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The present study is focused on the effect of synthetic surfactants, at low concentration, on the kinetics of
polycyclic aromatic hydrocarbons (PAH) biodegradation by Pseudomonas putida ATCC 17514 and ad-
dresses the specific issue of the effect of the surfactant on bacterial adhesion to PAH, which is believed to
be an important mechanism for the uptake of hydrophobic compounds. For that purpose, three sur-
factants were tested, namely, the nonionic Tween 20, the anionic sodium dodecyl sulphate (SDS) and the
cationic surfactant cetyltrymethyl ammonium bromide (CTAB). Data showed that the effect of each
surfactant on the ability of strain ATCC 17514 to biodegrade fluoranthene and anthracene and to use

Igzlwords' them as growth substrate varied considerably. Tween 20, at a concentration of 0.08 mM, increased the
Fluoranthene biodegradation rate of fluoranthene and doubled the maximum specific biodegradation rate of anthra-
Anthracene cene. The presence of SDS, at a concentration of 0.35 mM, led to a reduction of 50% on the biodegradation
Biodegradation rate of fluoranthene, but doubled the removal rate of the more hydrophobic anthracene (0.3 mg L' h™1).
Surfactant Finally, CTAB, at a concentration of 0.27 mM, had a negative effect on the biodegradation of both PAH,
Pseudomonas

leading to an abrupt decrease on the biomass growth.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are organic contami-
nants of concern for human health and natural ecosystems due to
their known carcinogenic and mutagenic properties (Enzmingher
and Ahlert, 1987). Their low water solubility limits their availabil-
ity to microorganisms, which is a potential problem for bioremedi-
ation processes. Surfactant-mediated biodegradation is a promising
alternative because the presence of surfactants can increase the
solubility of PAHs and hence potentially increase their bioavailability
(Li and Chen, 2009). The surfactants assemble into micelles at the
critical micelle concentration (CMC), and the interior of the micelles
provides a hydrophobic environment to solubilise nonpolar com-
pounds such as hydrocarbons (Guerin and Jones, 1988). Therefore,
only concentrations above CMC enhance the mobility and apparent
solubility of PAHs (Edwards et al., 1991). However, high surfactant
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concentrations may be not only toxic for microorganisms (Laha and
Luthy, 1992), but they can also reduce the adhesion of bacteria to
hydrophobic surfaces (Rosenberg and Rosenberg, 1995), in addition
to the negative environmental impacts or costs of application. Thus,
if adhesion plays an important role in bacterial PAH uptake, then the
use of surfactants may not be beneficial.

The sorption of surfactants to bacteria and to interfaces can
either enhance or inhibit adhesion, depending on the nature of the
surfaces and the surfactant itself (Neu, 1996). Most investigations
dealing with the effects of surfactants on bacterial mineralization of
PAHs were based on the use of surfactant concentrations above
their CMC (Guerin and Jones, 1988; Liu et al., 1995). However,
because the sorption of a surfactant to surfaces depends on the free
concentration of the surfactant in solution, modifications of surface
properties, caused by the surfactant, are significant at concentra-
tions below the CMC (Neu, 1996).

The present study focused on the effect of low concentrations of
synthetic surfactants on the kinetics of PAH biodegradation and
addressed the specific issue of the effect of the surfactant on bac-
terial adhesion, which is believed to be an important mechanism
for the uptake of hydrophobic compounds (Wick et al., 2002). For
that purpose, the effects of low concentrations of the non-ionic
surfactant Tween 20, the anionic sodium dodecyl sulphate (SDS)
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and the cationic cetyltrimethyl ammonium bromide (CTAB) on the
uptake of fluoranthene and anthracene by Pseudomonas putida
ATCC 17514 were investigated.

2. Materials and methods
2.1. Chemicals

Fluoranthene (FLU, 99% pure) was purchased from Aldrich
Chemical Co (Milwaukee, Wis) and anthracene (ANT, 99% pure) was
purchased from Sigma Aldrich (Steinheim). Stock solutions of PAHs
were prepared in acetone (10 mggy mL~! and 5 mganr mL™"). The
water-solubilities of fluoranthene and anthracene are approxi-
mately 0.26 and 0.07 mg L™, respectively. Aqueous stock solutions
(5 g L1 of the surfactants Tween 20 (Merck), SDS (Riedel-de-
Héen), CTAB (Pronalys AR) and Tergitol NP-10 (Sigma Chemical Co.)
were prepared in distilled water and sterilised by filtration though
a filter paper with a porosity of 0.2 um. The main characteristics of
the surfactants used in the present study are depicted in Table 1.

2.2. Bacterial strain and culture conditions

P. putida ATCC 17514 NCIMB 10015 was first grown in O mineral
medium with glucose (2 g L™1) for 24 h, at 25 °C. The mineral me-
dium contained, per liter of solution, 69.6 mg of CaCl,.2H,0, 8 mg of
NaCl, 103 mg of KNO3, 698 mg of NaNO3, 100 mg of MgS04.7H,0,
100 mg of NTA, 2 mg of FeS04.7H,0, 0.1 mg of ZnS04.7H,0,
0.043 mg of MnS04.5H,0, 0.3 mg of H3BO3, 0.24 mg of CoS04.7H,0,
0.01 mg of CuS04.5H;0, 0.02 mg of NiSO4.7H,0, 0.03 mg of
NaMo004.2H20, 0.5 mg of Ca(OH),, 5 mg of EDTA, 544.4 mg of
KH3POy4, 2148.9 mg of NayHPO4 and 30 mg of (NH4),SO4. Subse-
quently, a 25-pL aliquot of fluorene or phenanthrene in acetone
(10 mg mL~!) was added to the medium for enzyme induction. The
cultures were then incubated for 7 days in the dark at 25 °C, with
shaking at 150 rpm. P. putida was able to use fluoranthene or
anthrecene as sole carbon and energy source for growth.

2.3. Biodegradation assays

Experiments to measure the removal rates and the partition
coefficients of PAHs between the solid phase and the liquid phase
were carried out in 250-mL Erlenmeyer flasks. PAH-containing
medium was prepared by adding a 2-mL aliquot of acetone-
dissolved fluoranthene (10 mg mL™!) or a 4-mL aliquot of
acetone-dissolved anthracene. The solvent was allowed to evapo-
rate before the addition of 100 mL of sterile O mineral medium,
corresponding to a final PAH content of 200 mg L™, approximately.
The concentrations of PAHs used in the present study were much
higher than the PAH pure-compound aqueous solubility limit, so
that the effect of surfactants on the degradation of solid PAHs by
P. putida could be assessed. Surfactants were added from sterilized
stock solutions. Tween 20 was tested at a concentration slightly
higher than its CMC, 0.08 mM. On the contrary, the concentration of
SDS and CTAB used in the experiments was below their CMC (0.35

Table 1
Chemical characteristics of the surfactants.
Surfactant Designation Type CMC? (mM)
CTAB Cetyltrymethyl ammonium Cationic 1
bromide
SDS Sodium dodecyl sulphate Anionic 8.5
Tergitol NP-10 Nonylphenol Non-ionic 0.12
Tween 20 Polyoxyethylene sorbitan Non-ionic 0.06

monolaurate

2 CMC: critical micelle concentration.

and 0.27 mM, respectively) in order to avoid solubilizing the PAHs
in micelles. The inoculum was a culture of P. putida ATCC 17514
pregrown on the respective PAHs (with an optical density at
540 nm (ODs4p) of 0.4). The volume of the inoculum was 10% of the
total liquid volume. After inoculation, the flasks were sealed with
sterile silicone stoppers, from which a gas filter was suspended, and
incubated in the dark, at 24 °C on a gyratory shaker at 150 rpm for
10—15 days. Sterile uninoculated and autoclaved controls were
included. A 2-mL aliquot of cell suspension was sampled at regular
time intervals and its ODs49 was determined as a measure for the
density of cell suspensions, after carefully shaking the samples. The
0ODs49 was measured in a UNICAM, HEAOS vy spectrophotometer
(Cambridge, United Kingdom). Sterilised mineral medium con-
taining the respective surfactant concentration was used as back-
ground. Due to their size (0.2—0.5 mm), PAH crystals sedimented
quickly and did not interfere with the OD measurements. Volatile
suspended solids (VSS) concentration was determined, following
the procedure described in American Public Health Association
(1989), and used as a measure of biomass concentration. The con-
centration of PAH in the samples was also determined.

2.4. Activity tests

P. putida cells were grown on fluoranthene or anthracene, as
described for the biodegradation assays, collected during the log
phase, washed with phosphate buffer pH 7 (0.01 M) and re-
suspended in mineral medium at an optical density of 0.5. PAH-
containing medium was previously prepared with a 2-mL aliquot
of acetone-dissolved fluoranthene or anthracene (10 mg mL~!). The
solvent was allowed to evaporate before the addition of 4 mL of
sterile mineral medium, corresponding to a final PAH content of
5mgmL~L

The specific activity of P. putida was assessed by measurements
of oxygen uptake rates using a Biological Oxygen Monitor (YSI
model 5300). The effect of surfactants during fluoranthene or
anthracene degradation by P. putida was assessed for three different
concentrations of Tween 20, SDS, and Tergitol (100, 500 and
1000 mg L™1). The cationic surfactant CTAB was tested at a con-
centration of 100 mg L™,

First, the 10 mL YSI chambers were filled with cell suspension.
The suspension was mixed with a magnetic stirrer to overcome
external mass transfer resistances. After O, saturation, the cham-
bers were sealed with a tightly fitting stopper and the endogeneous
oxygen consumption was recorded continuously by using a YSI
electrode. About 20 min after the beginning of the experiment,
200 pL of fluoranthene or anthracene containing medium
(5 mg mL~!) were added by a syringe through the stopper of the YSI
chamber (100 mg L™, approximately) and the change in slope of
the O, consumption records was measured. Then, surfactant was
added to the culture medium through the stopper of the YSI
chamber, the oxygen depletion being continuously recorded.

The maximum cell activity with and without surfactant was
calculated by the slopes of the oxygen depletion records. All assays
were performed within an experimental period of 0.5—5 h and in
each experiment, the VSS concentration was assessed, in order to
obtain the maximum specific cell activity (g, gvss ' h71).

2.5. PAHs

Each sample was extracted with 2 equal volumes of n-hexane. A
centrifugation (16,000 g for 10 min) was performed to separate
aqueous and organic phases. PAHs in the hexane fraction were
separated by reversed-phase high-pressure liquid chromatography
(RP-HPLC) by using a KNAUER chromatograph, equipped with a
KNAUER K-2500 UV-detector (254 nm). A LiChroCART® 250-4
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LiChrospher® PAH column was used for component separation. The
compounds were eluted using a gradient of acetonitrile (A) and
water (0—10 min, 50%A; 10—35 min, 100%A), pumped at a flow-rate
of 1 mL min~! by using a solvent organizer K-1500 WellChrom,
KNAUER and a HPLC pump K-1001, WellChrom, KNAUER. Total PAH
concentrations were determined from a mixed liquor sample
(containing mineral medium, cells, solid and dissolved PAHs). PAH
in the solid phase (solid PAH and cell-associated PAH) and PAH
concentration in the liquid phase (dissolved PAH and very small
PAH crystals) were determined after centrifugation of the mixed
liquor sample (16,000 g for 10 min). The supernatant was trans-
ferred to a sterile tube and the pellet was resuspended in 1 mL of
mineral medium. For quantification of PAH in the solid phase, the
sample was previously sonicated for 2 min, in order to allow the
desadsorption of cells from unsoluble PAH, being, afterwards,
extracted with n-hexane.

2.6. Cell surface properties

Relative cell surface hydrophobicity determinations were car-
ried out using a modification of the method described by Rosenberg
et al. (1980). P. putida ATCC 17514 was grown in batch cultures, as
described above, and harvested at the early stationary growth
phase by centrifugation (12,000 g, 10 min). The pellet was washed
and resuspended in mineral medium to an initial ODs549 of 0.4. The
purity of the cultures was confirmed by plating on LB medium. A
4.5 mL portion of cell suspension (ODs49 = 0.4) was transferred to
an acid-washed (HCI, 0.1 M) round-bottom glass tube, previously
overlaid with 0.6 mL of hexadecane. Four test tubes were prepared
following this procedure. Tween 20 was added to the first test tube
to a concentration of 0.08 mM, CTAB was added to the second test
tube to a concentration of 0.27 mM, and SDS was added to the third
tube to a concentration of 0.35 mM. Surfactant was not added to the
fourth tube, so that it could be used as control. This procedure was
used for cells previously grown on either anthracene or fluo-
ranthene. For each culture, a tube not overlaid with hexadecane
was prepared. Blanks containing mineral medium with and
without added surfactant were also prepared to account for hex-
adecane that came off the surface of the test tubes, which altered
the measured ODsy49. Samples and controls were then vortexed for
60 s. After an equilibration period of 10 min, the loss in ODsg4g of the
aqueous phase relative to that of the initial cell suspension was
measured using a spectrophotometer UNICAM, HEAIOS y. Hydro-
phobicity was estimated by calculating the percentage of cells
adhering to hexadecane. The electric charge of P. putida cells grown
on anthracene or fluoranthene, with and without added surfactant,
was evaluated by zeta potential determinations. Measurements
were performed with a micro-electrophoresis cell, Zetameter Inc.
3.0+. The applied voltage was 200 V, and each average value con-
sisted of 25 records.
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3. Results
3.1. Cell activity versus surfactant dose

Fig. 1 shows the results obtained in the activity tests, during
P. putida growth on fluoranthene (A) or anthracene (B), in the
presence of surfactants. The results show that, in the presence of
the non-ionic surfactants Tween 20 and Tergitol NP-10, as well as in
the presence of the anionic surfactant SDS, at a concentration of
100, 500 and 1000 mg L™, an increase in the oxygen uptake rate
was observed during the utilization of fluoranthene or anthracene
as substrate by P. putida cells, relatively to the results obtained in
the absence of surfactant. On the other hand, the addition of the
cationic surfactant CTAB, at a concentration of 100 mg L™, had a
toxic effect, leading to a sudden decrease in cell activity. Accord-
ingly, no other CTAB concentration was tested. Moreover, a
decrease in cell activity was sometimes observed, as a result of an
increase in surfactant concentration (e.g., Tween 20).

3.2. Effect of surfactants on PAH biodegradation kinetics

According to the results obtained in the activity assays, the
concentration of surfactant used in the biodegradation experi-
ments was 100 mg L~! since, in most of the cases, higher surfactant
concentrations led to a decrease in cell activity (see, for instance,
the results obtained for Tween 20 and SDS, in Fig. 1A). Therefore,
the concentration of surfactant used in the biodegradation exper-
iments corresponded to 0.08 mM, 0.27 mM and 0.35 mM, for
Tween 20, CTAB and SDS, respectively. Thus, by using surfactant
concentrations below the CMC, in the case of CTAB and SDS, and
slightly higher than the CMC (differing in, approximately,
0.02 mM), as is the case of Tween 20, it is possible to focus, in
particular, on the effect of surfactants on bacterial adhesion. The
results obtained in the biodegradation assays, in the presence and
in the absence of surfactant, are depicted in Figs. 2—4, for Tween 20,
CTAB and SDS, respectively. As can be observed in Fig. 2, Tween 20
had a stimulating effect on fluoranthene and anthracene mineral-
ization by P. putida. Table 2 summarizes fluoranthene and anthra-
cene biodegradation rates, in the presence and in the absence of
Tween 20.

In the presence of CTAB, many cells adhered to the glass surface
of the Erlenmeyer flasks, forming strong-yellow colonies. The re-
sults presented in Fig. 3 shows that CTAB inhibited the removal of
PAHs from the culture medium. In fact, this surfactant had a
negative effect on the uptake of PAHs in the solid phase (Fig. 3C).
However, a fraction of PAH in the liquid phase was removed in the
presence of the cationic surfactant (Fig. 3B), although at a much
lower rate when compared to the one obtained in the absence of
CTAB. In addition, the presence of CTAB in the medium reduced the
adaptation period that was observed before the decrease in
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Fig. 1. Variation in cell specific activity during the utilization of fluoranthene (A) or anthracene (B) by P. putida in the presence of different concentrations of Tween 20, CTAB, SDS

and Tergitol NP-10, relatively to cell activity in the absence of surfactant.
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Fig. 2. Total PAH concentration (A), PAH concentration in the bulk liquid phase (B) and
in the solid phase (C), during P. putida growth on fluoranthene (FLU) or anthracene
(ANT) crystals, in the presence and in the absence of Tween 20 (0.08 mM).

fluoranthene bulk liquid concentration. The results showed that the
addition of SDS led to a decrease in the apparent overall removal
rate of fluoranthene. However, in the case of anthracene, the
presence of the anionic surfactant doubled its overall removal rate,
when compared to the one detected in the absence of SDS (Fig. 4A).
For fluoranthene and anthracene, the concentration of PAH in the
solid phase considerably increased in the presence of the surfac-
tant, as well as the PAH bulk liquid concentration, resulting in a
complete removal of both PAHs. In Table 3, fluoranthene and
anthracene biodegradation rates, in the presence and in the
absence of SDS are depicted.

3.3. Effect of surfactants on cell viability

The effect of the surfactants on cell viability is presented in
Fig. 5. Despite being able to degrade both PAHs (Figs. 2—4), P. putida
ATCC 17514 was able to utilize anthracene as growth substrate, but
not fluoranthene (Fig. 5), which was, apparently, used for cell
maintenance or transformed in a sub-product.

The strain was also able to grow on the non-ionic surfactant
Tween 20 (Fig. 5A). In fact, in the presence of fluoranthene and
Tween 20, an exponential growth of the biomass was detected after
an adaptation period of 50 h (Fig. 5A), whereas in the absence of
surfactant only a linear growth could be observed. With anthra-
cene, after 300 h of incubation, the cell density was identical with
and without Tween 20. Nevertheless, despite the larger lag phase
(of approximately 100 h), the maximum growth rate was higher in
the presence of Tween 20.

P. putida ATCC 17514 was also able to grow on the anionic sur-
factant SDS. Despite not being able to grow on fluoranthene as sole
source of carbon, in the presence of SDS, an exponential growth
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Fig. 3. Total PAH concentration (A), PAH concentration in the bulk liquid phase (B) and
in the solid phase (C), during P. putida growth on fluoranthene (FLU) or anthracene
(ANT) crystals, in the presence and in the absence of CTAB (0.27 mM).
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in the solid phase (C), during P. putida growth on fluoranthene (FLU) or anthracene
(ANT) crystals, in the presence and in the absence of SDS (0.35 mM).
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Table 2
Fluoranthene and anthracene removal rates with and without Tween 20.

Maximum observed removal rate
of PAH in the solid phase (mg L-! h™1)

Maximum specific removal rate
of PAH in the solid phase (mg gyds h™')

Substrate Overall PAH removal  Specific overall PAH
rate (mg L-' h™1) removal rate (mg gyds h™")
Fluoranthene 0.27 + 0.03 6.83 4+ 0.03
Fluoranthene + Tween 20  1.10 + 0.23 5.75 +£0.23
Anthracene 0.21 + 0.01 0.62 + 0.01
Anthracene + Tween 20 0.19 £+ 0.00 1.16 + 0.00

2.40 62.82
2.51 12.50
0.93 273
0.86 5.17

was clearly observed, reaching high cell densities at the stationary
growth phase (Fig. 5C). Moreover, the formation of cell aggregates
was detected during degradation of fluoranthene in the presence of
the anionic surfactant SDS. Conversely, in the presence of the
cationic surfactant CTAB, a continuous decrease in the biomass
growth curve was observed (Fig. 5B).

3.4. Effect of the surfactants on cell-surface properties

After P. putida growth on fluoranthene or anthracene, with and
without added surfactant, measurements of zeta potential and
bacterial surface hydrophobicity were performed. The results ob-
tained are presented in Table 4. Data indicate that cells grown in the
presence of the non-ionic Tween 20 presented much lower zeta
potential values than cells grown in the absence of surfactant. On
the other hand, cell surface charge increased towards electro-
neutrality in the presence of the cationic and the anionic surfac-
tants, CTAB and SDS, respectively. This result was more prevalent for
the associations CTAB with fluoranthene and SDS with anthracene.

Regarding the relative hydrophobicity of P. putida cells, the re-
sults showed that the strain became less hydrophobic in the pres-
ence of surfactants. Indeed, a slight decrease in the percentage of
cells adhered to the organic phase (hexadecane) was observed with
the Tween 20 treatment, during growth on anthracene or fluo-
ranthene. Concerning SDS or CTAB, the partition of cells to the
hexadecane phase was totally inhibited by both surfactants.

4. Discussion
4.1. Effect of the surfactants on cell activity

Fig. 1 showed that the addition of the non-ionic surfactants
Tween 20 and Tergitol NP-10, as well as the anionic surfactant SDS
had, under the tested conditions, a positive effect on cell activity. An
increase of 90% in the oxygen uptake rate could be observed during
the biodegradation of anthracene in the presence of Tween 20 at a
concentration of 500 mg L~ On the contrary, the addition of the
cationic surfactant CTAB, even at low concentrations (100 mg L™,
which is four times lower than its CMC), led to a decrease of 88% in
the oxygen uptake rate in the assay with anthracene, and 96% with
fluoranthene. CTAB is a quaternary ammonium compound and
binds by chemisorption to the cell surface of bacteria because the
microbial cell surface at physiological pH is negatively charged.
Thus, CTAB may inhibit bacterial adhesion to the substrate

Table 3
Fluoranthene and anthracene removal rates with and without SDS.

(Campbell et al., 1999), which might be the reason for the observed
decrease in cell activity, in the presence of CTAB.

The use of Tween 20 concentrations higher than 100 mg L~!
(0.08 mM) did not induce a beneficial effect to the biodegradation
of fluoranthene or anthracene. In fact, no significant changes in the
specific oxygen uptake rate were observed when Tween 20 was
added to the medium at a concentration of 500 mg L™! and, at a
concentration of 1000 mg L™, a significant decrease of the positive
effect of this surfactant on cell activity was observed. Moreover, the
activity of P. putida cells during the degradation of fluoranthene or
anthracene in the presence of Tween 20 concentrations of 500 and
1000 mg L~ was lower than the one detected when Tween 20, at a
concentration of 100 mg L™, was used as sole carbon and energy
source for growth (0.46 go, gyss~| d~1). This result suggests that
high concentrations of Tween 20 (higher than 500 mg L~!) may be
toxic to microorganisms.

The addition of Tergitol NP-10 increased the oxygen uptake rate
of P. putida cells during the degradation of either fluoranthene or
anthracene. In the presence of fluoranthene, the beneficial effect of
Tergitol NP-10, at a concentration of 100 mg L™, was identical to the
one obtained when the same concentration of Tween 20 was tested.
However, unlike the trend observed with Tween 20, increasing
concentrations of Tergitol NP-10 (500 and 1000 mg L~ 1) led to an
increase in cell respiratory activity. This fact may be related to the
higher capacity of utilization of Tween 20 as substrate by P. putida,
when compared to Tergitol NP-10, and to a possible inhibitory effect
at high concentrations of the former surfactant. Indeed, the cell ac-
tivity in the presence of Tween 20 (100 mg L) as sole carbon and
energy source for growth was 0.46 gg, gvss ! d~!, whereas with
Tergitol NP-10 (100 mg L") a value of only 0.08 go, gvss ' d ™! was
obtained, indicating the low biodegradability of the latter surfactant.
During the utilization of anthracene as substrate by P. putida, the
addition of Tergitol NP-10 increased the oxygen uptake rate, but not
as much as Tween 20 increased it. The biodegradability of Tween 20
may also explain such result, suggesting that the observed
enhancement in cell activity may be partially due to the metabo-
lization of the surfactant itself. Preferential utilization of Tween 20
over pyrene by Mycobacterium sp. was also reported by Mahanty
et al. (2008). Moreover, the higher increase in cell activity pro-
moted by Tergitol NP-10 during the biodegradation of fluoranthene,
when compared to anthracene, may be explained by the different
physical properties of both PAHSs. In fact, the lower water solubility of
anthracene (73 ppb, at 30 °C) compared to fluoranthene (260 ppb, at
30 °C) may induce the utilization of different bacterial strategies to
get access to such substrates (Rodrigues et al., 2005). In this case, the

Substrate Overall PAH removal Specific overall PAH Maximum observed removal Maximum specific removal
rate (mg L~' h™1) removal rate (mg gyds h™1) rate of PAH in the solid phase rate of PAH in the solid phase
(mgL'h™") (mg gyds h™")
Fluoranthene 0.94 + 0.08 19.45 + 0.08 1.39 28.89
Fluoranthene + SDS 0.45 + 0.02 1.18 + 0.02 0.40 1.05
Anthracene 0.17 + 0.01 0.31 + 0.01 0.34 0.61
Anthracene + SDS 0.30 + 0.01 0.61 + 0.01 0.47 0.96
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Fig. 5. Cell growth on fluoranthene or anthracene crystals, in the presence and in the
absence of Tween 20 (A), CTAB (B) and SDS (C).

effect of the surfactant on cell activity will depend on the extent that
the main mechanism for bacterial access to the substrate is affected.

Amendment with the anionic surfactant SDS also increased cell
activity during the biodegradation of fluoranthene and anthracene,
but not as much as the non-ionic surfactants Tween 20 and Tergitol
NP-10 increased it. A positive effect was more noticeable when low
concentrations of SDS were used, indicating a possible toxic or
inhibitory effect in the presence of high surfactant concentrations.

4.2. Effect of surfactants on PAH removal and cell survival

4.2.1. Effect of Tween 20

The strain was able to grow on Tween 20 as carbon source, yet
this did not affect the enhancing effect of Tween 20 on fluoranthene
degradation. The surfactant enhanced the apparent biodegradation
rate of the PAH in the liquid phase (Fig. 2B), resulting in an initial
decrease in fluoranthene bulk liquid concentration, at a rate
(0.27 mg L™! h™") higher than the one observed in the absence of
surfactant (0.06 mg L~' h™1). This fact can be explained by the
increased bioavailability of fluoranthene dissolved in the micellar
phase, since the concentration of Tween 20 used in these

Table 4
Cell-surface properties of Pseudomonas putida ATCC 17514 grown on fluoranthene or
anthracene, with and without added surfactant.

Substrate Zeta potential (mV) Cells adhered to
hexadecane (%)

Fluoranthene “339+58 13.8

Fluoranthene + Tween 20 791.0 £ 225 3.6

Fluoranthene + CTAB ~19.6 + 2.8 0

Fluoranthene + SDS 7229 +96 0

Anthracene “43.6 +5.8 15.7

Anthracene + Tween 20 ~87.7 £23.2 111

Anthracene + CTAB 424 +28 0

Anthracene + SDS 325 +27 0

experiments (0.08 mM) was slightly higher than its CMC
(0.06 mM). In all the experiments, the concentration of PAH in the
solid phase was higher than the concentration of PAH in the bulk
liquid phase. Either in the presence or in the absence of surfactant,
after 18 h of incubation, 70% of the total fluoranthene corresponded
to PAH in the solid phase, indicating that Tween 20, at a concen-
tration slightly higher than its CMC, had no detrimental effect on
the utilization of fluoranthene crystals by P. putida cells. Moreover,
in the presence of Tween 20, the maximum apparent removal rate
of fluoranthene in the solid phase slightly increased, reaching the
value of 2.51 mg L~ h~. On the other hand, the maximum specific
fluoranthene removal rate of fluoranthene in the solid phase
decreased 80%. This result is certainly due to the observed linear
growth of the cells in the absence of surfactant (Fig. 5A), with a
maximum biomass concentration of 74 mgyss L~ !, whereas in the
presence of Tween 20, the cells grew exponentially reaching a
biomass concentration of around 870 mgyss L~ .. Therefore, the ratio
of fluoranthene to biomass was higher in the absence of Tween 20,
because cell density was lower in this case, the cells being saturated
with this hydrophobic PAH. Yet, the overall fluoranthene removal
rate increased 75% in the presence of the non-ionic surfactant.

Treatment with Tween 20 also had a beneficial effect on the
removal of anthracene, doubling the maximum specific removal
rate of anthracene in the solid phase (5.17 mg gyss~' h™1), as well as
the overall specific removal rate (1.16 mg gv55’1 h’1). This result is
consistent with the 85% increase in the oxygen uptake rate
observed in the presence of the surfactant, during the degradation
of anthracene by P. putida (Fig. 1B). Willumsen et al. (1998) obtained
a similar result with Tween 80, the addition of the non-ionic sur-
factant at a concentration three times higher than the one used in
the present study (0.24 mM) doubling fluoranthene mineralization
rate by a Sphingomonas strain.

Aryal and Liakopoulou-Kyriakides (2013) also reported
enhanced biodegradation of PAHs in the presence of Tween 20. The
enhancing effect of Tween 20 on the biodegradation rate of fluo-
ranthene was lower than the one observed for anthracene. A
possible explanation for this phenomenon may be the lack of ability
of P. putida to use fluoranthene as growth substrate. Consequently,
in the presence of the biodegradable Tween 20, part of the sur-
factant will be consumed for cell growth, as can be observed in
Fig. 5A. On the other hand, during growth on anthracene, the
addition of the non-ionic surfactant increased the lag phase before
the biomass exponential growth (Fig. 5A), reaching, however, the
same values of cell density detected in the absence of surfactant.

4.2.2. Effect of CTAB

In the presence of CTAB, the concentration of PAH in the solid
fraction was also higher than the concentration of PAH in the liquid
phase. Nevertheless, the presence of the cationic surfactant inhibi-
ted the biodegradation of fluoranthene and anthracene in the solid
phase (Fig. 3C), suggesting that the inhibitory effect of CTAB, at a
concentration of 100 mg L™, is probably related to the uptake
mechanism of these PAHs. As previously mentioned, CTAB is a
cationic surfactant that binds by chemisorption to the bacterial cell
surfaces, due to the electrostatic attraction, preventing adhesion of
the cells to the substrate (Neu, 1996; Campbell et al., 1999). There-
fore, this result suggests that the direct contact between the bac-
terial cell and the PAH is a determinant factor to the uptake of such
hydrophobic substrates. These observations are consistent with the
results obtained in the activity assays (Fig. 1). In fact, when CTAB was
added to the mineral medium, the cell activity rapidly decreased to
0.074 g, gvss_ ! d~1, whereas in the presence of fluoranthene or
anthracene, amendment with CTAB immediately resulted in com-
plete inhibition of the respiratory activity during, at least, the
following 3 h. Inhibition was accompanied by a continuous decrease
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in the biomass growth curve (Fig. 5B). Nevertheless, a fraction of the
PAH in the liquid phase was removed in the presence of CTAB.
Indeed, P. putida was able to use fluoranthene and anthracene
present in the aqueous phase, after an adaptation period of 160 h,
approximately. The sudden decrease of the PAH bulk liquid con-
centration, initially observed, was probably due to the partitioning
of PAHs to the biomass, or to the rapid uptake of the PAH dissolved
in the aqueous phase, before the binding of CTAB to the whole cell
surface. However, the maximum apparent degradation rate of flu-
oranthene in the liquid phase, after a long period of exposure of the
cells to CTAB, was 0.12 mg L~ h™, a value that was five times lower
than the observed degradation rate in the absence of surfactant.
After exposure to the cationic surfactant, the maximum degra-
dation rate of anthracene in the supernatant decreased, reaching a
value of 0.04 mg L~' h™L The utilization of fluoranthene and
anthracene in the liquid phase by P. putida cells, after more than
160 h of exposure to CTAB, can be explained by an adaptation of
some cells to the surfactant, at a concentration of 0.27 mM, four
times lower than its CMC. Resistance of a Pseudomonas aeruginosa
strain to quaternary ammonium compounds was already reported
by Jones et al. (1989). Such tolerance may be correlated with
changes of the outer membrane fatty acid composition. In fact, the
observation of strong-yellow colonies of P. putida adhered to the
glass surface of the Erlenmeyer flasks, in the presence of CTAB, can
be explained by surfactant-induced permeabilization or lysis of the
bacterial cell membrane of cells exposed to CTAB. The release of
coloured products into the medium was also observed by
Willumsen et al. (1998) due to cell-membrane-permeabilising ca-
pacity of Triton X-100, following growth of Sphingomonas and
Mycobacterium strains on fluoranthene in the presence of this toxic,
non-ionic surfactant, at a concentration above its CMC. In addition,
as a result of the formation of bacterial colonies in the presence of
fluoranthene or anthracene and CTAB, the cells present at the inner
layers of the aggregates may have resisted to the toxic effect of the
surfactant, being able to utilize the dissolved fraction of the PAH
which penetrated into the cell aggregate. This kind of protection has
been observed in other biological processes. For instance, in nitri-
fication/denitrification processes, under aerobic conditions, the
denitrifiers are usually located in inner anoxic niches, thus resisting
to the inhibitory effect of oxygen and being able to utilize the nitrate
that penetrates through the biomass flocs (Rodrigues et al., 2001).

4.2.3. Effect of SDS

The presence of SDS in the culture medium decreased the
overall biodegradation rate of  fluoranthene, from
0.94 + 0.08 mg L™! h™! to 0.45 + 0.02 mg L~! h~'. A reduction of
96% in the specific degradation rate of fluoranthene in the solid
phase (cell-associated and solid fluoranthene) was also detected
after addition of the anionic surfactant, resulting in a maximum
value of 1.05 mg gyds h™'. Alike for Tween 20, this result may be
explained by an exponential growth of the cells in the presence of
fluoranthene with SDS, reaching a maximum biomass concentra-
tion of 1974.6 + 311 mgyss L™! (Fig. 5C), whereas, without SDS, no
cell growth was detected, the biomass concentration being
51.62 + 7.27 mgyss L. Besides, the concentration of fluoranthene
in the liquid phase was higher in the presence of the anionic sur-
factant. This phenomenon may be the result of the observed
reduction of the fluoranthene uptake rate, leading to a temporary
accumulation of the PAH in the liquid phase.

As also described for the non-ionic surfactant Tween 20, the
addition of SDS doubled the overall apparent removal rate of
anthracene, resulting in a value of 0.30 + 0.01 mg L-1 h~, as well as
the maximum specific observed degradation rate of anthracene in
the solid phase. This result does not appear to be consistent with the
observations reported by Stelmack et al. (1999) during degradation

of anthracene (500 mg L~') by a Pseudomonas strain, in the presence
of the anionic surfactant Dowfax 8390, at a concentration that was
one-half its CMC. According to these authors, the presence of
Dowfax 8390 resulted in a reduction in the uptake of the solid
carbon source, indicating that the effect of the surfactant on PAH
biodegradation is the result of a complex process which depends on
the characteristics of the surfactant and the specific properties of
the microorganisms involved. It is known that SDS inhibits hydro-
phobic interactions (Neu, 1996). Experiments performed with
Streptococcus, revealed that hydrophobic bond-disrupting agents
including SDS inhibited adhesion of the bacteria to hydroxylapatite
(Nesbitt et al., 1982). Thus, if adhesion of cells to substrate is an
important mechanism to PAH uptake, SDS may have a negative
effect if adhesion is mainly due to hydrophobic interactions. On the
other hand, Marchesi et al. (1991) found a correlation between SDS
biodegradation and an increase of adhesion of a Pseudomonas strain
to river sediments. These authors have demonstrated that during
biodegradation, the bacterial cell surface became increasingly hy-
drophobic, a change which could be reversed by the removal of the
primary intermediate of SDS biodegradation.

At the concentration used in the present study (0.35 mM), the
anionic surfactant SDS did not prevent partitioning of PAHs into
bacterial cells (Fig. 4C), the cell-associated PAH concentration being
higher than the concentration of PAH in the liquid phase, for both
anthracene and fluoranthene. It is possible that, at a concentration
that corresponds to 4% of its CMC, the negative effect of SDS on
bacterial adhesion to hydrophobic PAHs would be insignificant. In
addition, the concentration of fluoranthene and anthracene in the
solid phase, in the presence of SDS, was higher than the one observed
in the absence of the anionic surfactant (Fig. 4C). In the case of
anthracene, the removal rate of the PAH in the supernatant was
higher in the assays performed in the absence of SDS (0.4 mgL~1h™1).
Similarly to Tween 20, the beneficial effect of SDS was more intense
during the biodegradation of anthracene, than that of fluoranthene.
As previously mentioned, such result may be due to the biodegrad-
ability of SDS, which is used as co-substrate for cell growth during the
utilization of fluoranthene by P. putida, as shown in Fig. 5C.

4.3. Modification of the surface properties of P. putida by synthetic
surfactants

4.3.1. Modification of the electric cell-surface charge

The surface properties of cells exposed to carbon sources of
different aqueous solubility (mineral medium amended with fluo-
ranthene or anthracene), in the presence and in the absence of
synthetic surfactants, were evaluated by means of zeta potential and
electrophoretic mobility measurements. As already mentioned,
CTAB is a cationic surfactant and, consequently, it binds to bacterial
cell surfaces, due to the electrostatic attraction, influencing the zeta
potential of the cells (Neu, 1996). In fact, after treatment with CTAB,
at a concentration of 0.27 mM (four times lower than its CMC), the
electric cell-surface charge presented a trend towards electro-
neutrality (Table 4). Accordingly, a reduction in the electrostatic
repulsion between bacterial cells may occur. This fact was
confirmed by the observed formation of cell aggregates during the
utilization of fluoranthene or anthracene by P. putida, in the pres-
ence of CTAB, as previously referred. A similar result was obtained
by Azeredo et al. (2002), after treatment of a culture of Pseudomonas
fluorescens with CTAB, at a concentration of 0.5 mM. According to
these authors, after the application of the cationic surfactant, cells
became positively charged and remained adhered to a glass surface.

After the addition of anionic surfactant SDS, the zeta potential of
the cells also tended towards electroneutrality, i.e., the electric cell-
surface charge became less negative. A possible explanation for this
phenomenon may be the production of polymeric substances or
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SDS degradation intermediates, which will induce changes in bac-
terial cell-surface properties and, consequently, the interactions
between the cells and the PAH substrate will be affected. Such result
also explains the formation of cell aggregates during the utilization
of fluoranthene or anthracene by P. putida, in the presence of SDS, as
a consequence of the reduction of the electrostatic repulsion.

Conversely, treatment with the non-ionic surfactant Tween 20
resulted in an increase in the electric cell-surface charge of P. putida
to extremely high negative values. In this case, despite the high
electrostatic repulsion expected to occur between highly negatively
charged cells, partitioning of PAHs into the cells was not prevented
by the surfactant.

4.3.2. Hydrophobicity of cell surface

The relative hydrophobicity was determined as the percentage
of cells adhering to a hydrophobic phase (hexadecane). Cells grown
on fluoranthene or anthracene showed a tendency to be less hy-
drophobic in the presence of the non-ionic Tween 20, than without
the surfactant. On the other hand, the anionic and the cationic
surfactants, SDS and CTAB, respectively, prevented bacterial parti-
tioning into the hexadecane phase. Likewise, Azeredo et al. (2002)
observed that, in the presence of CTAB, the cells became more
hydrophilic, as a consequence of changes in the cell-surface prop-
erties, induced by the cationic surfactant, which explains the lack of
affinity of the cells to hexadecane. After treatment with the anionic
surfactant SDS, a decrease in cell surface polarity should be ex-
pected, since SDS anchors to the cell surface through its polar part,
exposing the apolar part of the molecule (Azeredo et al., 2002). Yet,
the results obtained in the hydrophobicity tests are not consistent
with this observation, since cells did not show any affinity to the
hexadecane phase after the application of SDS. Also, the addition of
the non-ionic surfactant Tween 20 decreased the ability of the cells
to adhere to the organic phase, especially when fluoranthene was
used as substrate (Table 4). Curiously, the results obtained in the
biodegradation experiments seem to indicate an opposite trend
(Figss. 2 and 3, and 4). Indeed, the concentration of PAH in the solid
phase was significantly higher than the concentration of PAH in the
liquid fraction, even when SDS or CTAB were added to the culture
medium, suggesting that partitioning of PAHs into the cells was not
prevented, despite the alterations of the surface properties of cell
walls induced by these surfactants. Unlike liquid hydrocarbons,
such as hexadecane, fluoranthene and anthracene may be consid-
ered solid carbon sources and, therefore, a different bacterial
behaviour could be expected during the utilization of these hy-
drophobic substrates, in the presence of synthetic surfactants.

5. Conclusion

The present study describes the effect of a non-ionic, an anionic
and a cationic surfactant on the biodegradation of fluoranthene and
anthracene by P. putida ATCC 17514. Therefore, it provides useful
information to predict the environmental fate of these compounds
and to develop practical PAH bioremediation strategies. The results
obtained highlight that the biodegradation of crystalline fluo-
ranthene and anthracene by P. putida ATCC 17514 can be stimulated
by low concentrations of synthetic surfactants. However, it is very
important to choose the correct combination between the microor-
ganism, the PAH substrate and the surfactant molecule. In fact, it was
shown that the same surfactant had different effects on the biodeg-
radation of fluoranthene and anthracene by P. putida ATCC 17514.

The following conclusions can be drawn from the present study:

Treatment with the non-ionic surfactant Tween 20, at a con-
centration of 0.08 mM, led to an increase in the overall fluoranthene

removal rate and doubled the overall specific removal rate of the
more insoluble anthracene;

The presence of the anionic surfactant SDS, at a concentration of
0.35 mM, led to a reduction of approximately 50% in the overall
fluoranthene removal rate, but doubled the overall degradation
rate of the more hydrophobic anthracene, resulting in a value of
030mgL'h;

The cationic surfactant CTAB, at a concentration of 0.27 mM, had
a negative effect on the degradation rate of cell-associated PAH and,
consequently, on the growth of P. putida when solid fluoranthene or
anthracene was used as sole carbon source.

References

American Public Health Association (APHA), 1989. Standard Methods for the
Examination of Water and Wastewater, seventeenth ed.. (Washington, D.C).

Aryal, M., Liakopoulou-Kyriakides, M., 2013. Biodegradation and kinetics of phen-
anthrene and pyrene in the presence of nonionic surfactants by Arthrobacter
strain sphe3. Water, Air and Soil Pollution 224, 1426.

Azeredo, ]., Pacheco, A.P,, Lopes, L., Oliveira, R, Vieira, MJ., 2002. Monitoring cell
detachment by surfactants in a parallel plate flow chamber. In: Proceedings of
the International Specialised Conference on Biofilm Monitoring, Porto, Portugal,
pp. 62—65.

Campbell, P, Srinivasan, R., Knoell, T., Phipps, D., Ishida, K., Safarik, T., Cormack, H.,
Ridway, H., 1999. Quantitative structure-activity relation (QSAR) analysis of
surfactants influencing attachment of a Mycobacterium sp. to cellulose acetate
and aromatic polyamide reverse osmosis membrane. Biotechnology and
Bioengineering 64, 527—544.

Edwards, D.A., Luthy, R.G., Liu, Z., 1991. Solubilization of polycyclic aromatic hy-
drocarbons in micellar non-ionic surfactant solutions. Environmental Science
and Technology 25, 127—133.

Enzmingher, ].D., Ahlert, R.C., 1987. Environmental fate of polynuclear aromatic
hydrocarbons in coal tar. Environmental Technology Letters 8, 269—278.

Guerin, W.F, Jones, G.E., 1988. Mineralization of phenanthrene by a Mycobacterium
sp. Applied and Environmental Microbiology 54, 937—944.

Jones, M.V., Herd, T.M., Christie, H.J., 1989. Resistance of Pseudomonas aerugi-
nosa to amphoteric and quaternary ammonium biocides. Microbiology 58,
49—-61.

Laha, S., Luthy, R.G., 1992. Effects of non-ionic surfactants on the solubilization and
mineralization of phenanthrene in soil-water systems. Biotechnology and
Bioengineering 40, 1367—1380.

Li, J.L., Chen, B.H., 2009. Surfactant-mediated biodegradation of polycyclic aromatic
hydrocarbons. Materials 2, 76—94.

Liu, Z., Jacobson, A.M., Luthy, R.G., 1995. Biodegradation of naphthalene in aqueous
non-ionic surfactant systems. Applied and Environmental Microbiology 61,
145-151.

Mahanty, B., Pakshirajan, K., Dasu, V.V., 2008. Synchronous fluorescence as a se-
lective method for monitoring pyrene in biodegradation studies. Polycyclic
Aromatic Compounds 28, 213—227.

Marchesi, J.R., Russel, NJ., White, G.F,, House, W.A., 1991. Effects of surfactant
adsorption and biodegradability on the distribution of bacteria between sedi-
ments and water in freshwater microcosm. Applied and Environmental
Microbiology 57, 2507—2513.

Nesbitt, W.E., Doyle, RJ., Taylor, K.G., 1982. Hydrophobic interactions and the
adherence of Streptococcus sanguis to hydroxylapatite. Infection and Immunity
38, 637—644.

Neu, T.R., 1996. Significance of bacterial surface-active compounds in interaction of
bacteria with interfaces. Microbiological Reviews 60, 151—166.

Rodrigues, A.C., Brito, A.G., Melo, LF, 2001. Post-treatment of a brewery
wastewater using a Sequencing Batch Reactor. Water Environment Research
73, 45-51.

Rodrigues, A.C., Wuertz, S., Brito, A.G., Melo, L.F,, 2005. Fluorene and phenanthrene
uptake by Pseudomonas putida ATCC 17514: kinetics and physiological aspects.
Biotechnology and Bioengineering 90, 281—289.

Rosenberg, M., Gutnic, D., Rosenberg, E., 1980. Adherence of bacteria to hydrocar-
bons: a simple method for measuring cell-surface hydrophobicity. FEMS,
Microbiology Letters 9, 29—33.

Rosenberg, M., Rosenberg, E., 1995. Bacterial adherence at the hydrocarbon-water
interface. Oil and Petrochemical Pollution 2, 155—162.

Stelmack, P.L., Gray, M.R,, Pickard, M.A., 1999. Bacterial adhesion to soil contami-
nants in the presence of surfactants. Applied and Environmental Microbiology
65, 163—168.

Wick, LY., Munain, A.R., Springael, D., Harms, H., 2002. Responses of Mycobacterium
sp. LB501T to the low bioavailability of solid anthracene. Applied Microbiology
and Biotechnology 58, 378—385.

Willumsen, P.A., Karlson, U., Pritchard, PH., 1998. Response of fluoranthene-
degrading bacteria to surfactantes. Applied Microbiology and Biotechnology
50, 475—483.



	Effect of low concentrations of synthetic surfactants on polycyclic aromatic hydrocarbons (PAH) biodegradation
	1. Introduction
	2. Materials and methods
	2.1. Chemicals
	2.2. Bacterial strain and culture conditions
	2.3. Biodegradation assays
	2.4. Activity tests
	2.5. PAHs
	2.6. Cell surface properties

	3. Results
	3.1. Cell activity versus surfactant dose
	3.2. Effect of surfactants on PAH biodegradation kinetics
	3.3. Effect of surfactants on cell viability
	3.4. Effect of the surfactants on cell-surface properties

	4. Discussion
	4.1. Effect of the surfactants on cell activity
	4.2. Effect of surfactants on PAH removal and cell survival
	4.2.1. Effect of Tween 20
	4.2.2. Effect of CTAB
	4.2.3. Effect of SDS

	4.3. Modification of the surface properties of P. putida by synthetic surfactants
	4.3.1. Modification of the electric cell-surface charge
	4.3.2. Hydrophobicity of cell surface


	5. Conclusion
	References


