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Abstract  

Molecular biology techniques provide valuable information in terms of microbial dynamic and 

evolution. DGGE analysis is one of the most popular methods, which has been used in 

bioprocess assessment. A novel procedure that combines common experimental measurements, 

DGGE and image analysis is presented as a new methodology for preliminary assessment. In 

this study, the methodology was applied as an example to the start up of a hydrogen bioreactor, 

in order to have a preliminary estimation of the actual concentration of the different microbial 

species. The obtained results are used for determining the kinetic parameter by using a simple 

mathematical model focusing on species dynamic.  
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1. Introduction 

Several molecular techniques have been applied in the case of biohydrogen production 

by anaerobic digestion, among them the DGGE technique stands out. The DGGE 

enabled to identify the dominant bacterial populations involved in the biohydrogen 

production process under various operating conditions (Mariakakis et al., 2011). 

Most of the mathematical models in anaerobic digestion consider several microbial 

population as state variables, however the specific species concentration are unknown 

variables due to difficulties in performing measurements. This issue may trigger some 

identification problems since some parameters cannot be determined independently 

(Bernard et al., 2001). 

The aim of this study is to develop and validate a simple procedure to convert a typical 

DGGE fingerprinting in a quantitative measurement of the individual ribotypes 

evolution in a bioreactor, for use in mathematical modeling. This approach was applied 

during the start-up of an anaerobic reactor aiming to produce hydrogen, where 

significant changes of the population characteristics are expected to take place. 

 

2. Material and Methods  
 

2.1. Experimental set up 

A glass-made reactor operating as continuous stirred tank reactor (CSTR) of 2 L was 

used for the experiment. A hydraulic retention time (HRT) of 10 h was set for 

population selection of Hydrogen Producing Bacteria (HPB). Glucose (5 g.L
-1

) was 

used as the sole carbon source. The biogas production was measured by liquid 

displacement, and the composition of biogas was measured by gas chromatography, 

http://www.editorialmanager.com/iwa-conferences/download.aspx?id=66794&guid=00de38c4-a1eb-4357-87bf-362513ef1d55&scheme=1


using GC Perkin Elmer Clarus 500, with nitrogen as the carrier. Biomass concentration 

was measured by volatile suspended solids (VSS) through gravimetric method. 

 

2.2. 16S rDNA PCR-DGGE fingerprinting 

Aliquots of well-homogenized biomass samples (120 mL) were taken from the CSTR 

every day during the seven first days of operation. DNA was extracted from biomass 

sample pellet using Powersoil DNA Isolation Kit, MO BIO Laboratories Inc (Carlsbad, 

CA, US). Bacterial 16S rRNA genes was amplified by PCR using the primers U968-f  

and L1401-r (Nübel et al., 1996). A 40-base GC clamp was attached to the primer 

U968-f at the 5’ end. PCR products were separated by Denaturing Gradient Gel 

Electrophoresis (DGGE) with a linear gradient ranging from 30% to 60%, according to 

the protocol of Muyzer et al., 1993. The migration was carried out for 16h at 85V and 

60°C, in 0.5X TAE buffer, using the DCode System (Bio-Rad Laboratories Inc, 

Hercules, CA, US).  

 

2.3. Estimation of OTUs concentration  
DGGE gel was analysed by the program Image J (National Institutes of Health, USA). 

Each DGGE profile was converted in a densitometric curve where each band was 

represented by a peak of given width and intensity. According to the classical DGGE 

postulate, a single band was related to a single sequence, called ribotype or Operational 

Taxonomic Unit (OTU), and the ratio between the area of the peak and the total area of 

the pattern (rather than the peak height) was assumed to be an estimator of the ribotype 

relative abundance in the community (Loisel et al 2006).  

 

2.4. Mathematical model with several species groups 

 

2.4.1. Model description 
A simple species-based chemostat model was developed, based on two main 

hypotheses: (1)The microorganisms mass balance is respected and we assume that each 

species has the same biomass yield coefficient y. (2) Interactions between species only 

result from the competition for the common substrate. We have chosen Monod 

functions to represent the microbial growth rate. Under these assumptions, we consider 

the simple chemostat model. 

 

2.4.2. Model identification 
Estimating separately the yield coefficient and the maximum growth rates is quite 

complicated since these parameters are highly correlated (Batstone 2006). Therefore the 

experimental data were fitted to this model, to identify the parameter y and pairs 
max

 

and Ki for each species i, using a least square method. First of all the coefficient y has 

been estimated with the measurement of the total biomass X and substrate S. 

 

3. Results and discussion 
 

3.1 Evolution of reactor performance and community structure 

The evolution of the bacterial community structure is reflected in the DGGE pattern 

(Figure 1A). Based on densitometric peak areas, the seven most intense bands were 

selected and each was assumed to correspond to a single ribotype (X1 to X7) whose 

concentration was estimated on the basis of DGGE band relative intensity and the total 

biomass concentration (Figure 1B). According to this quantitative interpretation of the 



DGGE fingerprint, there was a clear selection for X3 ribotype, whose relative abundance 

exhibited the highest increase during the evaluation period (from day 4 on).  
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Figure 1. A)  DGGE pattern of bacterial 16S rDNA during the first week of operation. The bands are 

identified from X1 to X8.B) Concentration estimation of the seven dominant bacterial ribotypes from the 

total measured biomass and DGGE band intensities, during the first 7 days of reactor operation.  
 

Nevertheless, it is important to point out that our quantitative interpretation of DGGE 

profile is based on an assumption which can be subjected to conceptual limits and 

potential methodological biases, both implying that one DGGE band does not always 

correspond to one single ribotype and that relative band intensity is not always related 

to ribotype concentration (Muyzer & Smalla, 1998). However DGGE still remains 

convenient to compare the dynamics of major populations in a large number of samples 

undergoing the same methodological treatment, and, as previously reported, DGGE 

fingerprintings can be revisited by simulation and used as a tool to measure microbial 

diversity (Loisel et al., 2006). 

 

3.2. Model parameter determination and calibration 

For parameter identification purposes, and taking into account the experimental data, 

only the three dominant ribotypes were considered: X2, X3 and X4. All the other 

ribotypes were pooled in a sole group (X*). Figure 3a presents the chemostat-model fit 

with the actual experimental data of total biomass and substrate concentration, from 

which the yield coefficient (y). Knowing that the applied dilution rate was 2 d
-1

 and the 

glucose concentration of the inlet was 5 g L
-1

, the estimated value of the biomass-

substrate yield was 0.3 gBiomass gGlucose
-1

.  
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Figure 3. (A) Evolution of substrate concentration (square) and biomass concentration 

(diamond) during the first 7 days of reactor operation. (B) Evolution of ribotypes concentrations 

during the first 7 days of reactor operation.  
 

Figure 3b presents the multi-species chemostat-model fit for each ribotype 

concentration, from which the individual growth parameters could be identified from 

Equations (1)-(2) (see Table 1). The X4 ribotype was the most abundant during the first 

three days but its abundance decreased after day 4. Its kinetic parameters (high affinity 



constant) are characteristic of a slow competitor (Table 1). X4 got quickly out competed 

by X3 whose abundance increased from day 4 and became dominant from day 5. Ks 

values are in agreement with those found using the same substrate (Sharma and Li 

2009). However the X3 parameters values are similary to a study by Nath et al., 2006, 

reported for E. clocae, a bacterium that can produce hydrogen at a substantially high 

rate (the maximum specific growth rate was 0,398 h
-1

 and Ks 5.5 gL
-1

 with glucose). 

 

Table 1. Estimation of maximal growth rate (µmax) and affinity constant (Ks) of the four main 

groups of ribotypes identified from DGGE profiles. 
Ribotype Parameters 

 µ
max

 (h
-1

) Ks (g L
-1

) 

X* 0.225 5.5 

X2 0.68 18 

X3 0.45 5.8 

X4 0.45 10 

 

Conclusion 

A novel procedure that combines common experimental measurements and molecular 

biology technique, in this case the DGGE, with image analysis allow us to count with a 

quantitative approximation of the most important microbial species of a hydrogen 

bioreactor. The proposed method has allowed fitting the results with a simple chemostat 

model based on the assumptions that each species has the substrate yield and their 

specific growth rate follow a Monod function. Because the growth curves that have 

been identified intersect (more precisely, the set of non-dominant species is expected to 

be less efficient under larger dilution rate), further experimental investigations with 

other dilution rates and more measurements are necessary to validate thoroughly the 

assumptions.  
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