated by Kitano [1].

The application of engineering concepts to SB provides
valuable insights, helping to consolidate ongoing efforts in
Biotechnology. Of particular interest, in the scope of this
work, is Metabolic Engineering (ME). This discipline is con-
cerned with the understanding and use of metabolic pathway
modifications, using biological models under an engineering
perspective to attain a specific industrial objective [2].

There has been a trend in industry to replace chemical
synthesis techniques by biotechnological processes, due to
environmental and sustainability concerns. Optimization of
microbial strains has an important role in this scenario, due
to increases in bioprocess productivity and, consequently, in

profitability. Generally, the metabolism of wild-type microor-
ganisms is geared to its survival and reproduction, without
engaging in the production of compounds outside this scope.
Thus, the metabolism has to be modified in order to meet the
desired industrial outcome, typically the overproduction of a
target compound.

Until recently, in bioprocess engineering, cells were mod-
eled as black box entities responsible for consuming substrates
and producing certain compounds, ignoring the underlying bio-
logical mechanisms. The genetic improvement of microorgan-
isms has been driven by selective pressure based on empirical
principles to obtain organisms with desired characteristics.

More recently, rational approaches for ME have been
proposed, where researchers attempt to build mechanistic
whole cell models to elucidate and provide tools for studying
metabolic responses under different environments and pertur-
bations. However, these still face hurdles such as the lack
of knowledge about the reaction kinetics and the cellular
responses to specific external perturbations. Nonetheless, ME
has paved the way to induce cells to over-synthesize target
products, to engineer new metabolic pathways and to control
the production of a set of metabolites of interest.

The prediction of metabolic states has been accomplished
mainly by the use of genome-scale stoichiometric models and
constraint based phenotype simulation methods. These are
developed based on a microorganism’s specific biochemical
network, using mass balances and reaction flux constraints
derived from biophysical principles or empirical observations.

Several stoichiometric genome scale models have been
published in the literature for microorganisms such as Es-
cherichia coli [3] and Saccharomyces cerevisiae [4]. Typically,
these models do not contain kinetic and/or regulatory informa-
tion. Even so, it is possible to predict cellular behavior under
certain assumptions (e.g. pseudo steady-state). From a ME
point of view, these models allow to investigate the response of
a metabolic network to specific genetic manipulations and/or
environmental conditions.

There are several simulation methods that can be employed
to estimate the microorganism flux distribution using stoichio-
metric models such as Flux Balance Analysis (FBA) [5], mini-
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mization of metabolic adjustment (MOMA) [6] and Regulatory
on/off minimization of metabolic flux changes(ROOM) [7].
Each of these methods returns a unique optimal solution from
the solution space, but in many cases several optimal solutions
may exist and there is no information concerning which of
those is indeed used by the cell. Thus, it is hard to identify
the cell’s true state [8]. Also, the employed objective functions
may not represent the biological reality and other objectives
for the cell can be considered instead [9].

Despite the described limitations, these methods can pro-
vide useful insights for ME. Several tools have been developed
in the last years to calculate the best set of reaction (or
gene) deletions or levels of expression of enzyme sets to
attain a specific objective. Within this context, the problem
of finding a gene/ reaction knockout set belongs to the class
of combinatorial optimization [10], while the reaction down/up
regulation task is included in the numerical optimization class.
It is not feasible to test all gene/ reaction deletion combinations
or enzyme expression level values using a brute force approach
in a reasonable amount of time.

OptKnock [11] provides an alternative for the reaction
deletion task, based on a MILP formulation, finding an op-
timal set of reactions to delete. However, it is constrained to
linear objective functions and it cannot be applied with large
networks due to the NP complexity of the problem [12].

OptGene [10] tackles this problem using Evolutionary
Algorithms (EAs), in conjunction with FBA to estimate the
effect of certain sets of reaction deletions. This method gives
no guarantees of finding the best global reaction deletion set,
but often provides (near) optimal solutions in a reasonable time
being also more flexible in terms of the definition of the fitness
functions. In recent work, other variants of Evolutionary Com-
putation (EC) approaches such as set-based representation EAs
and Simulated Annealing have been proposed and evaluated
[13]. Also, methods that try to estimate the best under/over
expression levels for a set of enzymes have been proposed,
namely OptReg [14] that is based on a MILP formulation and
more recently EAs [15].

An important shortcoming of all these methods based on
constraint-based approaches is the absence of dynamic features
concerning the metabolic state, not allowing to cope with
enzyme kinetics and regulation. Therefore, the obtained results
do not portray these effects and are bound to be incomplete.

One approach to overcome these hurdles is to use dy-
namic models. These models are usually based in ordinary
differential equations and produce a more detailed description
of cellular systems by capturing transient behavior. This type
of models mimic better the phenomena observed in vivo in
microbial strains than its purely stoichiometric counterparts.
These mathematical abstractions also allow obtaining a specific
steady state from an initial set of conditions wihtout further
assumptions.

On the down side, they require detailed enzyme kinetic
information that is often incomplete and spread across several
information sources. This gives rise to inconsistencies due to
the unavailability of experimental data and methodology stan-
dardization concerning the estimation of kinetic parameters.
Another hurdle is the imprecise knowledge of the mechanistic
rate laws underlying several reactions. It is important to bear

in mind that it is not usually possible to measure all cellular
compounds precisely in order to build the respective kinetics.
On the whole, these models account for a small part of the
metabolism. These obstacles can be attenuated by utilizing
kinetic law approximations [16].

Despite the limitations, and due to the use of kinetic
information, dynamic models are able to represent enzyme
interactions not possible with steady-state models, such as
metabolic inhibition. These models are also better suited to
simulate the effects of enzyme expression level changes.

Therefore, and in spite of the lack of information to build
large-scale dynamic models, a few attempts have been made
regarding their use in ME applications. In [17] a Mixed Integer
Non-Linear Progamming (MINLP) method for finding optimal
modulation strategies was developed. The main limitations of
this method are computational tractability[18].

In [19] the problem of finding the best set of enzyme
expression levels modifications and reaction knockouts using
a dynamic model of central carbon metabolism of Eschericia
coli [20] was addressed. A MILP formulation and a generalized
linearization of the kinetic model were used to find a ME
strategy. However, like in Optknock [11] the effort to solve
a MILP problem increases exponentially with the size of
the problem at hand. This method also assumes flux and
concentration bounds around the reference state, to control the
error of the linerarized model regarding the original model.

In [21], the problem of finding the best set of changes in
enzyme expression levels using the aforementioned model was
addressed. Simulated Annealing [22] was used to search the
enzyme set space, while a sequential quadratic programming
method estimated the respective enzyme expression levels,
forcing the objective function and the constraints to be contin-
uous in the considered ranges and of class C2. This method
assumes a value for the overall maximum allowed metabolite
changes at steady-state and also that overall system enzyme
levels remain constant within a constant value proportional to
the number of modifications. In this work this constraint will
not be used due to its specificity and lack of experimental data
to corroborate it in Escherichia coli. This restriction may also
limit the algorithm generalization capabilities.

A. Aims and overview of the approach

This work entails the development of Evolutionary Compu-
tation (EC) approaches to find a set of metabolic modifications,
such as reactions knockouts and reaction up/down regulation
that will optimize the production of a metabolite with an
industrial interest, utilizing as a basis for simulation dynamic
models composed of ordinary differential equations (ODEs).

One aim of this method is to provide a proof of concept of
a scalable approach able to deal with larger scale dynamic
metabolic models than the ones that currently exist. The
existing methods are not able to cope with the definition of
ME strategies in larger dynamic metabolic models, due to the
combinatorial increase in the number of possible strategies.
Also, they do not take into consideration invalid solutions that
may contain valid building blocks for the optimal solution. It is
important to bear in mind that it is impossible to scan the whole
state space, when it has a high dimensionality. A brute force



approach is not feasible for the enzyme level modulation task
and it becomes unpractical in the reaction deletion scenario as
the number of modifications increases.

Also, most of the current methods deal with the parallel op-
timization of enzyme and knockout expressions by employing
Mixed Integer Non-Linear Programming methods [17] that are
unable to solve problems with hundreds of equations, or rely
on the approximation of the non-linear dynamic model around
a reference state (usually a steady state) and a posteriori use a
MILP formulation [19]. The approximation of the non-linear
dynamic model around a reference state also enforces the use
of reaction and metabolite ranges around the reference state
that may exclude valid solutions of interest.

The present approach deals with these shortfalls by using
the original non-linear model without doing any approximation
and by searching ME strategies by means of EAs that adapt
the solution size. Thus, this method does not need to assume
a range of flux and metabolite values where solutions are
considered valid.

In this situation, dynamic models are used to generate a
single steady-state solution without the need of specifying
further assumptions such as in the cases of FBA, MOMA,
or ROOM for stoichiometric models. Another advantage of
using these models in ME applications is the straightforward
implementation of over/under expression of enzymes as ME
strategies.

Two tasks are used to test the devised optimization tech-
niques, whose purpose is to maximize the production of a
metabolite at steady-state: (i) reaction deletion - the objective
is to discover the best set of reaction deletions (knockouts).
The ideal number of reactions to remove is also determined
simultaneously; and, (ii) reaction up/down regulation - the
main goal is to find the best set of enzymes to tweak and
the respective level of expression concerning the base values
present in the original model.

In this work, a novel encoding scheme is proposed that
will adress both tasks, allowing the algorithm to choose the
best ME strategy given a permitted set of constraints, as well
as the number of modifications. The solution decoding affects
the simulation of the dynamic model by multiplying the vmax

parameter of the reaction rate law by the decoded enzyme
modulation level contained in the solution’s genome. This
corresponds to a change in the total enzyme concentration
assuming that vmax is directly proportional to it. In the
reaction deletion case, the vmax parameter is multiplied by
zero, therefore constraining the reaction’s flux to 0.

The design of the algorithm also allows the discretization of
the enzyme modulation value into a set of pre-defined ranges.
In a wet lab setting it is often not possible to fine tune the exact
enzyme expression levels as returned by the algorithm. Thus,
this discretization may allow a more flexible representation of
what may be achieved in vitro. This representation provides for
the simultaneous optimization of discrete and continuous en-
zyme levels. The developed method also allows to incorporate
non-modifiable reactions (reactions that cannot be tweaked by
the algorithm or have to respect specific constraints, like for
example directionality or flux intervals).

As a basis for phenotype simulation, a metabolic dynamical

model of selected pathways of Eschericia coli will be used,
based on ordinary differential equations, namely, the mecha-
nistic model of the central carbon metabolism [20] consisting
of mass balance equations for glycolysis and for the pentose-
phosphate pathway.

The aforementioned tasks are used in a case study related to
the maximization of Serine production, allowing to contrast the
obtained results to the ones published in [19]. Co-metabolite
concentrations were assumed to be constant as in the previous
study. Nowadays, Serine plays a major role in several industrial
applications. Serine is used in cosmetic and food industries and
is produced by fermentative routes[23]. In this case study, it is
not apparent how to find the best set of genetic modifications
to enhance the production of Serine due to the high number
of interacting reactions.

II. METHODS

A. Mechanistic model of the central carbon metabolism
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Fig. 1. Escherichia coli central carbon metabolism network.

The mechanistic model of the central carbon metabolism
[20] encompasses the phosphotransferase system, glycolysis
and the pentose-phosphate pathway. This model is curated
and available from Biomodels [24]. In Figure 1, a schematic
representation of the reaction network is shown. The mass
balances take the following form:



dX

dt
= SV − µX (1)

where X represents the vector of metabolite concentrations, µ
is the specific growth rate, S is the stoichiometric coefficient
matrix and V is the reaction rate vector. The equation for
extra-cellular glucose has the following form:

d[GlcExt]
dt

= D([GlcFeed]− [GlcExt]) + fPulse− [bio]vPTS

ρbio
(2)

where [GlcExt] represents the external glucose concentration,
[GlcFeed] is the concentration of glucose in the feed, fPulse
is a function allowing to introduce glucose pulses, [bio] is the
biomass concentration, ρbio is the biomass density and vPTS

is the flux through the phosphotransferase system reaction.

The reaction fluxes at steady-state are described by:

v0
i = viMaxfi(X0

i , P
0
i ) (3)

where the superscript 0 denotes a variable at steady-state, v0
i

is the rate of reaction i at steady-state, viMax is the maximum
reaction rate and fi(X0

i , P
0
i ) is a function of X0

i metabolite
concentrations at steady-state that participate in the reaction
in conjunction with a set of parameters P 0

i . Thus, the viMax

for each reaction is computed by the following equation (as
described in [20]):

viMax =
v0

i

fi(X0
i , P

0
i )

(4)

B. Objective function formulation

The Reaction deletion and Enzyme over/under expression

problems can be stated as the maximization of
vMutant0j
vWildType0j

,

where vMutant0j and vWildType0j represent the flux for the
target reaction j at steady-state in the mutant and in the wild-
type strains, respectively.

C. Solution evaluation

To assign a fitness value for each solution suggested by the
evolutionary method, the following algorithm was used:

1) Perform the model modifications by decoding the so-
lution being evaluated, described in the next section;

2) Simulate the modified model, by adding the con-
straints from the solution decoded and performing the
numerical integration of the ODEs in the model in a
given time range;

3) Verify whether metabolite concentrations do not
change significantly in a given time range encom-
passing the end of the simulation. If this condition is
met, the system is considered to be in steady-state.

4) If the previous step is completed with success, the
ratio of the solution target flux by the wild-type
strain target flux value is returned. Otherwise, zero
is returned.

D. Solution encoding

In this work, a novel variable size representation for
inferring enzyme expression levels was developed. This rep-
resentation allows searching simultaneously for the set of
enzymes to modify and the respective expression level. The
expression level can be a real number in a specific interval or
a set of discrete values defined by the user. In the proposed
representation, solutions are quite simple, being represented as
vectors of real numbers with values between 0 and 1.

When considering enzyme expression levels optimization,
the values in an even position are mapped to a reaction index,
while the values in the following odd position encode the
enzyme expression level for that reaction, in a continuous or
discrete interval. Each reaction may have different expression
level modulation ranges.

In Figure 2, the solution decoding process is illustrated
with an example considering a very simple model with three
reactions R1, R2 and R3. In a), it is possible to observe that
each consecutive pair of elements encodes a reaction index
and its enzyme level modulation. The reaction in position six
is discarded because it does not possess an enzyme modulation
part.

In b), the decoding process of the first two reactions is
shown. The reaction index encoded at position zero is mapped
to reaction R1, as follows: the interval [0, 1] is divided into
three equally spaced sub-intervals (the number of reactions
in the model) being each interval mapped to a reaction. The
interval that contains the encoded value maps to the specific
model reaction. In the example, the value 0.2 is contained in
the interval [0, 1

3 ], that is mapped to reaction R1. Position one
encodes the enzyme level for that reaction (R1). This reaction
was defined as varying in the continuous interval [0, 2]. In this
scenario, the expression level coding value 0.4 is multiplied by
the interval length 2 giving the expression level equal to 0.8.
Note that in this case, the lower limit of both intervals is zero
and therefore the mapping is easier; in general, a mapping to
an interval [a, b] is obtained by multiplying the encoded value
by b− a and adding a.

The reaction index of the next modulation in position 2
is calculated as in the previous case, corresponding to the
mapping of 0.5 to reaction R2. In this case, it is assumed
that reaction R2 modulation can only vary in a discrete set of
values {0, 0.5, 2.5}. In this case, the mapping of the enzyme
modulation level occurs in an analogous way to the reaction
index mapping and, therefore, the value 0.9 at position 3 is
mapped to a modulation of 2.5. If a solution has several
occurrences of the same index, only the last one is considered.

The same representation can be used for representing
reaction deletions (knockouts). In this case, all expression level
coding positions encode a discrete set with the value zero for
the modulation level.

E. Reproduction operators

For reproduction purposes within the EA, the following
operators are used:

• Random mutation: replaces an element of the vector
by another, randomly generated in the allowed range.
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Fig. 2. Enzyme expression level solution decoding example. In a) a solution encoding for a model with reaction set {R1, R2, R3} is shown. In b) the decoding
process for the first two reactions is illustrated.

• Cut and splice crossover: A distinct crossover point
is selected in both parents and the genes before and
after that point are swapped giving rise to two new
individuals. This operator has the capacity to modify
the length of the resulting offspring.

In the proposed EA the operators have the following prob-
abilities of being selected to generate new solutions from the
selected parents: the mutation operator has 10% probability of
being chosen while the crossover operator has 90% probability.

F. Experimental setup

In the first step of the evaluation function, the time course
simulation is computed for the time interval [0, 1E6] seconds.
The system is considered in steady-state if the metabolite con-
centration change is inferior to 5% in the interval [1E4, 1E6]
seconds.

The enzyme up/down regulation allows reaction fluxes to
vary by a multiple in the linear interval [0, 2]. The upper bound
value was chosen based on the values employed by [19] with
the linearized models. This reaction modulation range needs
to be imposed in order to model the experimental capacity and
the physiological reality inside the cell.

The algorithms were executed with an incremental number
of restricted modifications from one up to six. In the case study,

the algorithms for each problem are executed 30 times. In the
knockout task the algorithm is run for 250 iterations, while in
the enzyme over/under expression the algorithm is executed
for 500 iterations, values that allow the convergence of the
EA. Both algorithms employ the following configuration:

• Population size: 100 individuals;

• Population initialization: individuals are generated
randomly with size varying between 1 and 100;

• Elitism value: 1 individual (the best) is always kept;

• Number of selected individuals for reproduction: 50
individuals;

• Number of reinserted individuals in the population: 49
individuals;

• Selection operator: Tournament selection with three
individuals randomly selected, where the fittest is
selected.

G. Implementation

Regarding the implementation, the software for the pro-
posed tasks was developed using the Java, Scala, and Matlab
languages. The following libraries were utilized: JECoLi,



a library for EAs developed by the authors [25] and JS-
BML [26] a java library allowing to parse SBML encoded
files. Differential equations were simulated using the solver
ODE15s from Matlab. The source code is released under the
GPLv3 license and is available from http://darwin.di.uminho.
pt/Software/EADynamic.

III. RESULTS AND DISCUSSION

The best solutions obtained with the proposed EA are
displayed in Tables I and II. These solutions are contrasted
to the ones found in the literature [19], namely the ones
resulting from a linearized approximation of the non-linear
model of central carbon metabolism of Escherichia coli around
a steady-state. These solutions are also constrained by flux and
concentration bounds to reduce the likelihood of not portraying
the behavior of the original model. All the fitness values
(vj/v

0
j0) concern the non-linearized version of the model.

In both tables, EAK and EAE represent the data regarding
the solutions found with devised EA (for knockout and enzyme
level optimization, respectively), while VLS and VLL are
related to the application of the method developed in [19].
In VLS, the enzyme expression levels (e0i ) at steady state in
the linearized model are restricted by the inequality 0.5e0i ≤
e0i ≤ 2e0i , while metabolite concentrations at steady-state (x0

i )
are constrained by 0.5x0

i ≤ x0
i ≤ 1.5x0

i . In VLL, the enzyme
modulation levels in the linearized model are constrained by
0.5e0i ≤ e0i ≤ 2e0i and the metabolite concentrations by
0.5x0

i ≤ x0
i ≤ 10x0

i .

The developed EA overcomes these restrictions by inte-
grating the non-linear model and by assuming that the model
depicts adequately the subjacent reality. Nonetheless, it is
important to note that even the original model may not be valid
in all range of metabolite concentrations due to the absence of
data regarding those states when the model was fitted.

Comparing the results obtained by the proposed EA with
the ones in [19], it is possible to check that they show equal or,
in most cases, higher fitness values. Also, it is easy to check
that, although being a stochastic method, EAs are capable of
locating good quality results with a low variability.

In all the studied scenarios the first proposed transformation
is also part of the underlying proposed modifications. The first
modification is the one that implies a larger flux gain in the
Serine synthesis flux. However, reaction knockouts are geared
towards reactions leading to an increase in the concentration
of compounds that contribute to Serine formation, whereas in
the enzyme modulation, the algorithm tends to maximize the
flux that leads directly to the production of Serine (in this case
the serineSynth reaction). Notwithstanding, as the number of
reaction modification increases, the marginal serine synthesis
flux gain usually tends to decrease. This fact can be observed
in the present case studies as well as in [19].

In addition, even without the constraints that restrict most
the variation of fluxes and concentrations, solutions tend to
knockout reactions directly related with drains, as it can be
observed in Table I. In VLS and VLL knockout solutions, the
first two modifications will normally imply reactions that drain
compounds out of the network. These reactions are selected
because they imply a smaller change in the overall metabolite
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Fig. 3. Boxplots concerning the best solutions with six modifications
found in the knock-out and enzyme modulation tasks, regarding the Serine
maximization case study.

concentrations, with an increase of the Serine production.
Contrarily to what would be empirically expected, the EA only
deletes reactions not directly related with drain reactions (PK,
PGI) with 6 modifications. This fact is owed to the absence of
constraints in the EA algorithm regarding flux and metabolite
concentration constraints that may limit what are considered
valid solutions.

In all knockout algorithms, as the number of allowed mod-
ifications increases, some of the previously utilized reactions
are swapped by a not apparent set of reactions that cause an
increase in the target flux. This fact can be observed in table
I. For instance, with five knockouts, the best solution found
by the EA is composed by the PEPC, DHAPS, MURS, PGM
and PPK reactions, while with six modifications the PGM and
MURS reactions are changed by Syn1, PGI and PK. This swap
of reaction produces an approximated 0.35% increase in the
target flux.

In the devised EA knockout algorithm up until five modi-
fications, the reactions of the solution tend to converge to the
same solution in all runs. With three modifications there is a
twelve-fold change in variability regarding the previous cases.
This increase in variability can be explained by the increase
in the search space.

In Figure 3, it is possible to observe that the knock-out
algorithm tends to converge to a set of solutions with lower
variability than the enzyme over/under expression counter part.
This fact may be explained by the larger search space of the
enzyme modulation task. It is also noticeable that the enzyme
over/under expression task requires more iterations to reduce
the variability in the best solutions, as can be checked from an
analysis of the convergence plots provided by Figure 4. These
results cannot be extrapolated to other models or scenarios
and depend on the objective function, constraints and the
underlying metabolic model.



TABLE I. KNOCKOUT TASK - BEST SOLUTIONS

#Modifications Algorithm Modifications Fitness (vj/v0
j0) Mean Fitness ±95% Confidence Interval

EAK PEPC 1.149 1.149± 8.082× 10−17

1 VLS DHAPS 1.057 –
VLL PEPC 1.149 –
EAK PEPC DHAPS 1.254 1.254± 8.082× 10−17

2 VLS DHAPS G1PAT 1.073 –
VLL PEPC PK 1.226 –
EAK PEPC DHAPS PGM 1.352 1.352± 1.765× 10−5

3 VLS DHAPS Syn1 Syn2 1.092 –
VLL PEPC PK Syn1 1.250 –
EAK PEPC DHAPS PGM PPK 1.387 1.380± 0.00449

4 VLS DHAPS G1PAT PK PGI 1.124 –
VLL PEPC PK G1PAT Syn1 1.273 –
EAK PEPC DHAPS MURS PGM PPK 1.389 1.386± 0.00242

5 VLS DHAPS G1PAT PK G3PDH PGI 1.124 –
VLL PEPC PK Syn1 PPK TRPS 1.262 –
EAK PEPC DHAPS Syn1 PK PPK PGI 1.394 1.387± 0.00280

6 VLS DHAPS G1PAT PK G3PDH PGI METS 1.124 –
VLL PEPC PK Syn1 PPK TRPS METS 1.262 –

TABLE II. ENZYME MODULATION TASK - BEST SOLUTIONS

#Modifications Algorithm Modifications Fitness (vj/v0
j0) Mean Fitness ±95% Confidence Interval

EAE (2.0)Sersynth 1.876 1.8020.0761± 0.0761
1 VLS (2.0)Sersynth 1.876 –

VLL (2.0)Sersynth 1.876 –
EAE (1.99)Sersynth (0.0033)PGluMu 2.413 2.189± 0.0119

2 VLS (2.0)Sersynth (0)PK 2.115 –
VLL (2.0)Sersynth (2.0)PTS 1.876 –
EAE (1.99)Sersynth (1.92)GAPDH (0.0032)PGluMu 2.582 2.385± 0.0251

3 VLS (2.0)Sersynth (1.94)GAPDH (1.57)PFK 2.001 –
VLL (2.0)Sersynth (0)PEPC (1.84)PTS 2.191 –
EAE (1.99)Sersynth (0.043)TKA (0.0032)PGluMu 2.639 2.475± 0.0222

4 VLL (2.0)Sersynth (2.0)PTS (0)PEPC (2.0)GAPDH 2.369 –
EAE (1.99)Sersynth (0.015)R5PI (0.015)PEPC (1.99)GAPDH (0.015)PK 2.661 2.529± 0.0254

5 VLL (2.0)Sersynth (1.94)PTS (0)PEPC (2.0)GAPDH (0)PK 2.532 –
EAE (1.99)Sersynth (0.0035)PEPC (1.86)GAPDH (0.0035)PGluMu (0.0035)R5PI (1.79)TRPS 2.705 2.553± 0.0251

6 VLL (2.0)Sersynth (1.38)PTS (0)PEPC (1.90)GAPDH (0)PK (0)DHAPS 2.671 –
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Fig. 4. Knock-out and enzyme modulation evolutionary algorithms con-
vergence with 95% confidence bounds, concerning the best solutions found
with six modifications during the 30 runs of the algorithms in the Serine
maximization case study.

IV. CONCLUSION

This work encompassed the development of algorithms to
design in silico improved microbial strains for the production
of industrial relevant compounds. These algorithms achieved
these modifications by finding the near/best set of reaction
deletions to remove from a model and/or to infer the optimum

expression levels for the enzymes in the model (or a predefined
subset). A dynamic ordinary differential model describing the
central carbon metabolism of Escherichia coli was used as
basis for the simulation of the devised ME strategies. These
models are capable of describing regulatory effects in the
metabolism not possible to represent with steady-state models.

The best solutions returned by the devised method outper-
formed the ones in [19] due to the fact that no approximations
of the model were needed. Solutions were computed allowing
the metabolite concentrations and the fluxes to vary with no
bound restrictions. During the execution of the algorithms a set
of reaction modifications that might lead to an invalid steady-
state were not immediately discarded. Thus, a subset of these
reactions could serve as building blocks for better and valid
solutions.

In future work, the remaining issues to be tackled are
the validation of the work with other real-world case studies
and also the integration of the developed software in a user-
friendly software platform such as Optflux [27]. The utilization
of multi-objective optimization algorithms [28] is also an
expected extension to the current methods.
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NOMENCLATURE

Reaction Metabolites
PTS phosphotransferase system glcExt glucose
PGI glucose-6-phosphate isomerase g6p glucose-6-phosphate
PFK phosphofructo-kinase f6p fructose-6-phosphate
ALDO aldolase fdp fructose-1,6-bisphosphate
TIS triosephosphate isomerase gap glyceraldehydes-3-phosphate
GAPDH glyceraldehyde-3-phosphate dehydrogenase dhap dihydroxyacetonephosphate
PGK phosphoglycerate kinase pgp 1,3-diphosphoglycerate
PGM phosphoglucomutase 3pg 3-phospho-glycerate
G1PAT glucose-1-phosphate adenyltransferase 2pg 2-phospho-glycerate
PPK ribose-phosphate pyrophosphokinase pep phosphoenolpyruvate
G3PDH glycerol-3-phosphate dehydrogenase pyr pyruvate
SerSynth serine synthesis 6pg 6-phosphogluconate
Syn1 synthesis1 ribu5p ribulose-5-phosphate
Syn2 synthesis2 xyl5p xylulose-5-phosphate
DAHPS DAHP synthases sed7p sedoheptulose-7-phosphate
G6PDH glucose-6-phosphate dehydrogenase rib5p ribose-5-phosphate
PGDH 6-phosphogluconate dehydrogenase e4p erythrose-4-phosphate
RU5P ribulose-phosphate epimerase g1p glucose-1-phosphate
R5PI ribose-phosphate isomerase accoa acetyl-coenzyme A
TKA transketolase A
TKB transketolase B
TA transaldolase
MURS murine synthesis
TRPS tryptophan synthesis
MetSynth methionine synthesis
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