
63 / 1 

THE USE OF HOT WIRE TECHNIQUES IN FOULING TESTS 

A WORD OF AWARENESS 

J.D. Pinheiro, L.F. Melo and R.T. Oliveira 

Centro de Qulmica Pura e Aplicada, University of Mlnho, 4700 Braga, Portugal 

ABSTRACT 

Hot metal wires have been used in fouling tests, .mainly 
when corrosion or chemical reaction is present. 
Most authors who have reported data obtained with hot 
wire techniques make no refence about the phenomenon 
related to the increase In surface area due to the 
accumulation of fouling layers. Yet this can cause 
problems of reverse insulation (critical radius), affecting 
the conclusions taken directly from the readouts. 
The aim of this paper is to discuss this problem and show 
through a few selected tases the Importance of this 
aspect in fouling resistance determinations using hot 
wire techniques. 

INTRODUCTION 

It is often impractical and even impossible to use field 

equipment for systematic fouling studies. Hence, some 

laboratory techniques were developed In order to 

evaluate the effect of pertinent parameters, on heat 

exchanger fouling, within appreciable ranges. 

One of them is the hot wire probe test (HWP), which 

consists essentially of electrically heating a metal wire 

in contact with a fluid stream 111. 

Heat tranfer coefficients and thermal resistances can be 

calculateed knowing the heat flux, as well as the fluid 

and wire temperatures. 

The wire temperature Is a function of its electrical 

resistance, the latter being measured during the fouling 

tests. 

. Some improvements have been made in this technique; 

one, the U.O.P. Monlrex Fouling Test (Figure I) was 

designed by Universal Oil Products Co. to be comerclally 

available for use in the laboratory as well as on a side 

stream of a particular process 121. 

-1----wire 

Thermocouple 

Figure 1 - Hot wire probe 

The Importance of this technique is due to some 

advantages: 

• it is sensitive; 

• by adjusting the operating conditions it can 

measure fouling In hours rather than months; 

• It operates with small amounts of feedstock; 

It gives readouts In terms of heat-transfer 

coefficient: 

• it easles the control of different parameters sud 

as: 
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temperature of the stream; 

temperature of the hot wire; 

flow rate of the stream; 

composition of the fluid. 

The HWP has been used mainly when corrosion or 

chemical reaction Is present and due to its particular 

features, Is a prat ica I mean for stuying the dependence 

of fouling rate on wall temperature - an important 

parameter in many types of fouling. 

In fact, despite the existence of a great number of listed 

fouling factors, published by T,E.M.A. Tubular 

Exchanger Manufacturers Association - for a broad 

number of defined equipment and heat duties, they do 

not sufficiently account for the dependence of fouling on 

temperature, also making no allowance for Its time 

dependence. 

THE CRITICAL RADIUS 

Fouling usually acts as an additional resistance to heat 

transfer; but in thin wires, and In some circunstances, 

this may not be true. 

Assuming the wire as cilindrical, see Figure 2, the heat 

transfer rate from it can be calculated by: 

Where: 

q - heat transfer rate 

T w - temperature of the wall (wire) 

Tb - bulk fluid temperature 

t - wire length 

rw - wire radius 

R - total thermal Resistance= R' + Rf 

and: 

R' - thermal resistance of the fluid 

(1) 
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Rf= rw In __ r __ 
~ rw 

Rf - thermal resistance of fouling layer 

r - effective radius= rw + rf 

rf - fouling layer thickness 

h - convective heat transfer coefficient 

kf - thermal conductivity of the deposit 

and so 

q= 
-b + _l_ In -L 
nr K( rw 

... 
fluid 

Figure 2 - Fouling layer on the wire 

(2) 

(3) 

If the wire is very thin phenomena similar to reverse 

insulation Ill can be present. in fact, the accumulation of 

successive cilindrical layers of deposit results In a 

continuous Increase In the surface area contacting the 

fluid; thus the total heat transfered may also increase if 

the area increases more rapidly than the thermal 

resistance. 

A critical radius for the fouled wire can be determined 

knowing that for a maximum heat transfered the total 

thermal resistance is a minimum. The resistance is a 

minimum when the derivative of the sum of the 

resistances R' and Rf with respect to the radius r Is set 

equal to zero: 



for a minimum thermal resistance ~ 0 and 

r (4) 

r c being known as the critical radius. 

An increase in heat transfer will be observed with 

increasing fouling thickness in the zone character! zed by 

r w < r < r c• as can be seen from Figure 3. 

Only at r = r 1 will the heat transfer rate again equal the 

heat transfer from the initially unfouled wire. 
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Figure 3 - Heat transfer rate versus wire radius 

As from equation (4) h = ~.equation (3) becomes 
rc 

q = 2111 (T w - Tb) X kf 

In -L + _r:j;_ 
rw r 

EFFECTS OF THE CRITICAL RADIUS ON FOULING 

DATA 

In the calculation of fouling resistances it is often 

assumed that no change in surface area occurs during 

fouling. However, this assumption is not valid for the 

HWP, where significant changes in the area can occur 

specially if the wire diameter is very small. For 

instances, if the wire radius Is 0,1 mm, the increase in 

surface area caused by a fouling layer of 0,01 mm 

thickness is about 10%, but if the wire radius is 2 mm the 

same deposit produces an •area increase of about 0,5%. 

Experiments with the HWP under a constant heat flux 
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are frequently carried out 161 by simply controlling the 

voltage to the wire. In this case, the following 

conclusions emerge from Figtre 4 and equation (5): 

• if r < r c• increasing r decreses T w; 

if r > r c• increasing r increases T w· 

Figure 4 - Effect of radius change on the 
denominator of equation (5) 

The consequences of these changes In T w for two 

different types of data collection will be discussed 

below. 

Fouling Resistance Versus Time Data 

Frequently, the build- up of deposits with time in 

Industrial heat exchangers tends to a maximum steady 

(asymptotic) value and, sometimes, presents an initial 

induction period where no fouling Is detected. The shape 

of the fouling resistance versus time curves and, of 

course, the quantitative assessement of the deposit can 

be severely affected by the critical radius effect, as 

illustrated in the following example. 

Suppose that: the wire on a HWP is 10 em long, with a 

radius of 1 mm; t he thermal conductivity of the 

deposited substance is 0,8 w/m k; the fluid and the 

Initially clean wire temperature are, respectively, 15°C 

and 600C; and the heat transfer rate (which will be held 

constant throughout the test) is 15 w. As deposition 

proceeds, T w will change and, assuming constant h, the 



correct values of Rf can be calculated with equations (3) 

and (2). This Rt versus time data is shown in Figure 5 -

curve (a). 
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Figure 5 - Fouling curves. 
(a) with critical radius correction. 
(b) and (c) without correction. 
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However, when the change in surface area is not taken 

into account - for instance, if the thermal conductivity 

of the deposit is not known - Rf is simply evaluated by 

the expression: 

Rf = R - * (6) 

The fouling curve obtained with this equation (curve (b) 

in Flgr.re 5) i~ ryuit'= different fro,..., r::u•ve ra.l end lelld~ to 

incorrect interpretation of the data, particularly when 

one tries to extrapolate these results to industrial 

situations. 

Fouling Rate Versus Temperature Data 

In the petroleum industry, fouling is very often due to 

~he deposition of organic materials formed in chemical 

reactions that take place at high temperatures. A 

multitude of reactions can be present contributing to the 

overall fouling rate and so a complex dependence on 

temperature must be expected. 
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Most of the reports on the dependence of ch . em1ca1 

reaction fouling on wall temperature refer a breakpoint 

temperature that is, a temperature above which fouling 

occurs at a significant rate. 

The breakpoint temperature is characteristic for each 

sample under study and Is a function of its chemical 

composition, oxygen concentration and other factors 1111. 

The results obtained with the WHP mainly appear in the 

form of curves, like curve (a) in Figure i . 

ril-.,, 

Figtre 6 - Breakpoint temperature. 
(a) with critical radius correction 
(b) without correction 

In these experiments the wire temperature is held 

constant, for a relatively long period, to check if for that 

te,.,.,oerllfure s.,,..,e deposit is formed. If the phenomenon 

of critical radius is present it is possible to operate the 

HWP at such temperatures that curves, like curve (b) or 

even curve (c) in Figtre 5, may be obtained. 

An erroneous interpretation of these curves can lead to 

the following: 

• for the tem~rature at wlch curve (b) was obtained 

(T 1 ), the induction period seems to be very long, 

and fouling relatively small; 

• for the temperature at which curve (c) was 

obtained (T2J no significant fouling seems to occur 

.. 



during the operating time. So, this temperature 

appears to be below the breakpoint temperature, 

despite the actual presence of fouling. 

Based on such an information, curve (a) in Figure 6 would 

appear displaced to the right (curve (b)) and the value of 

the breakpoint temperature would be misrepresented -

T ~ instead of T w. 

CONCLUSIONS 

Most authors who have reported data obtained with the 

HWP seem not to be concerned with the phenomenon of 

critical radius, since they make no reference on 

calculations carried out to check wether 

reverse - insulation effects are present. 

Nevertheless, to make a correct interpretation of 

experimental data, this effect must be checked out. If 

this effect is not taken into account, misleading results 

may be obtained, namely: 

values of thermal resistances of deposit lower than 

the real ones; 

induction periods and breakpoint temperatures 

greater than the actual ones. 

Alternatively, when designing a HWP for a given duty the 

wire radius must be careffuiy choosen to avoid the 

indesirable phenomenon. 
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