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A B S T R AC T

The qualifier reconfigurable is used for software systems which behave differently
in different modes of operation (often called configurations) and commute between
them along their lifetime. Such systems, which evolve in response to external or in-
ternal stimulus, are everywhere: from e-Health or e-Government integrated services
to sensor networks, from domestic appliances to complex systems distributed and
collaborating over the web, from safety or mission-critical applications to massive
parallel software.

There are two basic approaches to formally capture requirements of this sort of
systems: one emphasizes behaviour and its evolution; the other focus on data and
their transformations. Within the first paradigm, reconfigurable systems are regarded
as (some variant of) state-machines whose states correspond to the different con-
figurations they may assume. On the other hand, in data-oriented approaches the
system’s functionality is specified in terms of input-output relations modelling oper-
ations on data. A specification presents a theory in a suitable logic, expressed over
a signature which captures its syntactic interface. Its semantics is a class of concrete
algebras or relational structures, acting as models for the specified theory.

The observation that whatever services a reconfigurable system may offer, at each
moment, may depend on the stage of its evolution, suggests that both dimensions
(data and behaviour) are interconnected and should be combined. In particular, each
node in the transition system which describes a reconfiguration space, may be en-
dowed with a local structure modelling the functionality of the respective configura-
tion. This is the basic insight of a configurations-as-local-models specification style.
These specifications are modeled by structured state-machines, states denoting com-
plex structures, rather than sets.

A specification for this sort of system should be able to make assertions both about
the transition dynamics and, locally, about each particular configuration. This leads
to the adoption of hybrid logic, which adds to the modal description of transition
structures the ability to refer to specific states, as the lingua franca for a suitable
specification method.

On the other hand, specific applications may require specific logics to describe
their configurations. For example, requirements expressed equationally lead to a
configurations-as-algebras perspective. But depending on their nature one could also
naturally end up in configurations-as-relational-structutres, or probabilistic spaces
or even in configurations-as-Kripke-structutres, if first-order, fuzzy or modal logic is
locally used.

The aim of this thesis is to develop the foundations for a specification method
based on these principles. To subsume all the possibilities above our approach builds
on very general grounds. Therefore, instead of committing to a particular version
of hybrid logic, we start by choosing a specific logic for expressing requirements at
the configuration (static) level. This is later taken as the base logic on top of which
the characteristic features of hybrid logic, both at the level of syntax (i.e. modali-
ties, nominals, etc.) and of the semantics (i.e. possible worlds), are developed. This
process is called hybridisation and is one of the main technical contributions of this
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thesis. To be completely general, it is framed in the context of the theory of insti-
tutions of J. Goguen and R. Burstall, each logic (base and hybridised) being treated
abstractly as an institution.

In this setting the thesis’ contributions are the following:

• A method to hybridise arbitrary institutions; this can be understood as a
source of logics to support arbitrary configurations-as-local-models specifi-
cations.

• A method to lift encodings (technically, comorphisms) from an institution to
a presentation in first-order logic, into encodings from its hybridisation to a
presentation in first-order logic; this result paves the way to the introduction
of suitable automatised proof support for a wide range of hybridised logics.

• Suitable characterisations of bisimulation and refinement for models of (generic)
hybridisations, which provide canonical, satisfaction preserving relations to
identify and relate models.

• A two-stage specification method for reconfigurable systems based on a global
transition structure to capture the system’s reconfiguration space, and a local
specification of configurations in whatever logic is found expressive enough
for the requirements at hands.

• A set of additional technics to assist the process of specifying and verifying
requirements for reconfigurable systems, with partial tool support.
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R E S U M O

O termo reconfigurável é usado para sistemas de software que se compor-
tam de forma diferente em diferentes modos de operação (frequentemente
chamados de configurações) comutando entre eles, ao longo do seu ciclo de
vida. Estes sistemas, que evoluem em resposta a estímulos externos e inter-
nos, estão por toda a parte, desde sistemas de e-Health ou sistemas integrados
de e-Governement, às redes de sensores, das aplicações domésticas aos com-
plexos sistemas distribuidos, dos sistemas críticos de missão ao software de
computação paralela.

Existem duas abordagens formais para captar requisitos deste tipo de sis-
temas: uma focada no comportamento e evolução; e outra focada nos dados
e respectivas transformações. Segundo o primeiro paradigma, os sistemas re-
configuráveis são abordados por (alguma variante) de máquinas-de-estados,
correspondendo, cada um dos seus estados, a uma configuração que o sistema
possa assumir. A outra abordagem, orientada aos dados, especifica as fun-
cionalidades do sistema em função de relações de input-output, que modelam
operações nos dados. Uma especificação apresenta uma teoria numa lógica
adequada, expressa sobre uma assinatura que capta a sua interface sintática.
A sua semântica consiste na classe de álgebras, ou estruturas de primeira or-
dem, que modelam a teoria especificada.

A observação de que, a cada momento, os serviços oferecidos por um sis-
tema reconfigurável possam depender do estado da sua evolução, sugere-nos
que ambas as dimensões (dados e comportamento) estejam interligados e de-
vam ser combinados. Em particular, cada nó do sistema de transição, que
descreve o espaço de reconfigurabilidade, pode ser dotado de uma estrutura
local onde as funcionalidades do sistema, na respectiva configuração, são
modeladas. Esta é a ideia base da especificação configurações-como-modelos-
locais. Tecnicamente, as especificações são modeladas por máquinas de esta-
dos estruturadas, onde cada estado denota uma estrutura complexa, ao invés
de um conjunto.

Uma especificação para este tipo de sistemas deve ser adequada à expressão
de asserções acerca da dinâmica de transições, assim como, ao nível local de
cada configuração particular. Isto leva-nos à adopção de lógica híbrida, que
adiciona, mecanismos para referir estados específicos à expressividade modal
dos sistemas de transição, como lingua franca para um método adequado de
especificação.

Por outro lado, aplicações podem requerer lógicas específicas para descre-
ver as suas configurações. Por exemplo, requisitos expressos por equações de-
vem ser modelados numa perspectiva configurações-como-álgebras. Depen-
dendo da sua natureza, podemos considerar configurações-como-estruturas
de primeira ordem, ou configurações-como-espaços probabilísticos ou mesmo
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configurações-como-estruturas de Kripke quando usadas, localmente, lógica
de primeira ordem, lógica fuzzy, ou lógica modal respectivamente.

O objectivo da tese é desenvolver os fundamentos para um método de es-
pecificação baseado nestes princípios. Por forma a acomodar todas estas pos-
sibilidades, a abordagem é desenvolvida sob fundamentos muito genéricos.
Ao invés de comprometer a abordagem com uma lógica híbrida particular,
partimos da escolha da lógica específica para especificar requisitos ao nível
(estáctico) local. Esta lógica é então tomada como lógica de base, sobre a
qual os mecanismos da lógica híbrida, tanto ao nível sintáctico (i.e., modal-
idades, nominais, etc.) como ao semântico (i.e., mundos possíveis), são de-
senvolvidos. Este processo, que chamamos de hibridização, é uma das prin-
cipais contribuições técnicas da tese. A generalidade do método resulta do
seu desenvolvimento no contexto da teoria das instituições de J. Goguen e
R. Burstall. As peincipais contribuições da tese são:

• um método para hibridizar instituições arbitrárias; o que pode ser en-
tendido como uma fonte de lógicas para suportar especificações configu-
rações-como-modelos-locais arbitrárias

• um método para transportar codificações de uma instituição nas apre-
sentações de primeira ordem (tecnicamente comorfismos), em codifi-
cações da sua hibridização em apresentações em primeira ordem; este
resultado abre o caminho para a introdução do suporte de prova au-
tomático para uma ampla classe de lógicas híbridas;

• caracterização de relações de bissimulação e de refinamento para mode-
los de hibridizações genéricas. Isto oferece relações canónicas, que
preservam satisfação, para identificar e relacionar modelos;

• um método de especificação para sistemas reconfiguráveis com dois
estágios, baseado numa estrutura de transição global, onde o espaço
de reconfigurações do sistema é modelado; e numa especificação lo-
cal das configurações expressa numa lógica escolhida como adequada,
aos requisitos a tratar;

• um conjunto de técnicas adicionais para assistir o processo de especi-
ficação e de verificação de requisitos de sistemas reconfiguráveis com
suporte parcial de ferramentas.
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The right way to combine various programming paradigms
is to discover their underlying logics, combine them, and then

base a language upon the combined logic

J. Goguen and J. Messenguer in [GM87]
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1
I N T RO D U C T I O N

1.1 P RO B L E M A N D M OT I VAT I O N

The qualifier reconfigurable is used for systems whose execution modes,
and not only the values stored in their internal memory, may change
in response to the continuous interaction with the environment. Such
systems behave differently in different modes of operation, or configu-
rations, and commute between them along their lifetime.

At present such is more the norm than the exception in software sys-
tems whose components are frequently reconfigured — a typical, ev-
eryday example is offered by cloud based applications that elastically
react to client demands. Reconfigurability, together with related issues
like self-adaptation or context-awarness, become a main research topic
[RS11], in the triple perspective of foundations, methods and technolo-
gies.

In safety-critical systems, the quality of dynamic reconfigurations is
vital. In modern cars, for example, hundreds of electronic control units
must operate in different modes, depending on the current situation –
such as driving on a highway or finding a parking spot. Switching be-
tween these modes is a typical example of a dynamic reconfiguration.

As it happens with any other class of inherently complex software,
the project of reconfigurable systems requires both expressive mod-
elling notations and mathematically sound methods for development
and verification. In safety or mission-critical applications systems’ re-
configurations, often occurring at runtime, need to be specified with
special care to make explicit the scope of their application and guar-
antee the absence of unintended side effects – for example, to enforce
that changing the air conditioning settings does not influence the cor-
rect operation of the brakes. In many cases the use of sound, i.e., pre-
cise and rigorous engineering principles, which in Computer Science
are known as formal methods [Bjø06b] is no more an option: not only
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2 I N T RO D U C T I O N

to make systems safer by guaranteeing they behave as expected, but
also to achieve higher quality and efficiency in software design.

Such is the standpoint for this thesis which aims at contributing to
the foundations of a rigorous methodology to the specification and
analysis of reconfigurable systems.

From the outset we sought to develop methods and technics both
sound, i.e. framed on precise logic foundations, and generic, i.e. ap-
plicable to a wide range of reconfigurable systems. In particular, they
should be independent of whatever specific logic is used to model the
systems’ individual configurations, giving maximum freedom to the
Software Engineer.

Although the emphasis of the thesis is on foundations, and its main
contribution a method for hybridising logics, the latter paves the way
to the development of specification techniques for reconfigurable soft-
ware. Moreover, and from the outset, the thesis was co-supported by
a leading, Portuguese IT company, whose mission includes the pro-
duction of formally certified software for critical systems. This pro-
vided a challenging context for what was originally planed as a thesis-

on-theory, namely motivating its methodological counterpart and the
search for suitable tool support.

1.2 T H E A P P RO AC H

From the very beginning the motto

reconfigurations as transitions, configurations as local models

emerged as an expressive characterisation of what we were trying to
achieve. On the one hand, it embodies a two-layered abstraction be-
tween a local specification stage (that of the individual configurations
of a system) and a global one (concerning the dynamics of reconfig-
uration). On the other hand, regarding reconfigurations as transitions

suggests some sort of modal logic as the language to express them. Fi-
nally, identifying configurations, or operation modes, as local models

emphasises that no special restrictions should be put to their specifica-
tion. I.e. our methods must be prepared to deal with whatever logics
are used to formally describe a system’s local configurations.
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In a sense to became clear along the thesis, our approach can be
described in a rather straightforward way: models for reconfigurable
software are structured transition systems described within appropri-
ate logical systems. Their states are the individual configurations with
whatever structure they have to bear in concrete applications. Transi-
tions correspond to the admissible reconfigurations.

This view determined the two other choices on the formal setting for
the thesis: that of hybrid logic [Bla00, Bra10, AtC07] as the basic lan-
guage to express evolution (through modalities) and locality (through
nominals), and that of the theory of institutions [BG80, Dia08] as the
right abstraction to combine the former with the specific logics used to
describe each local configuration.

Actually, the thesis builds on the essential principles of the theory
of institutions. First of all, as a very general formalisation of what a
logical system is, institutions abstract the very essence of hybrid logic
from specific syntactic and semantic details of each of its versions. Sec-
ondly, the theory provides the general constructions, or more precisely
the right framework to develop the general constructions, to combine
the global hybrid language with the specification logics used locally.

1.3 S U M M A RY O F C O N T R I B U T I O N S A N D RO A D M A P

Contributions

The contributions of this thesis span from a foundational to a method-

ological level.
The first aims at developing the foundations of a specification method

for reconfigurable systems, combining whatever logic is used to de-
scribe the system’s individual configurations with a hybrid language
able to express reconfigurations, the latter encodes into modalities what-
ever triggers their occurrence, and provides means to name and talk
about each local configuration. Instead of committing to a particular
version of hybrid logic, we start by choosing a specific logic for ex-
pressing requirements at the configuration (static) level. This is later
taken as the base logic on top of which the characteristic features of hy-
brid logic, both at the level of syntax (i.e. modalities, nominals, etc.)



4 I N T RO D U C T I O N

and of the semantics (i.e. possible worlds), are developed. The process
is called hybridisation and constitutes the main technical contributions
of the thesis.

These results are presented in the first part of the thesis. Most
of them are already published in references [MMDB11a, MMB13a].
The complete proofs for results in [MMDB11a] are documented in
[MMDB11b]. Further results appear in a current journal submission
[DM13].

The specific contributions at this level are:

• A method to hybridise arbitrary institutions, which we call the
hybridisation process.

• A method to lift encodings (technically, comorphisms) from an
institution to a presentation in first-order logic, into encodings
from its hybridisation again to a presentation in first-order logic.
Note this result paves the way to the introduction of suitable au-
tomatised proof support for verification of specifications written
in a wide range of hybridised logics.

• A characterisation of both bisimulation and refinement notions
for models of (generic) hybridisations, which provides canoni-
cal, satisfaction preserving relations to identify and relate mod-
els.

The second level of contributions has a methodological nature, re-
sorting to the hybridisation process to propose a rigorous but flex-
ible specification method for reconfigurable systems. Again, most
of the results are already published in Formal Methods conferences
[MFMB11, MNMB13, NMMB13b].

The methodological contributions of the thesis are:

• A two-stage specification method for reconfigurable systems based
on a global transition structure to capture the system’s reconfigu-
ration space, and a local specification of configurations in what-
ever logic is found expressive enough for the specific application
requirements.
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• A set of complementary technics to assist the process of specify-
ing and verifying requirements for reconfigurable systems. This
includes

– An incorporation of the hybridisation process into the HETS

[MML07] framework to provide effective, computer assisted
support for validating specifications.

– A technique to cater for non homogenous interfaces in the
local configurations of a system. This was found a rele-
vant requirement in practice, which is, however, not fully
accommodated in the general method.

– A technique to handle reconfigurations which are triggered
by events depending on actual values in the state variables
of a local configuration.

Roadmap

As mentioned above the thesis is organised in two main parts. The first
one is concerned with foundations, the second with the methodological

level.
The foundational part starts in Chapter 2 with a review of the neces-

sary background on hybrid logic, category theory and theory of insti-
tutions which provides the technical context for the developments to
follow.

Chapter 3 contains the main results on the hybridisation process.
Apart its technical specificity, this process sheds light on the generic
pattern of hybridisation and provides a ‘source of logics’ for specify-
ing software reconfigurability, as discussed in the second part of the
thesis. Its development extends the work [DS07] where it was shown
how arbitrary institutions can be ‘modalised’.

Chapter 4 is devoted to the construction of first-order encodings of
hybridised institutions. In particular, given an institution ‘encodable’
in presentations in first-order logic, it proposes a systematic construc-
tion of a similar encoding for its hybridised institution. Most results in
Chapters 3 and 4 appear in [MMDB11a, MMDB11b, DM13, Dia13].

The foundational part of the thesis closes in Chapter 5 with the
study of suitable equivalence and order relations to compare models of
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specifications in hybridised logics. Two such relations are considered:
a notion of bisimulation, to relate models with indistinguishable be-
haviours, and a notion of refinement to connect abstract models to their
realisations. The main results of this chapter appeared in [MMB13a].

The methodological part of the thesis comprises Chapters 6 and 7.
Chapter 6 introduces and illustrates a specification method for reconfig-
urable systems based on the hybridisation process discussed in Part I.
Through hybridisation one is able to weave together, in a precise math-
ematical sense, the dynamics of reconfiguration with the local speci-
fications. Hybrid features add to modal logic descriptions the power
to refer with a surgical’ precision to the latter. On the other hand, the
institution-independent character of the whole approach supports the
genericity of the method and allows for transporting specifications and
proofs from one logic to another, to take advantage, for example, of
suitable tool support. A version of the method introduced in this chap-
ter was published in [MFMB11].

Chapter 7 is devoted to the presentation of three techniques which
complement or enrich the specification method. They include a computer-
assisted validation of specifications in hybridised logics based on HETS,
as well as specific techniques to deal with varying interfaces at the lo-
cal level and with reconfigurations triggered by specific values of local
state variables. Part of this chapter is based on references [MNMB13,
NMMB13b].

Besides Parts I and II, the thesis includes this introductory chapter
as well as a final concluding one. This Introduction will close with a
brief review of the state of the art relevant to both Parts I and II. Such
a review is by no means complete, conveying just a personal roadmap
through related work.

1.4 C O N T E X T A N D R E L AT E D W O R K

Hybrid logics

Modal logics (e.g. [AtC07, BdRV01]) has been recognised as a very
relevant area of formal logic with respect to applications. The “possi-
ble worlds semantics” they entail, provides a natural framework to deal
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with patterns involving evolution and change. This justifies their ubiq-
uity in Computer Science. There is, however, a well-known limitation
in standard modal logic: its expressive power is not enough to name or
to explicitly refer to specific states of the underlying Kripke structure.
Therefore, there is no way to assert the equality between two particu-
lar states or to specify properties assigned to particular states within a
model.

Hybrid logic [Ind07, Bla00, Bra10, AtC07] addresses this problem
through the introduction of propositional symbols of a new sort, called
nominals. Each nominal is true at exactly one possible state. The sen-
tences are then enriched in two directions. On the one hand, nominals
are used as simple sentences holding exclusively in the state they name.
On the other hand, explicit reference to states is provided by sentences
@i ρ, stating the validity of

The literature abounds in richer versions of hybrid logic. This in-
cludes hybrid versions of first order logic (e.g. [Bra10]), many-valued

hybrid logic [HBB08], intuitionistic logic [BdP06], computation tree

logic (CTL) [Web09, KLSW09], linear temporal logic (LTL) [DLN07],
µ-calculus [SV01], among many others.

Historically, hybrid logic was introduced by A. Prior in his book
[Pri67]. However, its seminal ideas emerged by the end of the 50’s, in
a discussion of C.A. Meredith (cf.[Bla00]). The theme was latter revis-
ited, in the school of Sofia, by S. Passy and T. Tinchev (e.g. [PT91]). It
achieved global interest within the modal logic community on the 90’s,
being contributed by P. Blackburn, C. Areces, B. ten Cate, T. Braüner,
T. Bolander, among many others (e.g. [AB01, tCF05, Bra10, BB06]).
This lifted the status of Hybrid Logic to an independent branch of mod-
ern logic. For an historical account we suggest [Bla00, Bra10] as well
as [Bla06] for a comparison with the original perspective of A. Prior.

Institutions and combination of logics

An institution is a categorical formalisation of what a logical system
is, encompassing syntax, semantics and satisfaction. The concept was
suggested by Goguen and Burstall, by the end of the seventies, in order
to “formalise the formal notion of logical systems”, and in response
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to the “population explosion among the logical systems used in Com-

puting Science” [GB92]. More precisely, institutions were first intro-
duced in [BG80] (where they were called simply ’languages’), being
the well known, seminal paper [GB92] published much latter. Ref-
erence [Dia10b] presents an historical perspective on the origins and
further developments of the topic, both in Computer Science and math-
ematical logic.

The universal character and resilience of institutions is witnessed
by the wide set of logics formalised and dealt within this framework.
Examples range from the standard classical logics, to the most un-
conventional ones as well as to logical systems underlying modern
specification and programming languages. Beyond the examples pre-
sented in the thesis, a lot of other logics and specification paradigms
can be approached along the institutional lines. Well known exam-
ples include process algebras [MR06], temporal logics [Cen98], prob-

abilistic logics [BKI05], quantic logics [CMSS06], hiding and obser-

vational logics [BD94, BH06, Mar06], coalgebraic logics [C0̂6], func-

tional [ST12, SM09] and imperative programing languages [ST12],
higher-order logic [Bor99] among many others.

The original motivation for institutions was the need to abstract from
particular details of the individual logics by creating a theory to en-
lighten and characterise many aspects that “are completely indepen-

dent of what underlying logic is chosen” [GB92]. This was the motto

for the development of a solid institution-independent specification the-

ory, upon which, the modular structuring and parameterisation mech-
anisms used in algebraic specification were defined ‘once and for all’,
abstracting from the concrete particularities of the each specification
logic (e.g. [Mos04, Tar03, DT11]). A fruitful recent trend of the field
is the institution-independent perception that most of the technics and
methods of the classical model theory can be defined at the abstract
level of arbitrary institutions [Dia08].

The ability to relate different logics is a decisive issue in formal
logic. This was also a driven force on the development of the theory
of institutions (e.g. [MDT09]). In particular, institutions provide a
systematic way to relate logics and transport results from one to an-
other [Mos03], which means that a theorem prover for the latter can
be used to reason about theorems of the former. These translations
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pave the way for the heterogeneous specification paradigm where dif-
ferent institutions are combined and used along a specification process
[Dia02, Mos02, Dia98, DF02, MML07].

The combination of logics is an active research topic in modern
logic. Particularly, the kind of combinations where the particular fea-
tures of a logic are combined ‘on top’ of another one have been consid-
ered in several contexts. The hybridisation process proposed in this
thesis (as in [MMDB11a]), extending the previous work by R. Di-
aconescu and P. Stefaneas [DS07] on ‘modalisation’ of institutions,
which endows systematically institutions with Kripke semantics (w.r.t.
the standard 2 and 3 modalities), can be regarded as one of these
combinations. R. Fajardo and M. Finger also presented in [FF02] a
method to modalise logics, and proved that both completeness and de-
cidability of the source logics are preserved. The ‘temporalisation’ of
logics introduced by M. Finger and D. Gabbay in [FG92] and the re-
cent ‘probabilisation’ of logics introduced by P. Baltazar in [Bal10] are
other remarkable examples on this kind of combinations.

Other proposals in the literature abstract the combination pattern by
considering the ‘top logic’ itself arbitrary. Such is the case of what is
called parametrisation of logics in [CSS99] by C. Caleiro, A. Sernadas
and C. Sernadas. In brief, a logic is parametrized by another one if an
atomic part of the first is replaced by the second. Therefore, the method
distinguishes a parameter to fill (the atomic part), a parametrised logic
(the ‘top’ logic) and a parameter logic (the logic inserted within). The
recent method of importing logics suggested by J. Rasga, A. Sernadas
and C. Sernadas [RSS12] aims at formalising this kind of asymmetric
combinations resorting to a graph-theoretic approach.

Specification of reconfigurable systems

As explained earlier in this chapter, we intend to explore hybridised
logics to frame a general approach to the specification of reconfig-
urable systems. By general we mean independent of whatever logic
one finds suitable to describe the system’s individual configurations.
The rationale underlying our approach seeks to combine two basic di-
mensions in systems specification: one which emphasises behaviour
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and its evolution, another focused on data and their transformations.
To be able to cope, within a single formalism, with both date structur-
ing and prescription of functionality, as well as with specification and
analysis of (externally observable) behaviour remains a main challenge
for Software Engineering.

Behaviour is typically specified through (some variant of) state ma-

chines. Such models capture evolution in terms of event occurrences
and their impact in the system’s internal state configuration (see e.g.
[AILS07]). Data types and services upon them, on the other hand, are
often presented as theories in suitable logics, over a signature which
offers a syntactic interface to the system. Semantics is, then, given by
a class of concrete algebras acting as models of the specified theory
(see e.g. [MHST03]).

The dichotomy between data and behaviour is mirrored in a proper
mathematical duality: both initial algebras and final coalgebras pro-
vide abstract descriptions of those computational structures. More-
over, as universal properties, they entail definitional and proof princi-
ples, i.e., a basis for the development of program calculi directly based
on (actually driven by) type specifications. The notion of a dialge-
bra [PZ01, Vou10] which embodies an algebra and a coalgebra over a
common state space, conceptually unifies both structures, at the price
of loosing crucial properties, for example the existence of final/initial
models, i.e. of canonical representatives of behaviour.

Our starting point is that these two dimensions are interconnected:
the functionality offered by a reconfigurable system, at each moment,
may depend on the stage of its evolution. In [MFMB11] the reconfig-
uration dynamics is modelled as a transition system, whose nodes are
interpreted as the different configurations it may assume. Therefore,
each of such nodes is endowed with an algebra, or even a first-order
structure, to formally characterise the semantics of the services offered
in the corresponding configuration. Technically, models of reconfig-
urable systems are given as structured state-machines whose states de-
note algebras, rather than sets.

Structured transition systems [CM92] are, therefore, the semantic
structure underlying the approach proposed in this thesis to the spec-
ification of reconfigurable systems. They are usually obtained by ex-
tending the bare structure of (sets of) states and transitions with further
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elements in either of them (e.g., structured labels, weights, functions,
algebraic structure on states, etc). A quite general characterisation was
proposed by R. Heckel and A. Corradini through the concept of lax

coalgebra [CGRH01] which incorporates algebraic structure in both
labels and states.

There are two ways to mathematically represent transition systems:
either as graphs or as coalgebras by regarding the transition relation
as a function from states to some collection of states whose shape is
determined by a suitable endofunctor. It is not surprising that the lit-
erature on formal models of software reconfiguration explores both
these paths. Graph rewriting techniques[Roz97], notably the double
pushout approach [HMP01], have been extensibly used in modelling
the evolution of dynamic systems. Typical applications emerge in the
areas of mobile processes, from the π-calculus [MPW92] and its vari-
ants [SW03] to the latter work of Robin Milner in bigraphs [CMS07,
Mil09], architectural evolution [WF02, BBG+08] or coordination of
software services [KMLA11], among many others.

Representing reconfiguration as transition systems described by coal-
gebras or, more often, in terms of their relational counterpart, has also
been considered in the literature. The approaches are more diverse
than in the graph-oriented trend and often endowed with a particular
variant of a modal logic. Some examples include the separate speci-
fication of a second transition structure to monitor the basic one, of-
ten called a reconfiguration manager, as e.g. in [BFH+12], the use of
feature enriched transition systems [CCS+13] or well-structured tran-
sition systems [FS01]. The latter incorporates an order on (an infinite)
state space, compatible with the transitions, with interesting decidabil-
ity results. The specification of contracts or interaction conflicts in
either states or transitions, in the context of the well known design-by-
contract formalism, also provides mechanisms to talk about reconfigu-
rations (see e.g. [TCCD10, FMFR11, BHW11, CZZ12]).

In both cases a critical ingredient to incorporate the reconfigurabil-
ity dimension in specifications is the ability to add structure, typically
algebraic structure, to the transition system modelling the system’s be-
haviour. In a sense such is also the path taken in this thesis. But the
combination of what, after Rutten’s seminal work on universal coalge-
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bra, are called algebraic and coalgebraic structures, has a long trace in
Computer Science.

A first landmark was the whole research trend on behavioural satis-

faction, early references being [GGM76] and [Rei85]. Hidden-sort
algebra [GM00], emboding a fundamental distinction between visi-
ble values and internal states, which can only be observed in an in-
direct way, is an example of a behavioural formalism whose develop-
ment was triggered, from the outset, by research on the foundations
of object-oriented programming. Specification with coherent hidden

algebras [DF02] and observational algebras [HB98] are remarkable
approaches in this line. Reference [ST08] provides a comprehensive
account of the area.

Another research direction, somehow closer to the approach pro-
posed in this thesis, seeks to combine explicitly algebraic specifica-
tions with state-based structures. Also motivated by the emergence
of object orientation in the 80’s, the specification language TROOL

[JSHS96] is a paradigmatic example. Objects, defined by attributes
and evolving in response to events, are described as abstract data types
and their evolution as linear processes specified in a temporal logic.
Reference [CR97] introduces a logic which combines many-sorted first-
order logic with branching-time combinators, with both initial and
loose semantics.

Introduced by M. Broy and M. Wirsing in [BW00], algebraic state

machines take algebraic specifications as states, an idea which was also
present in Y. Gurevich seminal work on evolving algebras [Gur94],
posteriorly renamed to abstract states machines [BS03]. These ma-
chines, aiming at modelling arbitrary computational processes, con-
sists of transition systems where each state has a structure of an algebra.
The initial state consists of a particular algebra and each transition in
a command that triggers an update on the current algebra. Hence, the
set of transitions can be regarded as an abstract (imperative) program
to be executed over the assigned initial state. The impact of abstract
state machines in formal modelling cannot be understated. Several
key ideas were borrowed by, and later incorporated in, popular model-
oriented formalisms, namely the B method. A recent manifestation of
this states as algebras perspective appears in the work of M. Bidoit
and R. Hennicker in [BH08] as a semantic foundation for the contract-
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based design of software components. This perspective developed into
a whole approach to software architecture based on a two layered se-
mantics (at the interface and internal levels) with precise notions of
composition and refinement.

As the reader will be able to appreciate in the second part of this
thesis, our own perspective has several points of contact with these
approaches based on structured transition systems. Note, however,
that in our models a state does not correspond to a configuration of
variables over a unique, common, fixed first-order structure, but to a
specific structure modelling the configuration behavior and functional-
ity. Technically, we resort to rigid variables for non rigid operations,
in contrast to other, more disseminated approaches where rigid opera-
tions act upon non rigid variables. On the other hand our specifications
are always axiomatic and expressed in a logic which results from the
hybridisation of the logic found suitable for each application to capture
its possible configurations.

The use of different, often domain-tailored logics to specify recon-
figurations in software constitutes a wide and heterogenous landscape
in which our own approach fits in. We mention some examples, for
illustration but with no pretension of exhaustibility. An important one
is J. Meseguer’s rewriting logic [Mes92] and its MAUDE realisation, a
language whose dynamics is based on the concurrent transformation
of a ‘soup’ of objects and messages. A detailed overview, including
references to modelling evolution and self-adaptability, is provided in
[Mes12]. Logic based formalisms are also common in specifying re-
configuration in component-based paradigms, dynamic software archi-
tectures and coordination schemes. An example of the first is given
by the work of O. Kouchnarenko and her collaborators in which re-
configurations are specified in a temporal pattern logic [DKL10] in
the context FRACTAL [BCL+06], a paradigmatic component model.
The work of T. Maibaum [AM02, CAPM10] and J. Fiadeiro [FL13],
as well as of the Pisa or the Munchen Schools (see e.g. [BLLM08]
or [vRHWS08], the latter work developed in an institutional frame-
work), among many others [ZL12], exemplify applications to dynamic
architectures. Finally, on the coordination side, the work of D. Clarke
on what is called reconfiguration logic [Cla08] expresses evolution of



14 I N T RO D U C T I O N

REO [Arb04] connectors in formulas of a modal logic evaluated over
constrained automata.

If dynamic reconfigurations increase the availability and the relia-
bility of component-based systems by allowing their architectures to
evolve at run-time, there is a number of other domains in Computing
where reconfigurability, and the search for suitable formal methods,
are emerging as a crucial issue. These includes areas in the intersec-
tion of discrete and continuous behaviour, namely in what concerns
sensor networks [vRHWS08] and robotics [YWM06]. Whether the
approach introduced in the thesis scales, on the one hand, to these ar-
eas, and to real, industrial cases, on the other only time and effort will
tell. The study of hybridisation of logics to deal with probabilistic
[CS02, Dob10, HRWW11] and continuous [Pla10] reasoning would
be the next, natural step to take.
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2
BAC K G RO U N D

This chapter provides a brief introduction to three main topics in Math-
ematics which underlie the thesis contribution: hybrid logic (in Sec-
tion 2.1), as a main language to express properties of reconfigurable
software; category theory (Section 2.2), which provides the relevant
mathematical constructions grounding the development of the thesis;
the theory of institutions (Section 2.3), a categorical abstract theory in
which hybridisation process is framed. It should be remarked, how-
ever, that only the main concepts and results relevant to the thesis are
recalled here. The interested reader is referred to specialised references
in each of those areas for a detailed account.

2.1 H Y B R I D L O G I C ( S )

Modal logic (ML) is an active branch of modern logic with a wide
range of applications in Computer Science (cf. [BVB07]). Its simplest
(propositional) version is briefly presented as follows: the signatures
are sets of symbols, say Prop, and the sentences are defined by the
grammar

ρ := Prop | ¬ρ | 2ρ | 3ρ | ρ⊗ ρ

where ⊗ ∈ {∨,∧,⇒}. Models for a signature Prop consists of a
Kripke frame W and a proposition assignment function M. I.e., a
model consists of a pair (M,W) whereW is a relational structure over
a set |W|, called the set of worlds or the state space, WR : |W|× |W|

is a binary relation, called accessibility relation, and M is a family of
functions M = (Mw : Prop → {>,⊥})w∈|W| called the propositional
assignment. Note that usually, a proposition assignment is defined as
a function from the set of propositions into the powerset of worlds,
i.e., f : Prop → P(|W|) (cf. [Bla00]). Of course both definitions are
equivalent making, f(p) = {w ∈ |W||Mw(p) = >}.

17
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The satisfaction relation |=MPL
Prop is inductively defined as follows:

(M,W) |=MPL
Prop ρ iff for any w ∈ |W|, (M,W) |=w ρ,

where

- (M,W) |=w p iffMw(p) = >;

- (M,W) |=w ρ∨ ρ ′ iff (M,W) |=w ρ or (M,W) |=w ρ ′ and
similarly for the connectives {∧,⇒};

- (M,W) |=w ¬ρ iff (M,W) 6|=w ρ;

- (M,W) |=w 3ρ iff there is some w ′ ∈ |W| such that (w,w ′) ∈
WR andM |=w

′
ρ; and

There are many variants and extensions to this basic modal language
in the literature. For instance, we may consider logics with multi-

modalities, i.e., with more than one modality or, more generally, with
polyadic modalities (i.e., n-ary modalities) [BdRV01]. In the latter
case, signatures are pairs (Prop,Λ) whereΛ is an arity-indexed family
of modality symbols (where λ ∈ Λn+1 is interpreted as a n-ary modal-
ity). Moreover, in some versions, worlds may carry further structure,
for instance, algebraic or first-order structures (cf. [ACP06] or [DS07]
for a detailed account). Other classes of logics are obtained by restrict-
ing the semantics to particular classes of models. These are the cases
of the well known logics T , S4, and S5 whose models are restricted to
those in whichWR is, respectively a reflexive, preorder, or equivalence
relation (e.g. [BdRV01]).

There is, however, a typical limitation in standard modal logic: it
lacks expressive power to name or to explicitly mention specific states
in a model. Therefore, there is no way to assert the equality between
two particular worlds or the existence of a transition between them.
Moreover, there is a number of properties, for example irreflexivity of
the underlying accessibility relation, that can not be axiomatised by
the same reason (cf. [Ind07] for a list of simple properties that are
not expressible in ML). Hybrid logic [Ind07, Bla00, Bra10, AtC07]
overcomes this limitation by introducing a new kind of symbols Nom,
called nominals, to make explicitly reference to states in models. Sen-
tences are then enriched in two directions. On the one hand, each



2.1 H Y B R I D L O G I C ( S ) 19

nominal is used as a simple sentence holding exclusively in the world
it names; on the other hand, sentences @i ρ, for i ∈ Nom, state the va-
lidity of ρ at the world named by i. Hence, the (propositional) hybrid
logic sentences are defined by the grammar:

ρ := Prop | Nom | @iρ | ¬ρ | 2ρ | 3ρ | ρ⊗ ρ

i ∈ Nom and ⊗ ∈ {∨,∧,⇒}.
The models (M,W) are defined as in the standard modal case, with

nominals interpreted as constants over W. The satisfaction relation
|=HPL

(Prop,Nom) extends |=MPL
Prop with

- (M,W) |=w i iffWi = w;

- (M,W) |=w @iρ iff (M,W) |=Wi ρ,

whereWi denotes the world named by nominal i. This makes possible
to express properties such as: the equality between the worlds denoted
i and j (with @ij), that a property holds on a world named i (with
@iρ), that there is a transition between the worlds named by i and j
(with @i � j) or the irreflexivity on the underlying accessibility relation
(using i ⇒ ¬2i). The first sentence above plays the role of the “the
classical theory of equality” on modal logic. This is another reason for
calling hybrid logic “hybrid”(cf. [Bla00]).

An attractive aspect of this logic is the fact that, the increased ex-
pressive power has no cost on the complexity of the proof methods (cf.
[ABM99]).

Other very expressive variants of the propositional hybrid consider
quantification over worlds (e.g. [BT98]): (∀i)ρ, whose semantics is

– (M,W) |=(Prop,Nom) (∀i)ρ iff for any {i}-expansion (M ′,W ′)
of (M,W), (M ′,W ′) |=(Prop,Nom+{i}) ρ

Binding world-variables to worlds is a common feature in many hybrid
logics. This is done trough the introduction of the binder operator ↓
(originally suggested in [Gor96]). The semantics of (↓ i)ρ can given
by abbreviating (↓ i)ρ abr= (∀i)(i⇒ ρ) or, equivalently, to (∃i)(i∧ ρ).

Multi-modalities and polyadic modalities are naturally extended from
the (pure) modal case to the hybrid one [Bla00, Hod10].
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2.2 C AT E G O RY T H E O RY

Roughly speaking, categories deal with arrows and their composition,
in the same sense that sets deal with elements, their aggregation and
membership. An arrow is an abstraction of the familiar notion of a
function in set theory or of a homomorphism in algebra. Depicted as
an arrow connecting two objects X and Y, called its source and target,
respectively, it may be thought of as a transformation, or, simply, a link
between them. The sources and targets of all the arrows in a category,
form the class of its objects. If the same object is both the target of
an arrow f and the source of another arrow g, f and g are said to be
composable. Arrow composition is thus a partial operation and what
the axioms for a category say is that arrows and arrow composition
form a sort of generalised monoid. This builds up the basis for a very
general mathematical framework around the notions of functoriality

(the coherent transformation of both objects and arrows), naturality (an
abstract counterpart of the notion of polymorphism in type theory) and
universality. The latter is not only a main issue in category theory, but
also a pervasive topic in mathematics. In brief, an entity ε is universal
among a family of ‘similar’ entities if it is the case that every other
entity in the family can be reduced or traced back to ε. Moreover,
the dual of an universal is still an universal, which adds duality as a
fourth main ingredient of the categorial framework. Several examples
of universal constructions are reviewed below and extensively used in
this thesis.

In order to make the text self-contained and to fix the notation, we
revisit bellow some basic definitions [Lan98, AHS90, Awo06].

Definition 2.2.1 (Category) A category C consists of

• a class of objects |C|;

• a class of arrows (or morphisms) denoted by C;

• two maps dom, cod : C→ |C| giving the domain and codomain
of each arrow such that, for each A,B ∈ |C|,

C(A,B) = {f ∈ C|dom(f) = A and cod(f) = B}

is a set,
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• for any objects A,B,C ∈ C, a composition map

_; _ : C(A,B)×C(B,C)→ C(A,C),

such that the following diagram commutes

A
f //

f;g ��

B

g
��

g;h

��
C

h
// D

• an identity map 1 : |C| → C such that for each A ∈ C, 1A ∈
C(A,A), the following diagram commutes

A
f //

1A
��

f

��

B

1B
��

A
f // B

The category Set takes as objects sets and as arrows functions with the
usual functional composition. The category 1 CAT , known as the cat-

egory of categories, takes as objects categories and, as arrows, functors
between them:

Definition 2.2.2 (Functor) A functor F : A → B between categories

A and B is a map which

1. associates objects to objects |F| : |A|→ |B|, and

2. arrows to arrows, FA,B : A(A,B)→ B(F(A), F(B)) such that

• F(1A) = 1FA,

• F(f;g) = Ff; Fg.

We say that a category A is a subcategory of B, in symbols A ⊆ B,
when

• |A| ⊆ |B|,

• for any A,B ∈A, A(A,B) ⊆ B(A,B) and

1 Strictly speaking, this is only a ‘quasi-category’ living in a higher set-theoretic uni-
verse (cf. [Lan98]);
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• the composition is A is the restriction of the composition in B

to |A|.

We define the dual of a category C, denoted by Cop, as the cat-
egory obtained by reversing the arrows in C, i.e., |Cop| = C and
Cop(A,B) = C(B,A). Moreover, the dual of a functor F : A → B is
a functor Fop : Aop → Bop such that, for anyA ∈A, Fop(A) = F(A)
and Fop(B → A) = F(A → B) (cf. [AHS90]). A contravariant func-

tor from the category A to B is a functor F : Aop → B, mapping
arrows f ∈A(A,B) into arrows Ff ∈ B(FB, FA). It is easy to see that
(Cop)op = C and (Fop)op = F.

Definition 2.2.3 (Natural Transformation) Let F,G : A → B be

two functors. A natural transformation τ between F andG consists of a

family of arrows (τa : Fa→ Ga)a∈|A| such that for any f ∈A(A,B),
τ(A);Gf = Ff; τ(B), i.e., the following diagram commutes:

F(A)
τ(A) //

Ff
��

G(A)

Gf
��

F(B)
τ(B)

// G(B)

(1)

We write A

F
((

G

66�� τ B , or simply, τ : F ⇒ G to say that τ is a

natural trasformation between F and G.

Definition 2.2.4 (Pullback and Pushout) A pullback for two arrows

f ∈ C(X,B) and g ∈ C(Y,B) consists of a triple (A,p,q) such that

• the diagram A

p
��

q // Y

g
��

X
f
// B.

commutes, and
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• for any other commuting square Z

r
��

s // Y

g
��

X
f
// B.

, there is a unique

morphism h : Z→ A making the following diagram to comute

Z
s

##
r

��

h
��
A

p
��

q // Y

g
��

X
f
// B.

Dually, a pushout for f ∈ C(B,X) and g ∈ C(B, Y), consists of a

triple (A, s, t) such that

• the diagram B

f
��

g // Y

s
��

X
t
// A

commutes and,

• for any other commutative diagram B

f
��

g // Y

u
��

X v
// Z

, there is a unique

arrow h : A→ Z commuting the following diagram

B

f
��

g // Y

s
��

u

��

X
t
//

v ++

A

h
  
Z.

Pullbacks and pushouts, which are dual to each other, can be under-
stood as particular cases of a limit and, a colimit respectively. In order
to introduce them, we first define the notions of a diagram and a cone.
A diagram of type I in A consists of a functor D : I → A. Category
I is called index of the diagram andDi used to denote the imageD(i),
for i ∈ I. A cone for a diagram D consists of an object A ∈ A to-
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gether with a family of arrows
(
Ci : A → Di

)
i∈I such that, for any

f ∈ I(i, j), the triangle

A
Ci

��

Cj

��
Di Cf

// Dj

commutes. Dually, a cocone for a diagram D consists of an object
A ∈ A together with a family of arrows

(
Ci : Di → A

)
i∈I such that,

for any f ∈ I(i, j), the triangle

Di
Cf //

Ci   

Dj

Cj��
A

commutes.

Definition 2.2.5 (Limits and Colimits) A limit for a diagramD : I→
A, or a D-diagram for short, consists of a cone

(
Ci : A → Di

)
i∈|I|

such that, for any other cone
(
C ′i : A

′ → Di
)
i∈|I|, there is an unique

arrow Z ∈A(A ′,A) such that the diagram

A ′ Z //

C ′
i   

A

Ci~~
Di

commutes, for any i ∈ |I|.
A colimit for a diagram D : I→ A, or a D-colimit for short, consists

of a cocone
(
Ci : Di → A

)
i∈|I| such that, for any other cocone

(
C ′i :

Di → A ′
)
i∈|I|, there is an unique arrow Z ∈ A(A,A ′) such that the

diagram

Di
C ′
i

~~

Ci

  
A ′ A

Z
oo

commutes, for any i ∈ |I|.

Finally we observe that a pullback in a category A is a limit for a
diagram D : I → A when I is the category completely defined by
the objects and arrows i // j koo . Analogously, a pushout in A
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can be seen as a colimit of a diagram D : I → A for I the category
completely defined by i j //oo k . Moreover, final and initial
objects can also be seen respectively as the limit and the colimit for
D : I → A, where I is the empty category, i.e., the category with an
empty set of objects.

We say that a category has (co)limits of typeD : I→A when every
D-diagram has a (co)limit in A.

Definition 2.2.6 (Preservation and lifting of limits by a functor) A func-

tor F : A → B preserves limits for a diagram D : I → A if, for any

D-limit
(
Ci : A → Di

)
i∈|I|,

(
FCi : FA → FDi

)
i∈|I| is a limit for the

diagram D; F.
A functor F : A → B lifts limits for a diagram D : I → A if, for

any D; F-limit
(
C ′i : B → D ′i

)
i∈|I|, there exists a D-limit

(
Ci : A →

Di
)
i∈|I| such that for any i ∈ |I|, FCi = C ′i.

The preservation and lifting of colimits is defined analogously.

2.3 I N S T I T U T I O N S

As stated in the previous chapter, an institution consists of a categori-
cal formalisation of a logical system, encompassing syntax, semantics
and satisfaction. We introduce, in this section, basic definitions and
notations used in this thesis. For a complete reference on the issue we
suggest [Dia08].

The section is organised as follows: the definition of institution and
respective notation is introduced in Section 2.3.1, followed by a set of
illustrative examples in Section 2.3.2. Then, the notions of amalgama-
tion and the institutional-independent treatment of quantification are
exposed in Section 2.3.4 and Section 2.3.5. Finally, the last two sec-
tions are concerned with the presentation of how to relate and encode
institutions: the notion of comorphism is presented in Section 2.3.6,
followed by its theoroidal version in Section 2.3.7.
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2.3.1 Definition and examples

Definition 2.3.1 (Institution) An institution

I =
(
SignI, SenI, ModI, (|=I

Σ)Σ∈|SignI|

)
consists of

1. a category SignI whose objects are called signatures,

2. a functor SenI : SignI → Set giving for each signature the set

od sentences over that signature,

3. a functor ModI : (SignI)op → CAT , giving for each signa-

ture Σ the category of Σ-models, and the respective Σ-(models)
homomorphisms, and

4. a relation |=I
Σ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SignI|,

called the satisfaction relation,

such that for each morphism ϕ : Σ → Σ ′ ∈ SignI, the satisfaction
condition

M ′ |=I
Σ ′ SenI(ϕ)(ρ) iff ModI(ϕ)(M ′) |=I

Σ ρ (2)

holds for eachM ′ ∈ |ModI(Σ ′)| and ρ ∈ SenI(Σ). Graphically,

Σ

ϕ

��

ModI(Σ)
|=I
Σ SenI(Σ)

SenI(ϕ)
��

Σ ′ ModI(Σ ′)

ModI(ϕ)

OO

|=I
Σ ′

SenI(Σ ′)

As usual, M∗ denotes the set of sentences {ρ ∈ Sen(Σ) |M |=Σ ρ} and
for any Γ ⊆ Sen(Σ), Γ∗ denotes the class of models {M ∈ |Mod(Σ)| |
M |=Σ ρ} for each ρ ∈ Γ }. Moreover, Γ ′ |= Γ means that Γ ′∗ ⊆ Γ∗.

The attentive reader may wonder about some subtle variants of the
definition that can be found in the literature. For instance, item (3)
appears sometimes as

ModI : (SignI)→ CATop

(see e.g. [GB92]). However, by duality, both formalizations are equiv-
alent. Moreover, in the original version of the concept in [BG80], the
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semantics of an institution is simply characterised by a set of models
(instead of a category), given by

ModI : (SignI)→ Setop.

The new, more general, definition was latter justified by the authors in
[GB92].

2.3.2 Examples

We present, on this section, a number of logics defined as institutions.

Example 2.3.1 (TRM) We define the institution
TRM as follows: SignTRM is the terminal category, i.e., the category
whose class of objects
consists of the singleton set {∗} and, whose morphisms is the identity
1∗(∗) = ∗. The sentences functor SenTRM sends object ∗ into the
empty set ∅ and, morphism 1∗, into the empty function. The models
functor ModTRM sends the signature ∗ to the terminal category. Since
the set of sentences is empty, the satisfaction condition trivially holds.

◦

Example 2.3.2 (FOL) Let us define FOL, be the institution of first or-

der logic with equality in its many sorted form.
ignatures are triples (S, F,P) consisting of

• a set of sort symbols S,

• a family F = {Far→s | ar ∈ S∗, s ∈ S} of sets of function symbols
indexed by arities ar (for the arguments) and sorts s (for the
results), and

• a family P = {Par | ar ∈ S∗} of sets of relation (predicate)
symbols indexed by arities.

Signature morphisms map the three components in a compatible way.
This means that a signature morphism ϕ : (S, F,P) → (S ′, F ′,P ′)
consists of

• a function ϕst : S→ S ′,
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• a family of functions ϕop = {ϕ
op
ar→s : Far→s → F ′

ϕst(ar)→ϕst(s) |

ar ∈ S∗, s ∈ S}, and

• a family of functions ϕrl = {ϕrl
ar→s : Par → P ′

ϕst(ar) | ar ∈
S∗, s ∈ S}.

Models M for a signature (S, F,P) are first order structures inter-
preting each sort symbol s as a set Ms, each function symbol σ as a
function Mσ from the product of the interpretations of the argument
sorts to the interpretation of the target sort, and each relation symbol
π as a subset Mπ of the product of the interpretations of the argu-
ment sorts. By |M| we denote (Ms)s∈S and call it the universe of M

or the carrier set(s) of M. In order to avoid the existence of empty
interpretations for sorts, we assume that each signature has at least
one constant (i.e. function symbol with empty arity) for each sort. A
model homomorphism h : M→M ′ is an indexed family of functions
{hs : Ms →M ′

s | s ∈ S} such that

• h is an (S, F)-algebra homomorphismM→M ′, i.e., hs(Mσ(m)) =

M ′
σ(har(m)) for each σ ∈ Far→s and eachm ∈Mar, and

• har(m) ∈ M ′
π if m ∈ Mπ (i.e. har(Mπ) ⊆ M ′

π) for each
relation π ∈ Par and eachm ∈Mar.

where har : Mar → M ′
ar is the canonical component-wise extension

of h, i.e. har(m1, . . . ,mn) = (hs1(m1), . . . ,hsn(mn)) for ar =

s1 . . . sn andmi ∈Msi for 1 6 i 6 n.
For each signature morphism ϕ, the reduct M ′�ϕ of a model M ′

is defined by (M ′�ϕ)x = M ′
ϕ(x) for each sort, function, or relation

symbol x from the domain signature of ϕ.
Sentences are the usual first order formulas built from equational

and relational atoms by iterative application of Boolean connectives
and quantifiers. The variables are disjoint from the constants of the
signature, SenFOL is functorial and there is no overloading of vari-
ables (which in certain situations would cause a failure of the Satis-
faction Condition). This is achieved by considering that a variable for
(S, F,P) is a triple of the form (x, s, (S, F,P)) where x is the name of

the variable and s ∈ S is the sort of the variable and that two dif-
ferent variables in X have different names. Variables (x, s, (S, F,P))
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are abbreviated by their name x or by their name and sort qualifi-
cation like in (x : s). Then let (S, F + X,P) be the extension of
(S, F,P) such that (F + X)ar→s = Far→s when ar is non-empty and
(F+ X)→s = F→s ∪ {(x, s, (S, F,P)) | (x, s, (S, F,P)) ∈ X} and we let
ϕ ′ : (S, F+ X,P) → (S ′, F ′ + Xϕ,P ′) be the canonical extension of
ϕ that maps each variable (x, s, (S, F,P)) to (x,ϕ(s), (S ′, F ′,P ′)).

To simplify notation, instead of (S, F+X,P) as above one may also
write (S, F,P) + X and when X is a singleton, i.e. X = {x}, simply
write x instead of X. We may also extend these conventions to other
institutions.

Sentence translations along a signature morphism ϕ : (S, F,P) →
(S ′, F ′,P ′), i.e., SenFOL(ϕ) : SenFOL(S, F,P) → SenFOL(S ′, F ′,P ′),
replaces symbols of (S, F,P) by the respectiveϕ-images in (S ′, F ′,P ′).
More precisely, ϕtrm : T(S,F) → T(S ′,F ′) is defined by

ϕtrm(f(t1, . . . , tn)) = ϕop(f)(ϕtrm(t1), . . . ,ϕtrm(tn)).

Then,

• SenFOL(ϕ)(t ≈ t ′) = ϕtrm(t) ≈ ϕtrm(t ′);

• SenFOL(ϕ)(π(t1, . . . , tn)) = ϕrl(π)(ϕtrm(t1), . . . ,ϕtrm(tn));

• SenFOL(ϕ)(¬ρ) = ¬SenFOL(ϕ)(ρ);

• SenFOL(ϕ)(ρ� ρ ′) = SenFOL(ϕ)(ρ)� SenFOL(ϕ)(ρ ′), where
� ∈ {∨,∧,→};

• SenFOL(ϕ)(∀Xρ) = ∀Xϕ SenFOL(ϕ ′)(ρ), where
Xϕ = {(x,ϕst(s), (S ′, F ′,P ′))|(x, s, (S, F,P))}, and ϕ ′ canoni-
cally extends ϕ by mapping each (x, s, (S, F,P)) to
(x,ϕst(s), (S ′, F ′,P ′)).

(S, F,P) ϕ //

��

(S, F ′,P ′)

��
(S, F]X,P)

ϕ ′
// (S, F ′ ]Xϕ,P ′)

The satisfaction of sentences by models is the usual Tarskian satis-
faction defined recursively on the structure of the sentences as follows:
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• M |=(S,F,P) t = t ′ when Mt = Mt ′ , where Mt denotes the
interpretation of the (S, F)-term t in M defined recursively by
Mσ(t1,...,tn) =Mσ(Mt1 , . . . ,Mtn).

• M |=(S,F,P) π(t1, . . . , tn) when (Mt1 , . . . ,Mtn) ∈ Mπ, for
each relational atom π(t1, . . . , tn).

• M |=(S,F,P) ρ1 ∧ ρ2 when M |=(S,F,P) ρ1 and M |=(S,F,P) ρ2, and
similarly for the other Boolean connectives.

• M |=(S,F,P) (∀X)ρ when M ′ |=(S,F+X,P) ρ for any (S, F+ X,P)-
expansionM ′ ofM, and similarly for ∃.

◦

Example 2.3.3 (ALG and EQ) The institution ALG is obtained by
FOL by discarding the relational symbols and the corresponding inter-
pretations in models. The institution EQ is defined as the sub-institution
of ALG where the sentences are universally quantified equations
(∀X) t = t ′. ◦

Example 2.3.4 (REL) The institution REL is the sub-institution of sin-
gle-sorted first-order logic with signatures having only constants and
predicates symbols. ◦

Example 2.3.5 (PL) The institution PL (of propositional logic) is the
fragment of FOL determined by signatures with empty set of sort sym-
bols: Signatures are of form (∅, ∅,Prop), where Prop is a set of (0-
ary predicate) symbols called propositions. We denote propositional
signatures (∅, ∅,Prop) simply by Prop. The signature morphisms are
functions between sets of symbols and hence, SignPL coincides with
Set. Models of Prop are sets X such that X ⊆ Prop or, equivalently,
functions M : Prop → {>,⊥}. Sentences are the usual propositional
logic formulæ

ρ := Prop | ρ∨ ρ | ρ∧ ρ | ρ⇒ ρ | ¬ρ

The satisfaction relation is defined as usual:

• M |=PL
Prop p iff M(p) = >, for any p ∈ Prop;

• M |=PL
Prop ρ∨ ρ

′ iff, M |=PL
Prop ρ orM |=PL

Prop ρ
′,
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and similarly for the other connectives. ◦

Example 2.3.6 ((Propositional) hybrid logic) The propositional modal

logic and the propositional hybrid logic mentioned in Section 2.1 con-
stitutes two institutions. Their complete definition can be consulted in
Example 3.2.1 as particular instances of the application of the hybridi-

sation method discussed in Section 3.1. ◦

Example 2.3.7 (PA) Consider now the institution PA, of partial alge-
bras, which underlies the specification language CASL [ABK+02].

A partial algebraic signature is a tuple (S, TF,PF), where TF is a
family of sets of total function symbols and PF is a family of sets of
partial function symbols such that TFar→s ∩ PFar→s = ∅ for each arity
ar and each sort s. In order to avoid empty carriers, as in the case of
FOL, we assume there exists at least one total constant for each sort.
Signature morphisms map the three components in a compatible way.

A partial algebra is an ordinary algebra (i.e. a FOL model without
relations) in which the function symbols in PF are interpreted as par-
tial, rather than total, functions. For any σ ∈ PFar→s, dom(Aσ) =

{a ∈ Aar | Aσ(a) defined} is the domain of the operation σ. A partial

algebra homomorphism h : A → B is a family of (total) functions
{hs : As → Bs | s ∈ S}, indexed by the set of sorts S in the sig-
nature, such that hs(Aσ(a)) = Bσ(har(a)) for each function symbol
σ ∈ TFar→s ∪ PFar→s and each tuple of arguments a ∈ Aar for which
Aσ(a) is defined.

Sentences have three kinds of atoms: definedness df(t), strong equal-
ity t = t ′, and existential equality t e= t ′. They are formed from these
atoms by Boolean connectives and quantification over total variables
(i.e variables that are always defined). For satisfaction, we have that:

• A |=PA
(S,TF,PT) df(t) iff At is defined;

• A |=PA
(S,TF,PT) t = t ′ iff either both are defined and At = At ′ or

both are undefined;

• A |=PA
(S,TF,PT) t

e
= t ′ iff At and At ′ are defined and At = At ′

The satisfaction relation is defined for the composition with boolean
connectives and quantifiers as is Example 2.3.2. Notice that df(t)
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is equivalent to t e
= t and that t = t ′ is equivalent to (t

e
= t ′) ∨

(¬df(t)∧¬df(t ′)).
◦

Example 2.3.8 (Multi-valued and Fuzzy Logics) Multi-valued logics
replace the two-elements set of true values {true, false}, structured as
a Boolean algebra, by other sets structured as complete residuated lat-

tices (cf. [Got01] for an overview).
Multi-valued logics were first formalised as institutions in

[ACEGG90], being [Dia11] a recent reference. We follow the latter in
the presentation bellow.

A residuated lattice is a structure L = (L,6,∧,∨,>,⊥, ?), where

• (L,∧,∨,>,⊥) is a lattice ordered by 6, with support L, with
(binary) infimum and supremum, ∧ and ∨, and bigest and small-
est elements, > and ⊥;

• ? is an associative and commutative binary operation such that,
for any elements x,y, z ∈ L:

– x ?> = > ? x = x;

– y 6 z implies that (x ? y) 6 (x ? z);

– there exists an element x⇒ z such that

y 6 (x⇒ z) iff x ? y 6 z.

The residuated lattice L is complete if any subset S ⊆ L has
infimum and supremum denoted by

∧
S and

∨
S, respectively.

Given a complete residuated lattice L, we define the institution MVLL
as follows.

• SignMVLL = SignFOL;

• Sentences of SenMVLL(S, F,P) are pairs (ρ,p) where

– p is an element of L, and

– ρ is a generated from relational atoms of (S, F,P), i.e.
expressions π(t1, . . . , tn), for π ∈ Ps1...sn and ti an alge-
braic term of sort si, with the (extended) set of connectives
{⇒ ∧,∨,>,⊥, ?} and quantifications (∀X) and (∃X) for X
a finite set of variables.
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• a modelM ∈ |ModMVLL(S, F,P)| consists

– of an algebra (S, F),

– for each π ∈ Par, of a functionMπ :Mar → L.

Morphisms between modelsM andN are algebra homorphisms
such that for any π ∈ Rar,Mπ(m) 6 Nπ(har(m)).

• For anyM ∈ModMVLL(S, F,P) and for any (ρ,p) ∈ SenMVLL(S, F,P)
the satisfaction relation is given by

M |=MVLL
(S,F,P) (ρ,p) iff p 6 (M |= ρ)

whereM |= ρ is inductively defined as follows:

– for any relational atom π(t1, . . . , tn), (M |= π(t1, . . . , tn)) =
Mπ(Mt1 , . . . ,Mtn);

– (M |= >) = >;

– (M |= ⊥) = ⊥;

– (M |= ρ1 � ρ2) = (M |= ρ1) � (M |= ρ2), for � ∈
{∧,∨,⇒, ?};

– (M |= (∀X)ρ) = ∧{M ′ |= ρ|M ′�(S,F,P) =M
}

;

– (M |= (∃X)ρ) = ∨{M ′ |= ρ|M ′�(S,F,P) =M
}

.

This institution captures a number of multi-valued logics in the lit-
erature. For instance, taking L as the Łukasiewicz arithmetic lattice
over the closed interval [0, 1], where x ? y = 1−max{0, x+ y− 1)}
(and x ⇒ y = min{1, 1− x+ y}), corresponds to the standard pred-

icate fuzzy logic. On the other hand, considering signatures with the
empty set of sorts, results in propositional fuzzy logic (e.g. [NW05]).
Note that the 2-boolean truth values with the usual disjunction and ∧

as the usual conjunction constitutes a residuated lattice B. In this case,
MVLB coincides with FOL without equality.

◦

2.3.3 Internal logic

Definition 2.3.2 (Internal logic, [DS07]) An institution I has (seman-
tic) conjunctions when for each signature Σ and any Σ-sentences e1
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and e2 there exists a Σ-sentence e such that e∗ = e∗1 ∩ e∗2. Usually e is

denoted by e1 ∧ e2.

I has (semantic) implications when for each e1 and e2 as above

there exists e such that e∗ = (Mod(Σ)−e∗1)∪e∗2. Usually e is denoted

e1⇒ e2.

I has (semantic) existential D-quantifications for a class D of sig-

nature morphisms, if for each χ : Σ → Σ ′ ∈ D and Σ ′-sentence e ′

there exists a Σ-sentence e such that e∗ = Mod(χ)(e ′∗). Usually e is

denoted (∃χ)e ′.
In the same style we may extend this list to other Boolean connec-

tives disjunction (∨), negation (¬), equivalence (⇔) and semantic uni-

versal quantifications ((∀χ)e ′).

Note, for instance that FOL has all of the mentioned semantical con-
nectives and quantifications, PL all the connectives. Moreover, MVLL
has and EQ has no conjuction.

2.3.4 Amalgamation

The notion of amalgamation plays a central role on the theory of insti-
tutions:

Definition 2.3.3 (Amalgamation property) A commuting square of

functors

A A1
F1oo

A2

F2

OO

A ′
G1

OO

G2

oo

(3)

is a weak amalgamation square if and only if, for each M1 ∈ |A1| and

M2 ∈ |A2| such that F1(M1) = F2(M2), there exists a M ′ ∈ |A ′|

such that G1(M ′) =M1 and G2(M ′) =M2. WhenM ′ is required to

be unique, the square is called amalgamation square. The object M ′

is called an amalgamation of M1 and M2 and, if unique, denoted by

M1 ⊗F1,F2M2.
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For any functor Mod : Signop → CAT a commuting square of

signature morphisms

Σ
ϕ1 //

ϕ2
��

Σ1

θ1
��

Σ2 θ2

// Σ ′

(4)

is a (weak) amalgamation square for Mod when

Mod(Σ) Mod(Σ1)
Mod(ϕ1)oo

Mod(Σ2)

Mod(ϕ2)

OO

Mod(Σ ′)

Mod(θ1)

OO

Mod(θ2)
oo

(5)

is a (weak) amalgamation square.

We say that an institution I has the (weak) amalgamation property

when each pushout square of signature morphisms is a (weak) amal-

gamation square for the model functor ModI.

The existence of amalgamation is a very important, albeit common,
institutional property. In particular, all the institutions discussed above
have amalgamation (cf. [Dia08]).

This sub-section closes with two technical definitions used in the
sequel:

Definition 2.3.4 A sub-functor Mod ′ ⊆ Mod : Signop → CAT re-
flects (weak) amalgamation when each pushout square in Sign that

is a (weak) amalgamation square for Mod is a (weak) amalgamation

square for Mod ′ too.

Definition 2.3.5 For any functors Mod1, Mod2 : Sign → CATop

and any natural transformation β : Mod2 → Mod1 we say that

(χ : Σ → Σ ′) ∈ Sign is adequate for β if and only if the following

square is a weak amalgamation square:

Mod1(Σ) Mod2(Σ)
βΣoo

Mod1(Σ ′)

Mod1(χ)

OO

Mod2(Σ ′)βΣ ′
oo

Mod2(χ)

OO
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From the rather straightforward fact that the glueing of (weak) amal-
gamation squares yields a (weak) amalgamation square we obtain that:

Fact 2.3.1 Adequate morphisms for β are closed under composition.

2.3.5 Quantification spaces

While first-order quantification is well known, other less standard pat-
terns of quantification arise in the literature, for example second-order
and infinitary quantifications. However, to understand abstractly the
essence of what a quantification is at an institution-independent level
is a challenging issue.

In the present thesis, as in our previous work [MMDB11a, DM13],
we approach this issue by means of quantification spaces, a concept
recently introduced in [Dia10a]. Just to motivate the approach, let us
revisit the Example 2.3.2, on which variables are dealt through Lemma

on constants of first-order logic (e.g. [Hod93]). This means that a
set of variables X is regarded as a set of constants (of an X-expanded
signature), and

- M |=FOL
(S,F,P) (∀X)ρ when M ′ |=FOL

(S,F+X,P) ρ for any (S, F+ X,P)-
expansionM ′ ofM.

A generalisation of this pattern can be achieved if we consider a mor-
phism χ : Σ→ Σ ′ to play the role of the inclusion morphism
(S, F,P) ↪→ (S, F + X,P). Hence, an universal quantification in an
arbitrary institution I could be formalised as

- M |=I
Σ (∀χ)ρ when M ′ |=I

Σ ′ ρ for any χ-expansion M ′ of M,
i.e., for anyM ′ ∈ModI(Σ ′) such that ModI(χ)(M ′) =M.

Moreover, and in order to enforce the satisfaction condition (and the
functoriality of SenI), we have to study the transformation of quan-
tification spaces under signature morphisms. In the FOL example we
have SenFOL(ϕ)(∀Xρ) = (∀Xϕ) SenFOL(ϕ ′)(ρ), where we take Xϕ

and ϕ ′ to defining the following pushout:

(S, F,P) ϕ //

X
��

(S, F ′,P ′)

Xϕ

��
(S, F]X,P)

ϕ ′
// (S, F ′ ]Xϕ,P ′)
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Thus, Xϕ = {(x,ϕst(s), (S ′, F ′,P ′))|(x, s, (S, F,P)) ∈ X}, and ϕ ′ is
the canonical extension of ϕ, mapping each (x, s, (S, F,P)) to
(x,ϕst(s), (S ′, F ′,P ′)). This construction is abstracted in the follow-
ing definition as a designated pushout:

Definition 2.3.6 (Quantification space) For any category Sign a sub-

class of arrows D ⊆ Sign is called a quantification space if, for any

(χ : Σ→ Σ ′) ∈ D and ϕ : Σ→ Σ1, there is a designated pushout

Σ
ϕ //

χ
��

Σ1

χ(ϕ)
��

Σ ′
ϕ[χ]

// Σ ′1

(6)

with χ(ϕ) ∈ D and such that the ‘horizontal’ composition of such des-

ignated pushouts is again a designated pushout, i.e. for the pushouts

in the following diagram

Σ
ϕ //

χ
��

Σ1

χ(ϕ)
��

θ // Σ2

χ(ϕ)(θ)
��

Σ ′
ϕ[χ]

// Σ ′1θ[χ(ϕ)]
// Σ ′2

(7)

ϕ[χ]; θ[χ(ϕ)] = (ϕ; θ)[χ] and χ(ϕ)(θ) = χ(ϕ; θ), and such that

χ(1Σ) = χ and 1Σ[χ] = 1Σ ′ .

We say that a quantification space D for Sign is adequate for a func-

tor Mod : Signop → CAT when the designated pushouts mentioned

above are weak amalgamation squares for Mod.

Example 2.3.9 (Standard quantification for FOL) X-expansions of
FOL-signatures, i.e., morphisms χ : (S, F,P) ↪→ (S, F+X,P), consti-
tute adequate quantification spaces for ModFOL. In this case, for each
ϕ : (S, F,P) → (S ′, F ′,P ′), we take as designated pushout the Xϕ-
expansions morphisms, and the respective ϕ ′, as defined above. It is
easy to note that these define pushout squares fulfilling the properties
of Definition 2.3.6, and the adequacy for ModFOL follows from the
fact that ModFOL preserves all finite limits (cf. [Dia08]). ◦

Example 2.3.10 (Infinitary quantification for FOL) Another adequate
quantification space for ModFOL considers infinite blocks of variables
instead of finite ones. For each infinite set of variables X, we take Xϕ

and ϕ ′ as in the previous example. ◦
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Example 2.3.11 (Standard quantification for PA) Similarly, we may
take X-expansions of total constants in PA-signatures, i.e., morphisms
χ : (S, TF,PF) ↪→ (S, TF + X,PF), as adequate quantification spaces
for PA. ◦

Example 2.3.12 (Taking SOL from FOL) To obtain second-order logic,
we quantify the (quantified-free version of) FOL with blocks of sec-
ond order variables, i.e., blocks of the form (x, (w, s), (S, F,P)) (func-
tion variables) or of the form (x,w, (S, F,P)) (relation variables) where
ar ∈ S∗ and s ∈ S. Then, to any block X of second order variables
it corresponds a signature extension χ : (S, F,P) → (S, F+ Xop,P +
Xrl) where X is split as Xop ∪Xrl, with Xop the function variables and
Xrl the relation variables, and where F+Xop and P+Xrl extend in the
obvious way the definition of F+X from Example 2.3.2. ◦

Note that these definitions also apply to REL, EQ,MLVL and ALG.

2.3.6 Comorphisms

As stated before, the ability to relate logics is a main topic in the the-
ory of institutions. There are two main kinds of structure preserving
mappings between institutions: morphisms [GB92] and comorphisms
[GR02, Mes89, Tar98]. The former are adequate for expressing ‘for-
getful’ operations from a ‘more complex’ institution to a structurally
‘simpler’ one. The latter realise the intuition of ‘embedding’ a ‘sim-
pler’ institution into a ‘more complex’ one. In this thesis a heavy use
is made of comorphism.

Definition 2.3.7 (Comorphism) An institution comorphism

(Φ,α,β) : I→ I ′

consists of

1. a functorΦ : SignI → SignI ′ ,

2. a natural transformation α : SenI ⇒ Φ; SenI ′ , and

3. a natural transformation β : Φop; ModI ′ ⇒ModI
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such that the following satisfaction condition holds

M ′ |=I ′
Φ(Σ) αΣ(e) iff βΣ(M ′) |=I

Σ e

for each signature Σ ∈ |Sign|, for each Φ(Σ)-model M ′, and each

Σ-sentence e.

Occasionally, for simplifying notation, we may denote a particular co-
morphisms (Φ,α,β) : I→ I ′ just by I2I ′.

Theorem 2.3.1 Given a comorphism, for any set Γ ⊆ SenI(Σ) and

sentence ρ ∈ SenI(Σ),

Γ |=I
Σ ρ implies αΣ(Γ) |=I ′

Φ(Σ) αΣ(ρ).

Proof.

Γ |=I
Σ ρ

⇔ { by definition}

for anyM ∈ModI(Σ),

M |=I
Σ Γ impliesM |=I

Σ ρ

⇒ { instantiation}

for anyM ′ ∈ModI ′(Σ ′),

β(M ′) |=I
Σ Γ implies β(M ′) |=I

Σ ρ

⇔ { by hypothesis}

for anyM ′ ∈ModI ′(Σ ′),

M ′ |=I ′
Φ(Σ) α(Γ) impliesM ′ |=I ′

Φ(Σ) α(ρ)

⇔ { by definition}

α(Γ) |=I ′
Φ(Σ) α(ρ)

2

Next definition singles out a class of comorphisms for which the
converse of Theorem 2.3.1 also holds

Definition 2.3.8 (Conservative comorphism) Let (Φ,α,β) : I →
I ′ be a comorphism. We say that (Φ,α,β) is conservative whenever,

for each Σ-modelM in I, there exists aΦ(Σ)-modelM ′ in I ′ such that

M = βΣ(M
′).
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Conservativeness is a very useful property since, when it holds, re-
sults about the source institution may be proven by the proof system
of the target institution in a sound and complete way:

Theorem 2.3.2 Given a conservative comorphism, for any set Γ ⊆
SenI(Σ) and sentence ρ ∈ SenI(Σ),

Γ |=I
Σ ρ iff αΣ(Γ) |=I ′

Φ(Σ) αΣ(ρ).

Proof. The surjectivity of β entails the converse direction for the
(second)⇒-implication step in the proof of Theorem 2.3.1. 2

Example 2.3.13 (TRM2FOL) There is an obvious way to define a co-
morphism from TRM to any other institution I. Consider, for example,
the case of FOL. The functor Φ maps the signature ∗ into the FOL
signature (∅, ∅,P∗), P∗∅ = {∗} and P∗ar = ∅ for ar 6= ∅. The natural
transformation β maps each M ∈ ModFOL(∅, ∅,P∗) into the model
∗ ∈ ModTRM(∗) and α is simply the empty function. Since there are
no sentences, the satisfaction condition of the comorphism holds triv-
ially. Moreover, since β is surjective this comorphism is conservative.

◦

Example 2.3.14 (PL2FOL) The base comorphism (Φ,α,β) is the canon-
ical embedding of PL into FOL determined by the embedding of PL
signatures into FOL signatures: for any propositional signature Prop ∈
SignPL, Φ(Prop) = (∅, ∅,P), where P∅ = Prop and Par = ∅, for
ar 6= ∅. The translation of sentences is inductively defined by

• αProp(p) = p, for p ∈ Prop, and

• αProp(ρ⊗ ρ ′) = αProp(ρ)⊗ αProp(ρ ′) for any ⊗ ∈ {∨,∧,⇒}

and αProp(¬ρ) = ¬αProp(ρ);

and, the translation of models β(M), forM ∈ModFOL((∅, ∅,Prop)),
is given by

• for any p ∈ Prop, β(M)p =Mp;

The comorphism is obviously conservative. ◦
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2.3.7 Presentations

We introduced, in this sub-section the notion of institution of presenta-

tions over a base institution I.

Definition 2.3.9 (Presentations) A presentation in I is a pair (Σ,E)
consisting of a signature Σ and a set E of Σ-sentences. A presentation
morphism ϕ : (Σ,E) → (Σ ′,E ′) is a signature morphism ϕ : Σ →
Σ ′ such that E ′ |= SignI(ϕ)(E).

Fact 2.3.2 Presentation morphisms are closed under composition given

by composition of the signature morphisms.

This fact paves the way for the general construction given in the fol-
lowing definition.

Definition 2.3.10 (The institution of presentations) Let

I = (Sign, Sen, Mod, |=) be an institution. The institution of presenta-

tions of I, denoted by Ipres = (Signpres, Senpres, Modpres, |=pres), is

defined by

– Signpres is the category Pres of presentations of I,

– Senpres(Σ,E) = Sen(Σ),

– Modpres(Σ,E) is the full subcategory of Mod(Σ) of those mod-

els which satisfy E, and

– for each (Σ,E)-model M and Σ-sentence e, M |=
pres
(Σ,E) e if and

only ifM |=Σ e .

Fact 2.3.3 For any institution I, Ipres is also an institution.

Comorphisms into this special kind of institutions are particularly
useful: rather than expressing an embedding between institutions, they
can be used for ‘encoding’ a ‘more complex’ institution I into a ‘sim-
pler’ one I ′. In such encodings the structural complexity cost is shifted
to the mapping Φ on the signatures. This is especially useful for
borrowing methods from the target institution to the source one (e.g.
[Dia08, Dia12a, Dia12b, DP06]). This kind of encodings are some-
times called “theoroidal comorphisms” [Mos96, GR02]. There are
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many well known illustrations of encodings I → I ′pres in the litera-
ture, many of them mentioned in [Dia08]; reference [Mos02] reports
an exhaustive investigation on encodings into the institution CASL.

Example 2.3.15 (PA2FOLpres) Literature reports a number of possi-
ble encodings of PA to FOLpres. A classical example is the relational

encoding where partial functions are encoded into first-order relations
(e.g. [Dia08, Mos96]). More recently [Dia09] introduced the “quasi-

boolean encoding”. We present in the sequel an operational encoding

of PA into FOLpres, where partial operations are encoded as total ones.
In all of them comorphisms preserve different model theoretic proper-
ties, as discussed in [DM13].

The comorphism (Φ,α,β) : PA→ FOLpres is defined as follows:

1. Φ maps each signature (S, TF,PF) to the presentation(
(S, TF+ PF, (Defs)s∈S), Γ(S,TF,PF)

)
where Γ(S,TF,PF) axiomatizes the definability of terms through the
new predicates (Defs)s∈S as follows:

Γ(S,TF,PF) =

{(∀X)Defs(σ(X))⇒Defar(X) | σ ∈ (TF+ PF)ar→s, ar ∈ S∗, s ∈ S} ∪
{(∀X)Defar(X)⇒Defs(σ(X)) | σ ∈ TFar→s, ar ∈ S∗, s ∈ S}

(where Defar(X) denotes
∧

(x : s)∈X(Defs(x))).

2. α(S,TF,PF) is recursively defined as follows:

• α(t e
= t ′) = Defs(t)∧ (t = t ′);

• α((∀X)ρ) = (∀X)(Defar(X)⇒α(ρ));

• α commutes with boolean connectives ∧, ∨,⇒, etc.

3. β(S,TF,PF) maps any
(
(S, TF+ PF, (Defs)s∈S), Γ(S,TF,PF)

)
modelM

to the partial algebra β(M) where:

• for any s ∈ S, β(M)s =MDefs;

• for any σ ∈ TFar→s, β(M)σ =Mσ;

• for any σ ∈ PFar→s, β(M)σ consists of the restriction of
Mσ to MDefar such that dom(β(M)σ) = {x ∈ MDefar |

Mσ(x) ∈MDefs}.

◦
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This chapter details the first original contribution of the thesis: an
institution-independent method to hybridise arbitrary logics. The method
is not only a technical construction formulated in an institutional, thus
generic, setting. It also sheds light on the generic pattern of hybridi-
sation and, offers a “source of logics” useful for specifying software
reconfigurability, as discussed in the second part of the thesis. Most of
results reported here appeared in [MMDB11a] and [DM13].

The starting point for the development of the method was centred
in the observation that the “modalisation” of a logic can be done at an
institution-independent level [DS07], and on the experimental demand
for hybrid extensions of modal logics.

Quoting [AB01],

“(...)Strictly speaking, not all modal logics are hybrid,

but certainly any modal logics can be hybridised, and in

our view many of them should be (...)"

Concretely, the proposed method extends to arbitrary institutions
Kripke semantics, for multi-(polyadic)-modalities, as well as nominals
and local satisfaction operators. Technically, given a base institution I

the method builds an institution HI corresponding to its hybridisation.
It takes as a parameter the quantization scheme intended (beyond the
quantification of the base institution, we may also consider quantifica-
tions over the nominals and modalities).

At the end of chapter we mentioned the concept of constrained

model recently introduced by R. Diaconescu in [Dia13]. This notion,
that can be taken as a third parameter of the method, plays a crucial
role on the remaining of the thesis, namely in the Chapter 4.

The remaining of the Chapter is organised as follows: we start with
the exposition of the method in Section 3.1. The construction of the
hybridisation of an institution is presented and the section closes with
the proof of the Satisfaction Condition for the hybridised institution.

43
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Then, a brief discussion about how connectives are inherited from the
base institution is made in Section 3.1.5. Finally, a number of exam-
ples of hybridisations are discussed in Section 3.2.

3.1 T H E H Y B R I D I S AT I O N M E T H O D

Let us consider an institution I = (SignI, SenI, ModI, (|=I
Σ)Σ∈|SignI|

)

with a designated quantification space DI ⊆ SignI. This will be re-
ferred to as the base institution. Below we introduce a method to en-
rich I with modalities and nominals, and define a suitable semantics for
this enrichment. Moreover, it is shown that the outcome still defines a
class of institutions, called the hybridisations of I.

3.1.1 The category of HI-signatures

The category of I-hybrid signatures, denoted by SignHI, is defined as
the following direct (Cartesian) product of categories:

SignHI = SignI × SignREL

The REL-signatures are denoted by (Nom,Λ), where Nom is a set
of constants called nominals and Λ is a N-family of sets of relational
symbols called modalities.

General category theory entails:

Proposition 3.1.1 SignREL has small co-limits.

Proof. As SignREL is isomorphic to the power category SetN. As Set

has small co-limits it follows that SignREL has small co-limits. 2

Corollary 3.1.1 The projection SignHI → SignI lifts small co-limits.

Proof. Let us suppose that C is a small co-limit in SignI. Then, take
a small colimit C ′ in SignREL over the underlying diagram of C. Since
the pair (C,C ′) is a small co-limit in SignI × SignREL = SignHI, the
projection ( the proper C) is also a small co-limit.

2
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3.1.2 HI-sentences fuctor

Let us fix a quantification space DHI for SignHI such that for each
χ ∈ DHI its projection χSign to SignI belongs to DI. The quantifica-
tion space DHI is a parameter of the hybridisation process. Whenever
DHI consists of identities we say the hybridisation is quantifier-free.
Note that a quantifier-free hybridisation does not necessarily imply the
absence of ‘local’ quantification, i.e., quantification placed at the level
of base institution I.

Let ∆ = (Σ, Nom,Λ). The set of sentences SenHI(∆) is the least
set such that

• Nom ⊆ SenHI(∆);

• SenI(Σ) ⊆ SenHI(∆);

• ρ ? ρ ′ ∈ SenHI(∆) for any ρ, ρ ′ ∈ SenHI(∆) and any ? ∈
{∨,∧,⇒},

• ¬ρ ∈ SenHI(∆), for any ρ ∈ SenHI(∆),

• @iρ ∈ SenHI(∆) for any ρ ∈ SenHI(∆) and i ∈ Nom;

• 〈λ〉(ρ1, . . . , ρn) ∈ SenHI(∆), for any λ ∈ Λn+1, ρi ∈ SenHI(∆),
i ∈ {1, . . . ,n};

• [λ](ρ1, . . . , ρn) ∈ SenHI(∆), for any λ ∈ Λn+1, ρi ∈ SenHI(∆),
i ∈ {1, . . . ,n};

• (∀χ)ρ, (∃χ)ρ ∈ SenHI(∆), for any ρ ∈ SenHI(∆ ′) and χ : ∆→
∆ ′ ∈ DHI;

Whenever χ is a simple extension with variables it can be abbrevi-
ated to quantifications by the corresponding variables. For example
when χ is an extension of (Σ, Nom,Λ) with a nominal variable i, in-
stead of (∀χ)ρ we write (∀i)ρ.

In some cases, it is important to represent explicitly the embedding
of the sentences of the base institution into its hybridisation, i.e., the
embedding SenI(Σ) ↪→ SenHI(Σ, Nom,Λ). Such is the case of recur-
sive hybridisation (cf. Example 3.2.3) where, for example, it may not
be clear how to identify if a sentence i comes from the base or from
the hybridised level.
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Translations of HI-sentences:

Letϕ = (ϕSign,ϕNom,ϕMS) : (Σ, Nom,Λ)→ (Σ ′, Nom ′,Λ ′) be a
morphim of HI-signatures.

The translation SenHI(ϕ) is defined as follows:

• SenHI(ϕ)(ρ) = SenI(ϕSign)(ρ) for any ρ ∈ SenI(Σ);

• SenHI(ϕ)(i) = ϕNom(i);

• SenHI(ϕ)(¬ρ) = ¬SenHI(ϕ)(ρ);

• SenHI(ϕ)(ρ?ρ ′) = SenHI(ϕ)(ρ)?SenHI(ϕ)(ρ ′), ? ∈ {∨,∧,⇒};

• SenHI(ϕ)(@iρ) = @ϕNom(i)SenHI(ρ);

• SenHI(ϕ)([λ](ρ1, . . . , ρn)) = [ϕMS(λ)](SenHI(ρ1), . . . , SenHI(ρn));

• SenHI(ϕ)(〈λ〉(ρ1, . . . , ρn)) = 〈ϕMS(λ)〉(SenHI(ρ1), . . . , SenHI(ρn));

• SenHI(ϕ)
(
(∀χ)ρ

)
= (∀χ(ϕ))SenHI(ϕ[χ])(ρ);

• SenHI(ϕ)
(
(∃χ)ρ

)
= (∃χ(ϕ))SenHI(ϕ[χ])(ρ);

Proposition 3.1.2 SenHI is a functor SignHI → Set.

Proof. The proof is by induction on the structure of sentences. For
that, let us suppose the following signature morphisms in SignHI:

(Σ, Nom,Λ) ϕ // (Σ ′, Nom ′,Λ ′) θ // (Σ ′′, Nom ′′,Λ ′′)

Hence, for sentences ρ ∈ SenI(Σ) we have:

SenHI(ϕ); SenHI(θ)(ρ)

= { defn. of composition}

SenHI(θ)
(
SenHI(ϕ)(ρ)

)
= { defn of SenHI and ρ ∈ SenI(Σ)}

SenHI(θ)
(
SenI(ϕSign)(ρ)

)
= { defn of SenHI and SenI(ϕSign)(ρ) ∈ SenI(Σ ′)}

SenI(θSign)
(
SenI(ϕSign)(ρ)

)
= { since SenI is a functor}

SenI(θSign;ϕSign)(ρ)

= { defn. of SenHI and ρ ∈ SenI(Σ)}
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SenHI(θ;ϕ)(ρ)

For sentences ρ = @iρ we have:

SenHI(ϕ); SenHI(θ)(@iρ)

= { defn. of composition}

SenHI(θ)
(
SenHI(ϕ)(@iρ)

)
= { defn of SenHI}

SenHI(θ)
(
@ϕNom(i)SenHI(ϕ)(ρ)

)
= { defn of SenHI}

@θNom(ϕNom(i))SenHI(θ)
(
SenHI(ϕ)(ρ)

)
= { I.H. and defn of composition}

@ϕNom;θNom(i)SenHI(θ;ϕ)(ρ)

= { defn of SenHI}

SenHI(ϕ; θ)(@iρ)

The proof for sentences 〈λ〉(ρ1, . . . , ρn) is analogous and the proof for
sentences i follows directly from functional composition. The proof
for sentences ρ ? ρ ′, ? ∈ {∧,∨,⇒}, as well as of ¬ρ comes directly
from the induction hypothesis and the definition of SenHI. Finally, for
the sentences (∀χ)ρ ∈ SenHI(Σ, Nom,Λ), we have:

SenHI(ϕ); SenHI(θ)((∀χ)ρ)
= { defn. of composition}

SenHI(θ)
(
SenHI(ϕ)((∀χ)ρ)

)
= { defn of SenHI }

SenHI(θ)
(
(∀χ(ϕ))SenHI(ϕ[χ])(ρ)

)
= { defn of SenHI }

(∀(χ(ϕ)θ))SenHI(θ[χ(ϕ)])(SenHI(ϕ[χ]))(ρ)

= { I.H.}

(∀(χ(ϕ)θ))(SenHI(ϕ[χ]; θ[χ(ϕ)]))(ρ)

= { (7) of Definition 2.3.6}

SenHI(ϕ; θ)((∀χ)ρ)
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2

3.1.3 HI-models functor

(Σ, Nom,Λ)-models are pairs (M,W) where

• W is a (Nom,Λ)-model in REL;

• M is a function |W|→ |ModI(Σ)|.

The carrier set |W| is the set of states of (M,W); {Wn | n ∈ Nom}

represents the interpretation of nominals of Nom, whereas relations
{Wλ | λ ∈ Λn,n ∈N} represent the interpretation of modalities of Λ.
We denoteM(w) simply byMw.

A (Σ, Nom,Λ)-model homomorphism h : (M,W) → (M ′,W ′)
consists of a pair aggregating

• a (Nom,Λ)-model homomorphism in REL, hst : W → W ′;
i.e., a function hst : |W| → |W ′| such that, for i ∈ Nom,
W ′i = hst(Wi); and, for any w1, . . . ,wn ∈ |W|, λ ∈ Λn, and
(w1, . . . ,wn) ∈Wλ, (hst(w1), . . . ,hst(wn)) ∈W ′λ.

• a natural transformation hmod : M ⇒ hst;M ′; note that hmod
is a |W|-indexed family of Σ-model homomorphisms hmod =

{(hmod)w : Mw → M ′
hst(w)

| w ∈ |W|}. In the sequel we
often abbreviate (hmod)w by hw.

The composition of HI-model homomorphisms is defined canonically
by

h;h ′ = (hst;h ′st,hmod;hst;h ′mod).

Fact 3.1.1 Let ∆ be any HI-signature. Then ∆-models together with

their homomorphisms constitute a category, denoted by ModHI(∆).

Reducts of HI-models

Let∆ = (Σ, Nom,Λ) and∆ ′ = (Σ ′, Nom ′,Λ ′) be two HI-signatures,
ϕ = (ϕSign,ϕNom,ϕMS) a morphism between∆ and∆ ′ and (M ′,W ′)
a ∆ ′-model. The reduct of (M ′,W ′) along ϕ, denoted by
ModHI(ϕ)(M ′,W ′), is the ∆-model (M,W) where
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• W is the (ϕNom,ϕMS)-reduct ofW ′; i.e.

– |W| = |W ′|;

– for any n ∈ Nom,Wn =W ′ϕNom(n);

– for any λ ∈ Λ,Wλ =W
′
ϕMS(λ)

;

and

• for any w ∈ |W|,Mw = ModI(ϕSign)(M
′
w).

For any ϕ : ∆ → ∆ ′, and for any h ′ : (M ′
1,W

′
1) → (M ′

2,W
′
2) ∈

ModHI(∆ ′), ModHI(ϕ)(h ′) is the ModHI(∆) morphism

ModHI(ϕ)(h ′) : ModHI(ϕ)(M ′
1,W

′
1)→ModHI(ϕ)(M ′

2,W
′
2)

defined by (h ′st,h
′
mod; ModI(ϕ)).

Fact 3.1.2 ModHI is a functor.

Theorem 3.1.1 A pushout square of HI-signature morphisms is a (weak)

amalgamation square (for ModHI) if the underlying square of signa-

ture morphisms in I is a (weak) amalgamation square.

Proof. Given a pushout of HI-signature morphisms as in Defini-
tion 2.3.3, the amalgamation of (M1,W1) and (M2,W2) is (M ′,W ′)
is defined as follows:

• W ′ is an amalgamation of W1 and W2 in REL; this is because
the projection functor SignHI = SignI × SignREL → SignREL

preserves pushouts, hence the underlying square of signature
morphisms in REL is a pushout.

• Let |W| be the carrier set of W1,W2 and W (by definition of
reduct note all of them share the same carrier set). ThenM ′ : |W|→
|ModI(Σ ′)| is the function determined by the (weak) pullback
property of the result of applying functor |ModI(−)| to the un-
derlying square of signature morphisms in I.

2

Corollary 3.1.2 If DI is adequate for ModI then DHI is adequate for

ModHI.
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Proof. Any designated square Sq in the quantification space DHI

is a pushout by definition and since the projection functor SignHI =

SignI × SignREL → SignI preserves pushouts, it follows that the un-
derlying square Sq0 of Sq consisting of I signature morphisms, is also
a pushout. Because of this and also because the projection of DHI to
I is included in DI, it follows that Sq0 is isomorphic to a designated
square in the quantification space DI. This, by the adequacy property
of DI with respect to ModI, is a weak amalgamation square. Hence
Sq0 is a weak amalgamation square, which by Theorem 3.1.1, implies
that Sq is adequate for ModHI. 2

3.1.4 The satisfaction relation

For any (M,W) ∈ |ModHI(Σ, Nom,Λ)| and for any w ∈ |W|,

• (M,W) |=w ρ iffMw |=I ρ; when ρ ∈ SenI(Σ),

• (M,W) |=w i iffWi = w; when i ∈ Nom,

• (M,W) |=w ρ∨ ρ ′ iff (M,W) |=w ρ or (M,W) |=w ρ ′,

• (M,W) |=w ρ∧ ρ ′ iff (M,W) |=w ρ and (M,W) |=w ρ ′,

• (M,W) |=w ρ⇒ ρ ′ iff (M,W) |=w ρ implies that (M,W) |=w

ρ ′,

• (M,W) |=w ¬ρ iff (M,W) 6 |=wρ,

• (M,W) |=w [λ](ξ1, . . . , ξn) iff for any (w,w1, . . . ,wn) ∈ Wλ

we have that (M,W) |=wi ρi for some 1 6 i 6 n.

• (M,W) |=w 〈λ〉(ξ1, . . . , ξn) iff there exists (w,w1, . . . ,wn) ∈
Wλ such that and (M,W) |=wi ξi for any 1 6 i 6 n.

• (M,W) |=w @jρ iff (M,W) |=Wj ρ,

• (M,W) |=w (∀χ)ρ iff (M ′,W ′) |=w ρ for any (M ′,W ′) such
that ModHI(χ)(M ′,W ′) = (M,W),

• (M,W) |=w (∃χ)ρ iff (M ′,W ′) |=w ρ for some (M ′,W ′) such
that ModHI(χ)(M ′,W ′) = (M,W), and

We write (M,W) |= ρ iff (M,W) |=w ρ for any w ∈ |W|.

As expected, there is a semantical equivalence between sentences
〈λ〉(ρ1, . . . , ρn) and ¬[λ](¬ρ1, . . . ,¬ρn). It is also interesting to note
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that if the quantification space allows quantifications over nominal vari-
ables, then the binder operator ↓ that appears in many works on hybrid
logic, e.g. [Gor96, Bra10], is redundant since sentences of the form
(↓ i)ρ are semantically equivalent to (∀i)(i⇒ ρ).

The Satisfaction Condition

Theorem 3.1.2 Assume DI is adequate for ModI. Let∆ = (Σ, Nom,Λ)
and ∆ ′ = (Σ ′, Nom ′,Λ ′) be two HI-signatures and ϕ : ∆ → ∆ ′

a morphism of signatures. For any ρ ∈ SenHI(∆), (M ′,W ′) ∈
|ModHI(∆ ′)|, and w ∈ |W|,

ModHI(ϕ)(M ′,W ′)) |=w ρ iff (M ′,W ′) |=w SenHI(ϕ)(ρ).

Proof. Let us denote ModHI(ϕ)(M ′,W ′) = ModHI(ϕ)(M ′,W ′)
by (M,W). The proof is by recursion on the structure of the sentence
ρ

1. ρ = i for some i ∈ Nom

(M,W) |=w i

⇔ { defn. of |=w}

Wi = w

⇔ { defn of reduct,W ′
ϕNom(i) =Wi}

(M ′,W ′) |=w ϕNom(i)

⇔ { defn of SenHI(ϕ)}

(M ′,W ′) |=w SenHI(ϕ)(i)

2. ρ ∈ SenI(Σ)

(M,W) |=w ρ

⇔ { defn. of |=w}

ModI(ϕSign)(M
′
w) =Mw |=I ρ

⇔ { by the Satisfaction Condition in I}

M ′
w |= SenI(ϕSign)(ρ)
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⇔ { defn. of |=w}

(M ′,W ′) |=w SenI(ϕSign)(ρ)

⇔ { defn of SenHI(ϕ)}

(M ′,W ′) |=w SenHI(ϕ)(ρ)

3. ρ = ξ∨ ξ ′ for some ξ, ξ ′ ∈ SenHI(∆)

(M,W) |=w ξ∨ ξ ′

⇔ { defn. of |=w}

(M,W) |=w ξ or (M,W) |=w ξ ′

⇔ { I.H.}

(M ′,W ′) |=w SenHI(ϕ)(ξ) or

(M ′,W ′) |=w SenHI(ϕ)(ξ ′)

⇔ { defn. of |=w}

(M ′,W ′) |=w SenHI(ϕ)(ξ∨ ξ ′)

The proofs for the cases when ρ = ξ∧ ξ ′, ρ = ξ⇒ ξ ′, ρ = ¬ξ,
etc. are analogous.

4. ρ = [λ](ξ1, . . . , ξn) for some ξ1, . . . , ξn ∈ SenHI(∆), λ ∈
Λn+1

(M,W) |=w [λ](ξ1 , . . . , ξn)

⇔ { defn. of |=w}

for any (w,w1, . . . ,wn) ∈Wλ there is some

k ∈ {1, . . . ,n} such that (M,W) |=wk ξk

⇔ { by reduct defn,Wλ =W ′
ϕMS

(λ)}

for any (w,w1, . . . ,wn) ∈W ′ϕMS(λ)
there is some

k ∈ {1, . . . ,n} such that (M,W) |=wk ξk

⇔ { I.H.}

for any (w,w1, . . . ,wn) ∈W ′ϕMS(λ)
there is some

k ∈ {1, . . . ,n} such that
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(M ′,W ′) |=wk SenHI(ϕ)(ξk)

⇔ { defn. of |=w}

(M ′,W ′) |=w [ϕMS(λ)](SenHI(ϕ)(ξ1), . . . , SenHI(ϕ)(ξn))

⇔ { defn. of SenHI(ϕ)}

(M ′,W ′) |=w SenHI(ϕ)([λ](ξ1, . . . , ξn))

The proof for sentences of form ρ = 〈λ〉(ξ1, . . . , ξn) for some
ξ1, . . . , ξn ∈ SenHI(∆), λ ∈ Λn+1 is analogous.

5. ρ = @iξ for some ξ ∈ SenHI(∆), i ∈ Nom

(M,W) |=w @iξ

⇔ { defn. of |=w}

(M,W) |=Wi ξ

⇔ { I.H.}

(M ′,W ′) |=Wi SenHI(ϕ)(ξ)

⇔ { by reduct defn,Wi =W ′
ϕNom(i)}

(M ′,W ′) |=W
′
ϕNom(i) SenHI(ϕ)(ξ)

⇔ { defn. of |=w}

(M ′,W ′) |=w @ϕNom(i)SenHI(ϕ)(ξ)

⇔ { defn. of SenHI(ϕ)}

(M ′,W ′) |=w SenHI(ϕ)(@iξ)

6. ρ = (∀χ : ∆→ ∆1)ξ

Figure 1 depicts the proof scheme. Hence,

(M,W) |=w (∀χ)ξ
⇔ { defn. of |=w}

for all (M1,W1) such that ModHI(χ)(M1,W1) = (M,W),

(M1,W1) |=
w ξ

⇔ { by Corollary 3.1.2, DHI is adequate for ModC}
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(M,W) (M ′,W ′)
ModHI(ϕ)oo

∆
ϕ //

χ

��

∆ ′

χ(ϕ)
��

∆1
ϕ[χ]

// ∆ ′1

(M1,W1)

ModHI(χ)

OO

(M ′
1,W

′
1)ModHI(ϕ[χ])

oo

ModHI(χ(ϕ))

OO

Figure 1: Proof Scheme

for all (M ′
1,W

′
1) such that

ModHI(χ(ϕ))(M ′
1,W

′
1) = (M ′,W ′),

ModHI(ϕ[χ])(M ′
1,W

′
1) |=

w ξ

⇔ { I.H.}

for all (M ′
1,W

′
1) such that

ModHI(χ(ϕ))(M ′
1,W

′
1) = (M ′,W ′),

(M ′
1,W

′
1) |=

w SenHI(ϕ[χ])(ξ)

⇔ { defn. of |=w}

(M ′,W ′) |=w (∀χ(ϕ))SenHI(ϕ[χ])(ξ)

⇔ { defn of SenHI(ϕ)}

(M ′,W ′) |=w SenHI(ϕ)((∀χ)ξ)

When ρ = (∃χ : ∆→ ∆1)ξ the proof is analogous.

2

Note that in the quantifier-free situation, i.e. when DHI is trivial, the
adequacy assumption of Theorem 3.1.2 is not needed.

Corollary 3.1.3 (The Satisfaction Condition) HI is an institution.

3.1.5 Base logic versus its hybridisation

In hybridised institutions we may have to consider, at the level of
the sentences of the base institution, two sets of Boolean connectives,
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those of the hybridised level and those of the base institution. The fol-
lowing simple result, recently presented in [Dia13], allows us to ignore
the distinction between these two sets of Boolean connectives. The re-
sult also captures the general relationship between quantification at the
base and at the hybridised level.

Fact 3.1.3 ([Dia13]) Let HI be an hybridisation of I and let us denote

the Boolean connectives and the quantifiers in the base institution I by
∧© , ∨© ,⇒© , ¬© , and ∀© , ∃© , respectively. For any (Σ, Nom,Λ)-model

(M,W), w ∈ |W|, sentences ρ, ρ ′ ∈ SenI(Σ) of the base institution

and for each χ ∈ D

– (M,W) |=w ρ ? ρ ′ iff (M,W) |=w ρ ?© ρ ′ for ? ∈ {∧,∨,⇒},

– (M,W) |=w ¬ρ iff (M,W) |=w ¬© ρ,

– (M,W) |=w ( ∀©χ)ρ implies (M,W) |=w (∀(χ, 1Nom, 1Λ))ρ,

and

– (M,W) |=w (∃(χ, 1Nom, 1Λ))ρ implies (M,W) |=w ( ∃©χ)ρ.

One may legitimately wonder about the existence of a canonical em-
bedding of the base institution I into its hybridisation HI. That rela-
tionship is formalised on the following result:

Theorem 3.1.3 Let I an institution and HI its quantifier-free hybridi-

sation. Then, there is a conservative comorphism (Φ,α,β) : I→ HI

where

• Φ(Σ) = (Σ, {i}, ∅),
• αΣ(ρ) = @iρ, and

• βΣ(M,W) =MWi .

Proof. Let us consider a Φ(Σ)- model (M,W), and a Σ-sentence ϕ.
Then,

β(M,W) |=I ρ

⇔ { defn. of β}

MWi |=
I ρ

⇔ { defn of |=HI}

(M,W) |=HI @iρ
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⇔ { defn of α}

(M,W) |=HI α(ρ)

This proofs the satisfaction condition for the comorphism. Surjectivity
ofβ comes from the observation we just may note that for anyΣ-model
M we may take a Φ(Σ) model (M,W) with MWi = M. Therefore,
the comorphism is conservative. 2

The notion of a constrained model, recently introduced by R. Dia-
conescu in [Dia13], plays a crucial role on the remaining of the the-
sis. In particular, it accommodates ‘rigidity’ of first-order variables,
a fundamental notion for the characterisation of first-order encodings
introduced in the next chapter.

Definition 3.1.1 ([Dia13]) A constrained HI-model functor is a sub-

functor ModC ⊆ModHI (i.e., ModC(∆) is a subcategory of ModHI(∆),

∆ ∈ |SignHI|) such that it reflects weak amalgamation. Models in

ModC(∆) are called constrained HI-models.

Informally, the meaning of the reflection requirement in Definition 3.1.1
is that, pushout squares of signature morphisms, the amalgamation of
constrained models yields a constrained model.

The choice of a constrained model functor is, therefore, the third
parameter for the hybridisation method:

Theorem 3.1.4 ([Dia13]) (SignHI, SenHI, ModC, |=) is an institution.

In the sequel, an hybridisation without constrained models, i.e., with
ModC = ModHI is called free hybridisation of I. Observe that the
satisfaction relation |=HIC of a hybridisation HIC with properly con-
strained models is not necessarily the restriction of |=HI. This is justi-
fied by the fact that the satisfaction relation for quantifiers relies upon
expansions with respect to ModC and not to ModHI.

3.2 E X A M P L E S

A myriad of examples of hybridised logics may be generated through
the hybridisation process described in the previous sections. They arise
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by considering different instances of the three parameters of this pro-
cess:

1. the base institution I

2. the quantification space DHI, and

3. the constrained models (ModC).

Example 3.2.1 (HPL) Applying the quantifier-free version of the hy-
bridisation method to PL and fixing Λ2 = {λ} and Λn = ∅ for each
n 6= 2, we obtain the institution of “standard” hybrid propositional

logic (without state quantifiers). The category of signatures is
SignHPL = Set × Set with objects denoted by (P, Nom) and mor-
phisms by (ϕSign,ϕNom); sentences are the usual hybrid propositional
formulas, i.e., modal formulas closed by Boolean connectives, [λ] de-
noted by 2, 〈λ〉 denoted by 3, and operators @i, for i ∈ Nom; mod-
els consist of pairs (M,W) where W consists of a carrier set |W|,
interpretations Wi ∈ |W| for each i ∈ Nom, and a binary relation
Wλ ⊆ |W|× |W|, and for each w ∈ |W|,Ms is a propositional model,
i.e., a function Mw : P → {>,⊥} which is equivalent to a subset
Mw ⊆ P. Note that, by Fact 3.1.3, we do not need to make a distinc-
tion between the Boolean connectives at the level of PL and those at
the level of HPL.

The T , S4, and S5 versions of hybrid propositional logic are ob-
tained by constraining the models of HPL to those models (M,W)

for which Wλ is a reflexive relation; a preorder, and an equivalence
relation, respectively (e.g. [BdRV01]). By considering an arbitrary set
of modalities Λ, instead of a single λ, we set the “multi-modal hybrid
propositional logic”.

Similarly, but considering Nom = ∅, we obtain the standard (non-
hybrid) modal logics T , S4 and S5 (e.g. [BdRV01, GO07]).

A challenging issue concerns finding suitable quantification spaces
to capture versions of hybrid propositional logic. One choice is the
quantifier-free version in which DHPL consists only of identities. How-
ever, it would be interesting, along the hybridisation process, to capture
a quantifier such as E, where Eρ means that “ρ is true in some state

of the model” [AB01]. Considering as quantification spaces the exten-
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sions of signatures with nominal symbols, paves the way to expressing
the following properties:

(M,W) |=w ((∀i)i)⇔ ρ iff ρ is satisfied at w

iff

w is unique in (M,W)

(M,W) |=w (∃i)@iρ iff (M,W) |= Eρ

A block of nominal variables X for a HPL signature (P, Nom) is a
finite set of nominal variables of the form (x,P, Nom) (as in the case
of FOL variables, x is the name and (P, Nom) the qualification of
the variable) such that (x,P, Nom), (x ′,P, Nom) ∈ X implies x =

x ′. Then DHPL may be defined by of the signature extensions with
blocks of nominal variables, i.e. (P, Nom) ↪→ (P, Nom∪X). For any
signature morphism ϕ : (P, Nom) → (P ′, Nom ′) and X a block of
nominal variables for (P, Nom) we define

Xϕ = {(x,P ′, Nom ′) | (x,P, Nom) ∈ X}.

Then χ(ϕ) is the extension (P ′, Nom ′) ↪→ (P ′, Nom ′ ∪ Xϕ) and
ϕ[χ] is the canonical extension of ϕ that maps each (x,P, Nom) to
(x,P ′, Nom ′).

When we combine this quantification with the constraineds T, S4,
S5, etc., it becomes necessary to establish the adequacy condition for
the constrained model sub-functor. However, in this case, this is almost
trivial since we may consider DPL (the quantification space at the level
of the base institution) as being trivial. Furthermore it is also immedi-
ate that the amalgamation of constrained models is still a constrained
model.

◦

Example 3.2.2 (HTRM) Let us consider the free-hybridisation of the
institution TRM of Example 2.3.1. The signature category corresponds
to

SignTRM × SignREL ∼= SignREL.

Since SenTRM(∗) = ∅, we have that SenHTRM(∗, Nom,Λ) is the set
of sentences built up from nominals in Nom by the application of
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modalities in Λ and boolean connectives. This kind of formulas has
been called by pure hybrid formulas of [BdRV01, Ind07].The mod-
els of ModHTRM(∗, Nom,Λ) consist of relational structures (W,M),
where M is a constant function Mw = ∗, for any w ∈ |W|. This frag-
ment of HPL has been studied in, e.g., [Ind07], namely concerning
completness. ◦

Example 3.2.3 (H2PL) Let us consider the quantified free hybridisa-
tion of HPL (of Example 3.2.1), say H2PL. Hence, signatures are of
form

(
(P, Nom ′,Λ ′), Nom,Λ

)
, for (P, Nom ′,Λ ′) ∈ SignHPL. In or-

der to prevent potential ambiguities, we represent explicitly the natural
embedding of the base institutions into its hybridisation: i.e., for any
ρ ∈ SignHPL(P, Nom ′Λ ′), an atomic sentence
ρ ∈ SignH2PL((P, Nom ′,Λ ′), Nom,Λ

)
is represented by ρ. Thus is

no ambiguity in sentences like i∧ i or @i@iρ. By Fact 3.1.3 we do not
make any distinction between the Boolean connectives at the levels of
HPL and H2PL. In particular, we have that ρ∨ ρ ′ is equivalent to ρ∨
ρ ′and similarly for the other connectives. The models of ModH2PL

are, hence, “Kripke structures of Kripke structures”. To represent that
we adopt again the same “underline” convention: we denote models
in ModH2PL((P, Nom,Λ ′), Nom,Λ

)
by pairs (M,W) and, for any

w ∈W, modelsMw in ModHPL(P, Nom ′,Λ ′) by (Ww,Mw).
Let us consider also the institution H2PL ′ by constraining the mod-

els to those with sharing of “sub-states universe”, i.e., to models (M,W)

such thatw,w ′ ∈ |W|, |Ww| = |Ww ′ |. The reflection condition of Def-
inition 3.1.1 holds directly from the HPL-reduct definition: for any
pushout square of signature morphisms in SignH2PL

∆
ϕ1 //

ϕ2
��

∆1

θ1
��

∆2 θ2

// ∆ ′

let us consider a constrained (Σk, Nomk,Λk)-model (Mk,Wk) for
each k ∈ {1, 2} such that ModC(ϕ1)(M1,W1) = ModC(ϕ2)(M2,W2).
We take the amalgamation (M ′,W ′) = (M1,W1) ⊗ (M2,W2) ac-
cording to Theorem 3.1.1. By definition of reduct we have that |W ′| =
|Wk| and that, for any w ∈ |W ′|, ModHPL(θSignk)(W

′
w,M ′

w) =
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(Wkw,Mkw) and, hence |W ′w| = |Wkw|. Since (Mk,Wk) are con-
strained models, we have that |Wkw| = |Wkw ′ | for any w,w ′ ∈
|Wk|(= |W ′|). Therefore |W ′w| = |W ′w ′ | for any w,w ′ ∈ |W ′|, i.e.,
(M ′,W ′) is a constrained model.

Similarly, we can construct other logics by applying successively
the hybridisation method. Each one of these applications induces a
new “layer of hybridisation”. The conventions used for H2PL can be
extended to other levels of hybridisation HnPL (for n > 2). ◦

Example 3.2.4 (HFOL) Applying of the hybridisation method to FOL
leads to the first-order hybrid logic of [Bra05, Bra10]. For that we have
to restrict the (hybrid) signatures to singleton sets of unary modalities
(i.e. Λ2 = {λ} and Λn = ∅ for the other naturals) and the base signa-
tures to the one-sorted case. As quantification space we take first-order
and nominal variables expansions. Note that, as stated, binder connec-
tives now implicitly defined through quantification over nominals. As
in the case of HPL, by the Fact 3.1.3, we do not need to make a distinc-
tion between the Boolean connectives at the level of FOL and those at
the level of HFOL. Moreover, because the carriers of the FOL models
are non-empty we may easily show that in this case the implications
of Fact 3.1.3 about quantifiers may be turned into equivalences. Hence
it is also not necessary to distinguish between quantifiers at the base
FOL level and at the hybridised HFOL level.

◦

Example 3.2.5 (Predefined sharing in HREL) Let HREL ′ be the hy-
bridisation of REL that constrained the models of HREL to those mod-
els (M,W) such that {Mi | i ∈ |W|} share the same universe (under-
lying set) and the same interpretation of constants. The sharing is also
extended to model homomorphisms: for all HREL ′ ∆-models (M,W)

and (M ′,W ′), a model homomorphism h : (M,W) → (M ′,W ′) in
HREL belongs to HREL ′ if and only if hi = hj for all i, j ∈ |W|. Note
that the amalgamation of models preserves sharing. The reflection con-



3.2 E X A M P L E S 61

dition of Definition 3.1.1 holds directly from the HREL-reduct defini-
tion: for any pushout square of signature morphisms in SignHREL

∆
ϕ1 //

ϕ2
��

∆1

θ1
��

∆2 θ2

// ∆ ′

let us consider a constrained (Σk, Nomk,Λk)-model (Mk,Wk), for
each k ∈ {1, 2}, such that

ModC(ϕ1)(M1,W1) =Mod
C(ϕ2)(M2,W2).

We take the amalgamation (M ′,W ′) = (M1,W1) ⊗ (M2,W2) ac-
cording to Theorem 3.1.1. Therefore, for any w ∈Wk, (Mk)w =

ModREL(θkSign)(Mw) and, hence, |(Mk)w| = |Mw|. Since (Mk,Wk)

is a constrained model, we also have that, for any w,w ′ ∈Wk,
|(Mk)w| = |(Mk)w ′ |. By definition of reduct we have Wk = W (and
since
ModREL(θkSign)(Mw ′)) = (Mk)w ′), we have |M ′

w| = |M ′
w ′ |, for any

w,w ′ ∈ W ′. Hence the reflection condition of Definition 3.1.1 is
fulfilled.
DHREL ′

consists of signature extensions with FOL variables (for the
states), with nominal variables (in the style of DHPL of Example 3.2.1)
and with variables for modalities.

Note that, as in HFOL, in HREL ′ we also do not need to distinguish
between the Boolean connectives and the quantifiers at the base and at
the hybridised level.

An interesting variant of HREL, say HREL ′′, is achieved if we
constrain the models with “increasing domains”, i.e., with the preser-
vation of universes by accessible relations, in the sense that for any
w,w ′ ∈ W, (w,w ′) ∈ Wλ implies that |Mw| ⊆ |Mw ′ |. This is an
usual assumption taken in many modal versions of the first-order logic
(cf. [Bra10]). The verification of the reflection condition of Defini-
tion 3.1.1 can be made exactly as above.

Let us define HREL0 as the free-hybridisation of the quantifier-free
fragment of REL, with DHREL0 consisting just of nominal expansions.
We denote by HREL ′0 the institution achieved by constraining HREL0
to “increasing domains”.
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◦

Example 3.2.6 (HFOLR ′ and HEQ ′) Example 3.2.5 above may be
considered an example of ‘predefined’ or ‘default’ sharing since the
interpretation of all constants is shared. However in formal specifica-
tion applications it is also important to consider ‘user defined’ sharing,
in which one has the possibility to define by hand the entities to be
shared.

Consider the FOLR defined below as the base institution:

• SignFOLR is the category of MFOL signatures of [DS07]: its ob-
jects are tuples (S,S0, F, F0,P,P0) where (S0, F0,P0) and (S, F,P)
are FOL signatures such that (S0, F0,P0) is a sub-signature of
(S, F,P); the symbols of (S0, F0,P0) are called ‘rigid’, and signa-
ture morphismsϕ : (S,S0, F, F0,P,P0)→ (S ′,S ′0, F

′, F ′0,P
′,P ′0)

are just FOL signature morphisms (S, F,P) → (S ′, F ′,P ′) that
map rigid symbols to rigid symbols.

• SenFOLR(S,S0, F, F0,P,P0) consists of those sentences in
SenFOL(S, F,P) that contains only quantifiers over rigid vari-
ables,

• ModFOLR(S,S0, F, F0,P,P0) = ModFOL(S, F,P), and

• the satisfaction relation in FOLR is induced canonically from
FOL, i.e. |=FOLR

(S,S0,F,F0,P,P0)
= |=FOL

(S,F,P).

We let HFOLR be the hybridisation of FOLR with quantifications over
nominal, modalities, and rigid FOL variables.

For HFOLR ′ consider the constrained model sub-functor ModC

such that (M,W) ∈ |ModC(Σ, Nom,Λ)| if and only if for all i, j ∈
|W| and each rigid symbol x in Σ, (Mi)x = (Mj)x. For any pushout
square of signature morphisms in SignFOLR

(Σ, Nom,Λ)
ϕ1 //

ϕ2
��

(Σ1, Nom1,Λ1)

θ1
��

(Σ2, Nom2,Λ2) θ2

// (Σ ′, Nom ′,Λ ′)

let us consider a constrained (Σk, Nomk,Λk)-model (Mk,Wk) for
each k ∈ {1, 2} such that ModC(ϕ1)(M1,W1) = ModC(ϕ2)(M2,W2).
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We take the amalgamation (M ′,W ′) = (M1,W1) ⊗ (M2,W2) ac-
cording to Theorem 3.1.1. Then we consider any rigid symbol x of Σ ′

and any i, j ∈ |W ′|. By Proposition 3.1.1 we have that

Σ
(ϕ1)Sign //

(ϕ2)Sign

��

Σ1

(θ1)Sign

��
Σ2

(θ2)Sign

// Σ ′

is a pushout square of FOLR signature morphisms. Note that the set of
rigid symbols in Σ ′ is the union of the translations of the rigid symbols
from both Σ1 and Σ2 through (θ1)Sign and (θ2)Sign. This means that
there exists k ∈ {1, 2} and xk rigid symbol of Σk such that x = θk(xk).
It follows that (M ′

i)x = ((Mk)i)xk and (M ′
j)x = ((Mk)j)xk , hence

(M ′
i)x = (M ′

j)x since ((Mk)i)xk = ((Mk)j)xk (because (Mk,Wk)

is a constrained model). This proves that (M ′,W ′) is a constrained
model, which gives the reflection condition of Definition 3.1.1.

In analogy with Example 3.2.5, it is natural to consider a version
of HFOLR with models with “increasing domains”, constraining the
models where, for any w,w ′ ∈ W, λ ∈ Λ, (w,w ′) ∈ Rλ, (Mw)s ⊆
(Mw)s ′ , for any s ∈ S. However, in this case we have no way to estab-
lish the reflection condition for the constrained models. This happens
because we just have, by reduct, the preservation of universes on the
sorts of ∆k, where k is such that θk(λk) = λ.

There are some interesting first-order modal logics captured by suit-
able versions of HFOLR ′. The first order modal logic institution
MFOL of [DS07] is such an example. In [MFMB11] we suggest a
version of the hybrid first order logic as a suitable logic for the spec-
ification of reconfigurable systems. That logic can be generated as a
variant of HFOLR ′ taking the rigidification on the entire set of sorts
and quantification over first-order logic variables.

◦

Example 3.2.7 (User defined sharing in Hybrid Partial Algebra) Let
PAR be a rigid version institution of the partial algebras of Exam-
ple 2.3.7 which is defined similarly to FOLR, the rigid version of FOL
in Example 3.2.6. This means that we consider signatures of the form
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(S,S0, TF, TF0,PF,PF0) where (S0, TF0, TF0) is a sub-signature of ‘rigid
symbols’ for a PA signature (S, TF,PF), etc. We skip here the details
that replicate the corresponding details from the definition of FOLR.
Let HPAR be the hybridisation of PAR with quantifications over nom-
inals, modalities, and PAR variables (i.e. rigid total variables). We
consider DHPAR to consist of signature extensions with total rigid

(first-order) variables. The amalgamation property of PA entails the
adequacy of DPAR for ModPAR. From Corollary 3.1.2 it follows that
DHPAR is adequate for HPAR.

We denote by HPAR ′ the hybridisation obtained by constraining the
model sub-functor to ModC defined by (M,W) ∈ |ModC(Σ, Nom,Λ)|
if and only if

- rigid sorts and total functions share the same interpretations in
all the states, and

- rigid partial functions share domains.

This means that for all i, j ∈ |W|, for each symbol x in S0 or TF0,
(Mi)x = (Mj)x and, for any σ in PF0, we have that dom((Mi)σ) =

dom((Mj)σ). The reflection condition for ModC is established in this
case as it was in Example 3.2.6. ◦

Example 3.2.8 (HMVL) A very interesting logic can be obtained with
the hybridisation of MVLL of Example 2.3.8 (for a fixed complete
residuated lattice L). Beyond to the expressivity introduced by the hy-
brid features (and the respective Kripke semantics), new expressivity
patterns arise at the single level. For instance, unlikely the base case
where each sentence is tagged by a L-value, we have now more struc-
tured expressions involving different L-values (e.g. (ρ,p)∧ (ρ ′,p ′)).

As in the HREL example we may consider a version of HMVLL
constraining the models to those that share the interpretation of uni-
verses and constants. For this case, the reflection condition for ModC

came as in Example 3.2.5 (since the notions of reduct and signature
morphism are exactly the same).

◦

A main feature of this approach concerns the possibility of building
encodings of hybridised logics into FOL. This is an extremely relevant
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step in the quest for suitable tool support for engineering methodolo-
gies based on hybridisation. Under what circumstances this can be
done and how, is the subject of the following chapter.





4
F I R S T- O R D E R E N C O D I N G S

A main technical aim of the hibridisation process introduced in the
previous chapter is to provide the necessary infrastructure to trans-
port specifications from a logical system to another, better equipped
in terms of effective proof support. This chapter contributes in this
direction through the systematic characterisation of encodings of hib-
ridised institutions into the institution of many sorted first-order logic

FOL. In particular, for any institution ’encodable’ in presentations in
FOL, we suggest a method to construct an encoding from its hybridis-
ation to FOL. Therefore, a wide variety of computer assisted provers
for FOL can be ‘borrowed’ to reason about specifications in the new,
hybridised logics.

Actually, the wide variety of formal verification tools for FOL can
be ‘borrowed’ as valuable resources to specify and verify systems de-
scribed in the languages of encodable hybridisations.

Technically such encodings are achieved by extending the classical
standard translation of modal logic into the (one-sorted) first order
logic [vB83], more precisely, for its hybrid version [Bla00], to the
encodings of hybridised institutions into FOL. We call this process
“hybridisation of encodings”.

The general idea of the standard translation from HPL into the (one-
sorted) first-order logic, is to consider a sort to denote the state space,
where nominals are interpreted as constants, modalities as binary rela-
tions, and propositions as unary predicates (where p(w) means that
the proposition p holds at state w). The idea underlying the stan-
dard translation HFOL2FOL (e.g. [Bra10]), is to extend this encod-
ing by considering a new universe ST as an extra sort in the signa-
ture, and “flattening” the universes, operations and predicates of the
(local) FOL-models to an unique (global) FOL-model. Local functions
and predicates become parametric over states, and the state universes
distinguished with a sort-family of definability predicates. Intuitively,
wheneverm belongs to the universe of w, π(w,m) and σ(w,m) = b

67



68 F I R S T- O R D E R E N C O D I N G S

means that π(m) and σ(m) = b hold in the state w. Moreover, re-
stricting this global model M to the local universes, operations and
predicates of a fixed word w, we obtain a “slice of M”, say M|w, that
consists of a local FOL-model representing (and coinciding with)Mw.

The method is based on the application of state-parametrisation con-
struction of HFOL2FOL to lift I2FOL to HI2FOL. Thus, all the sig-
natures and sentences targeted by I2FOL become parametric on states
and the remaining sentences are treated as in HFOL2FOL. A slice
M|w corresponds now to the “FOL-interpretation” of the local I-model
Mw, which can be recovered using I2FOL.

As discussed in [DM13], this process can be understood, on the per-
spective of logic combination, as a combination of logic encodings,
between the standard translation of hybrid logic into FOL and other
encodings into FOL.

Such encodings are required to be conservative ‘theoroidal comor-
phisms’ [Mos96, GR02] , i.e., ordinary comorphisms into presenta-
tions, mapping signatures to theories (cf. Section 2.3.7). Conservativ-
ity, i.e., the surjectivity of the models translation, is a sufficient condi-
tion to use such maps as actual encodings. In particular, it is necessary
in order to borrow from FOL proof resources in a sound and complete
way. This entails the need for an abstract characterisation of conserva-
tivity which is done in the sequel.

The first steps in defining a method for generating first-order encodings
in hybridised institutions were presented in [MMDB11a]. The present
version following recent work documented in [DM13], extends it to
presentations, constrained and quantified models. The characterisation
of conservativity also appeared in [DM13].

Subsection 4.1.1 introduces some preliminaries for the presentation of
the encoding, namely, the state-parametrisation and the corresponding
slicing procedures. The remaining components of the encoding are
presented in Subsection 4.1.2. The illustration of the method is done
in Subsection 4.2 where a number of encodings are generated as in-
stantiations of the method. Finally, Subsection 4.3 introduces a char-
acterisation of conservativity. The examples are revisited and their
conservativity discussed.
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4.1 H Y B R I D I S I N G FOL- E N C O D I N G S

4.1.1 States parametrisation

Notation 4.1.1 For any FOL-signature (S, F,P) we denote by ([S], [F], [P])
the following FOL-signature:

• [S] = S∪ {ST}, where ST is a designated sort not in S,

• [F]ar→s =

Far ′→s for any s ∈ S, ar ′ ∈ S∗ such that ar = (ST)ar ′

∅ for the other cases;

• [P]ar =

Par ′ for any ar ′ ∈ S∗ \ S such that ar = (ST)ar ′;

∅, for the other cases.

For any morphism of FOL signatures ϕ : (S, F,P) → (S ′, F ′,P ′) let

[ϕ] : ([S], [F], [P]) → ([S ′], [F ′], [P ′]) be a morphism of FOL signa-

tures defined as follows:

• [ϕ]st(ST) = ST,

• [ϕ]st(s) = ϕst(s) for any s ∈ S,

• [ϕ]
op
(ST)ar ′→s(σ) = ϕ

op
ar ′→s(σ) for any σ ∈ Far ′→s, and

• [ϕ]rl
(ST)ar ′(π) = ϕ

rl
ar ′(π) for any π ∈ Par ′ .

The translation defined above consists of the state-parametrisation of
FOL-sentences.

Definition 4.1.1 For any FOL-signature (S, F,P) and any new con-

stant x of sort ST, the translation

[ _ ]x(S,F,P) : SenFOL(S, F,P)→ SenFOL([S], [F] + x, [P])

is defined by

• [t = t ′]x = ([t]x = [t ′]x) where [σ(t1, . . . , tn)]x = σ(x, [t1]x, . . . , [tn]x);

• [π(t)]x = π(x, [t]x);

• [ρ1 ? ρ2]
x = [ρ1]

x ? [ρ2]
x, for ? ∈ {∨,∧,⇒};

• [¬ρ]x = ¬[ρ]x;
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• [(∀Y)ρ]x = (∀Y)([ρ]x)Y where ([ρ]x)Y is the result of replacing

in [ρ]x all occurrences of y(z) by y for each y in Y.

Although for all the other cases the definition is as expected, the clause
involving quantification may require further explanation. It goes as
follows: without the suggested replacement, variables would be trans-
lated into unary-functions instead of to constants, i.e., into second-
order variables in the place of first-order ones.

Next definition introduces definability predicates:

Definition 4.1.2 For a FOL-signature (S, F,P) let define DF = {Dσ |

σ ∈ Far→s, ar ∈ S∗, s ∈ S}, where

• For any s ∈ S , Ds is a new designated relation symbol with

arity (ST)s;

• For any σ ∈ Fs1...sn→s, Dσ is the Horn sentence

(∀y)(∀x1, . . . , xn)
∧

16i6n

Dsi(y, xi)⇒Ds(y,σ(y, x1, . . . , xn))

Bearing in mind that the intuitive meaning ofDs(w,m) is that “m be-
longs to the s-carrier of the statew”, clauseDσ assures the definability
of σ with respect to “these universes”. Next definition formalises the
notion of a “slice” suggested above:

Definition 4.1.3 For any FOL-signature (S, F,P), any ([S], [F], [P])-
model M ′ such that M ′ |= DF and for any w ∈ M ′

ST, the (S, F,P)-
modelM ′|w is defined as follows:

• for each s ∈ S, (M ′|w)s = {m ∈M ′
s | (w,m) ∈M ′

Ds
};

• for each σ in F, (M ′|w)σ(m) =M ′
σ(w,m);

• for each π in P,m ∈ (M ′|w)π iff (w,m) ∈M ′
π.

Note the correctness of the definition of M ′|w, i.e. the fact that for
each σ ∈ Far→s and each m ∈ (M ′|w)ar, (M ′|w)σ(m) ∈ (M ′|w)s,
relies upon the conditionM ′ |= DF.

Notation 4.1.2 For any (S, F,P)-sentence ρ, we denote by V(ρ) the

set of all sentences (∀x,y)Ds(x,y) for s any sort of a variable in a

quantification that occurs in ρ. For any set E of sentences, V(E) de-

notes ∪{V(ρ) | ρ ∈ E}.



4.1 H Y B R I D I S I N G FOL- E N C O D I N G S 71

Next lemma establishes the relation between the state-parametrisation
and the slice procedure whenever the axiomatisation of definabilityDF
is verified:

Lemma 4.1.1 For any FOL-signature (S, F,P), any ([S], [F], [P])-model

M ′ with M ′ |= DF, any (S, F,P)-sentence ρ, and any w ∈ M ′
ST, if

M ′ |= V(ρ) then

M ′|w |=(S,F,P) ρ if and only if M ′w |=([S],[F]+x,[P]) [ρ]
x (8)

where M ′w denotes the expansion of M ′ to ([S], [F] + x, [P]) defined

byM ′w
x = w.

Proof. The proof is by induction on the structure of ρ.

1. When ρ is t = t ′ the lemma is an immediate consequence of the
following relation

(M ′|w)t = (M ′w)[t]x , for any term t (9)

which is proved by induction on t as follows:

(M ′|w)σ(t1,...,tn)

= { defn of evaluation of terms}

(M ′|w)σ((M ′|w)t1 , . . . , (M ′|w)tn)

= { defn ofM ′|w }

M ′
σ(w, (M ′|w)t1 , . . . , (M ′|w)tn)

= { becauseM ′w
x = w and defn of term evaluation}

M ′w
σ(x,[t1]x,...,[tn]x)

= { defn of [_]x}

M ′w
[σ(t1,...,tn)]x

2. When ρ is π(t1, . . . , tn):

M ′|w |= π(t1, . . . , tn)
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⇔ { defn of FOL-satisfaction}

((M ′|w)t1 , . . . , (M ′|w)tn) ∈ (M ′|w)π

⇔ { defn of (M ′|w)π and by (9)}

(w,M ′w
[t1]x

, . . . ,M ′w
[tn]x

) ∈M ′
π

⇔ { becauseM ′w
x = w}

M ′w |= π(x, [t1]x, . . . , [tn]x)

3. When ρ is ξ1 ?ξ2 for ? ∈ {∧,∨,⇒} or ρ is ¬ξ, the proof reduces
to an immediate application of the recursion hypothesis.

4. When ρ is (∀Y)ξ:

M ′|w |= (∀Y)ξ iff M ′′ |= ξ for any (S, F+ x,P)-expansion M ′′

ofM ′|w, and

M ′w |= (∀Y)([ξ]x)Y iff N ′w |= ([ξ]x)Y for any ([S], [F] + Y +

x, [P])-expansion N ′w ofM ′w.

The proof proceeds by showing the equivalence between the
right hand sides of the two equivalences above. This follows
from the following facts:

• There is a canonical bijection between ([S], [F]+Y+x, [P])-
expansions N ′w of M ′w and (S, F+ Y,P)-expansions M ′′

of M ′|w given by M ′′
y = N ′wy for each y ∈ Y. This

relies upon equality (M ′|w)s = M ′
s which follows from

M ′ |= V(ρ).

• Each N ′w as above determines an ([S], [F + Y] + x, [P])-
expansion N ′′w of M ′w by N ′′wy (m) = N ′wy for all m ∈
M ′

ST and each y ∈ Y. Furthermore

N ′′w |= [ξ]x if and only if N ′w |= ([ξ]x)Y . (10)

• M ′′ = N ′′|w.

The induction hypothesis entails M ′′ |= ξ iff N ′′w |= [ξ]x. By
(10) it follows thatM ′′ |= ξ iff N ′w |= ([ξ]x)Y .

2
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4.1.2 The standard translation lifting

Let (SignHI, SenHI, ModC, |=) be a hybridisation of an institution I

such that, for all χ ∈ DHI,

• χNom are finite extensions, and

• χMS are identities.

Given any comorphism

(Φ,α,β) : I→ FOLpres

such that Φ(DI) ⊆ DFOL, we define another comorphism

(Φ ′C,α ′,β ′C) : (SignHI, SenHI, ModC, |=)→ FOLpres

in two steps:

1. We define a functorΦ ′ : SignHI → SignFOLpres
, a natural trans-

formation α ′ : SenHI ⇒ Φ ′; SenFOLpres
, and a natural transfor-

mation β ′ : Φ ′op; ModFOLpres ⇒ModHI.

2. We extend the definitions of Φ ′ and β ′ to Φ ′C and β ′C respec-
tively. Then we prove the Satisfaction Condition for (Φ ′C,α ′,β ′C).

Let us start at step (1), with the translation of signatures. As men-
tioned before, beyond the introduction of state-parameter, we have to
transform nominals and modalities into standard constants and predi-
cates over ST. This construction is formalized as follows:

Definition 4.1.4 (Translation of signatures) For any HI signature

(Σ, Nom,Λ), let

Φ ′(Σ, Nom,Λ) =

([SΣ], [FΣ] + Nom, (Ds)s∈SΣ + [PΣ] +Λ, ΓΣ ∪DFΣ)

where

• Φ(Σ) = ((SΣ, FΣ,PΣ), ΓΣ), where (SΣ, FΣ,PΣ) is a FOL-signature

and ΓΣ is a set of (SΣ, FΣ,PΣ)-sentences;
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• (Nom)ar→s =

Nom when ar = ∅, s = ST,

∅ for the other cases;

• (Λ)ar =

Λn when ar = (ST)n,n ∈N

∅ for the other cases;

• ΓΣ = {∀x [γ]x | γ ∈ ΓΣ}∪ V(ΓΣ).

The translation of signature morphisms by Φ ′ extend translations
viaΦ as follows:

Definition 4.1.5 (Translation of the signature morphisms) For any HI

signature morphism

ϕ = (ϕSign,ϕNom,ϕMS) : (Σ1, Nom1,Λ1)→ (Σ2, Nom2,Λ2)

the FOLpres signature morphismΦ ′(ϕ) is defined as follows:

• Φ ′(ϕ)Sign is the extension of

[Φ(ϕSign)] : ([SΣ1 ], [FΣ1 ], [PΣ1 ])→ ([SΣ2 ], [FΣ2 ], [PΣ2 ])

given by

– Φ ′(ϕ)op
Sign(Ds) = DΦ(ϕSign)st(s) for each sort s ∈ SΣ1

• Φ ′(ϕ)Nom(n) = ϕNom(n) for each n ∈ Nom1, and

• Φ ′(ϕ)MS(λ) = ϕMS(λ) for each λ ∈ Λ1.

Fact 4.1.1 Φ ′(ϕ) of Definition 4.1.5 is a presentation morphism

Φ ′(Σ1, Nom1,Λ1)→ Φ ′(Σ2, Nom2,Λ2).

Next definition establishes the translation of the sentences. The key
idea is to use the principle underlying the standard translation
HFOL2FOL to lift I2FOL into HI2FOL. For this purpose, the transla-
tion of the basic I-sentences by I2FOL is followed by the application
of the state-parametrisation procedure, extending the standard trans-
lation principle in all the hybrid features (nominals and modalities)
accordantly:
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Definition 4.1.6 (Translation of sentences) The translation of the sen-

tences is given by α ′(Σ,Nom,Λ)(ρ) = (∀x)α ′x(Σ,Nom,Λ)(ρ), where

α ′x(Σ,Nom,Λ) : SenHI(Σ, Nom,Λ)

→ SenFOL([SΣ], [FΣ] + Nom + x, (Ds)s∈S + [PΣ] +Λ)

with x a constant of sort ST, is defined

• for each ρ ∈ SenI(Σ), α ′x(ρ) = [αΣ(ρ)]
x

• α ′x(i) = (i = x), i ∈ Nom;

• α ′x(@iρ) = α ′i(ρ);
• α ′x([λ](ρ1, . . . , ρn)) =
∀y1, . . . ,yn

(
λ(x,y1, . . . ,yn)⇒

∨
16i6n α

′yi(ρi)
)
;

• α ′x(〈λ〉(ρ1, . . . , ρn)) =
∃y1, . . . ,yn

(
λ(x,y1, . . . ,yn)∧

∧
16i6n α

′yi(ρi)
)
;

• α ′x(ρ1 ? ρ2) = α ′x(ρ1) ?α ′x(ρ2), ? ∈ {∨,∧,⇒};

• α ′x(¬ρ) = ¬α ′x(ρ);

• α ′x∆ ((∀χ)ρ) = (∀i)(∀Y)(α ′x∆ ′+i(ρ))Y , where

– χ : ∆→ ∆ ′+ iwith∆ = (Σ, Nom,Λ),∆ ′ = (Σ ′, Nom,Λ),

– Φ(Σ ′) = Φ(Σ)+Y (since by hypothesisΦ(χSign) ∈ DFOL),

and

– (α ′x∆ ′+i(ρ))Y is the result of replacing in α ′x∆ ′+i(ρ) all oc-

currences of y(i) by y for each y in Y.

From the naturality of α it follows:

Fact 4.1.2 α ′ is natural transformation.

We turn now to the translation of models. The idea of recovering a
model (M,W) ∈ ModI(∆) from a model M ∈ ModFOLpres(Φ ′(∆))

is rather natural.The relational part of the model is directly extracted
from the {ST}-component ofM (with the respective constants and pred-
icates). Then, the (local) I-models are built, state by state, applying the
base models translation of I2FOL to the respective slice. Formally:
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Definition 4.1.7 (Translation of models) For any HI signature

(Σ, Nom,Λ) and any Φ ′(Σ, Nom,Λ)-modelM ′, define

β ′(Σ,Nom,Λ)(M
′) = (M,W)

where

• W is the reduct M ′�({ST},Nom,Λ), i.e. |W| =M ′
ST, Wi =M

′
i for

each i ∈ Nom, andWλ =M
′
λ, for each λ in Λ, and

• M : |W|→ |ModI(Σ)| is defined, for each w ∈ |W|, by Mw =

βΣ(M
′|w), whereM ′|w abbreviates (M ′�([SΣ],[FΣ],[PΣ]))|w.

As expected:

Lemma 4.1.2 Definition 4.1.7 is correct, in the sense that for each

w ∈ |W|,M ′|w |= ΓΣ.

Proof. Since M ′ |= V(ΓΣ) ∪DFΣ we may apply the conclusion of
Lemma 4.1.1 from the right to the left for each γ ∈ ΓΣ. In order to do
this note that, because M ′ |= ΓΣ, we have M ′ |= (∀x)[γ]x, for each
γ ∈ ΓΣ. HenceM ′w |= [γ]x for each γ ∈ ΓΣ. 2

Having defined the functor Φ ′ and the natural transformations α ′

and β ′, we have to adjust them to the constrained models. In particu-
lar, the semantical restrictions of a constrained models functor should
be reflected on the semantics of the respective encoding. For this we
resort to a functor C : SignHI → SignFOLpres such that the constraints
of ModC(∆) could be taken into account in the axiomatization of
C(∆). Given this functor, we extend Φ ′ and β ′ to Φ ′C and β ′C ac-
cordantly.Thus,

Definition 4.1.8 A functor C is compatible withΦ ′ when the diagram

below commutes

SignHI Φ ′
//

C
��

SignFOLpres

U
��

SignFOLpres

U
// SignFOL

where U denotes the forgetful functor.

For C compatible withΦ ′, let
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• Φ ′C denote the functor that represents the componentwise union

of the corresponding presentations, i.e. Φ ′C(∆) is the union of

Φ ′(∆) and C(∆), and

• β ′C : Φ ′C; ModFOLpres ⇒ ModHI denote the corresponding

(componentwise) restriction of β ′.

Next theorem characterises the conditions on C for which the in-
tended comorphism HI2FOL holds. The inherent technicality of the
conditions is justified with the high level of abstraction achieved, which
allows a proper treatment of some complex issues, such as quantifica-
tions. In particular,

• 1 assures the suitability of C w.r.t ModC;

• 2 assures the definability of the FOL-quantifications resulting
from the translation of basic sentences;

• 3 assures that the adequacy of χSign is not lost on the restriction
of β ′C; and

• 4 imposes that quantifications of χSign are in fact first-order
quantifications.

Hence,

Theorem 4.1.1 Assume a functor C compatible withΦ ′ such that

1. For each HI-signature∆ and eachM ′ ∈ |ModFOLpres
(Φ ′C(∆))|,

β ′∆(M
′) ∈ |ModC(∆)|.

2. For any HI-signature∆ = (Σ, Nom,Λ) and for any Σ-sentence

ξ,

Φ ′C(∆) |= V(αΣ(ξ)). (11)

3. Each signature morphism χ ∈ DHI with χNom = 1Nom is ade-

quate for β ′C.

4. For each signature morphism (χ : ∆→ ∆ ′) ∈ DHI such that

Φ(χSign) : Φ(Σ)→ Φ(Σ) + Y for Y set of FOL variables,

Φ ′C(∆ ′) |= {(∀z1, z2)y(z1) = y(z2) | y ∈ Y}. (12)
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Then, for any ∆ = (Σ, Nom,Λ) ∈ |SignHI|, ρ ∈ SenHI(∆),

M ′ ∈ |ModFOLpres
(Φ ′C(∆))| and w ∈M ′

ST,

β ′C∆ (M ′) |=w∆ ρ if and only if M ′w |=Φ ′(∆)+x α
′x
∆ (ρ), (13)

where (as in Lemma 4.1.1)M ′w denotes the expansion ofM ′ toΦ ′(∆)+

x defined byM ′w
x = w.

Proof. The proof is by induction on the structure of ρ. Let us denote
β∆(M

′) by (M,W).

1. If ρ = i, for some i ∈ Nom

(M,W) |=w∆ i

⇔ { defn. of |=w∆ }

Wi = w

⇔ { defn β ′ and ofM ′w }

M ′
i(=M

′w
i ) =M ′w

x

⇔ { defn FOLpres-satisfaction}

M ′w |=Φ ′(∆)+x i = x

⇔ { defn of α ′x}

M ′w |=Φ ′(∆)+x α
′x(i)

2. If ρ ∈ SenI(Σ):

(M,W) |=w∆ ρ

⇔ { defn. of |=w∆ }

Mw |=I ρ

⇔ { defn. of β ′}

βΣ(M
′|w) |=Σ ρ

⇔ { by the satisfaction condition of (Φ,α,β)}

M ′|w |=Φ(Σ) αΣ(ρ)
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⇔ { by (11) and Lemma 4.1.1}

M ′w |=Φ ′(∆)+x [αΣ(ρ)]
x

⇔ { defn of α ′x}

M ′w |=Φ ′(∆)+x α
′x(ρ)

⇔ { by (11) and Lemma 4.1.1}

M ′w |=Φ ′(∆)+x [αΣ(ρ)]
x

⇔ { defn α ′x}

M ′w |=Φ ′(∆)+x α
′x(ρ)

3. If ρ = @iξ:

(M,W) |=w∆ @iξ

⇔ { defn. o |=∆}

(M,W) |=Wi∆ ξ

⇔ { I.H.}

M ′Wi |=Φ ′(∆)+x α
′x(ξ)

⇔ { sinceM ′Wi
x =Wi =M

′
i}

M ′ |=Φ ′(∆) α
′i(ξ)

⇔ { satisfaction condition in FOL}

M ′w |=Φ ′(∆)+x α
′i(ξ)

⇔ { defn of α ′x}

M ′w |=Φ ′(∆)+x α
′x(@iξ)

4. If ρ = [λ](ξ1, . . . , ξn) with λ ∈ Λn+1:

(M,W) |=w∆ [λ](ξ1, . . . , ξn)

⇔ { defn. of |=∆}
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for any (w,w1, . . . ,wn) ∈Wλ there exists 1 6 i 6 n

such that (M,W) |=wi ξi

⇔ { I.H.}

for any (w,w1, . . . ,wn) ∈Wλ there exists 1 6 i 6 n

such thatM ′wi |=Φ ′(∆)+yi α
′yi(ξi)

⇔ { defn of |=Φ ′(∆)}

for all w1, . . . ,wn

M ′ww1...wn |=Φ ′(∆)+x+y1+···+yn λ(x,y1, . . . ,yn)

⇒
∨

16i6n

α ′yi(ξi)

⇔ { Rule of Generalization in FOL}

M ′w |=Φ ′(∆)+x ∀y1, . . . ,yn λ(x,y1, . . . ,yn)⇒∨
16i6n

α ′yi(ξi)

⇔ { defn. of α ′x}

M ′w |=Φ ′(∆)+x α
′x([λ](ξ1, . . . , ξn))

5. If ρ = ξ∨ ξ ′:

(M,W) |=w∆ ξ∨ ξ
′

⇔ { defn. of |=∆}

(M,W) |=w∆ ξ or (M,W) |=w∆ ξ
′

⇔ { I.H.}

M ′w |=Φ ′(∆)+x α
′x(ξ) or M ′w |=Φ(∆)+x α

′x(ξ ′)

⇔ { defn of |=FOLpres
}

M ′w |=Φ ′(∆)+x α
′x(ξ)∨α ′x(ξ ′)

⇔ { defn of α ′x}

M ′w |=Φ ′(∆)+x α
′x(ξ∨ ξ ′)
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The proofs for cases ρ = ξ∧ ξ ′, ρ = ξ⇒ ξ ′, ρ = ¬ξ, etc. are
analogous.

6. If ρ = (∀χ : ∆→ ∆ ′ + i)ξ:

(M,W) |=w∆ (∀χ)ξ
⇔ { defn. of |=∆}

(N,W ′) |=w∆ ′+i ξ

for any χ-expansion (N,W ′) of (M,W)

⇔ { by Lemma 4.1.3 (above) and induction hypothesis}

N ′w |=Φ ′(∆ ′)+i+x α
′x(ξ)

for any Φ ′C(χ)-expansion N ′ ofM ′

⇔ { by Fact 4.1.3}

(N ′)wY |=Φ ′(∆)+Y+i+x (α
′x(ξ))Y

for any (N ′)Y a Φ ′(∆) + Y + i-expansion ofM ′

⇔ { |=FOL}

M ′w |=Φ ′(∆)+x (∀i)(∀Y)(α ′x(ξ))Y
⇔ { defn of α ′x}

M ′w |=Φ ′(∆)+x α
′x((∀χ)ξ)

2

Fact 4.1.3 Let us denote by Y the block of variables such that

Φ(χSign) : Φ(Σ)→ Φ(Σ ′) = Φ(Σ) + Y.

Note that by (12) the model reduct ModFOLpres
(Φ ′C(∆+ i) + Y) →

ModFOLpres
(Φ ′C(∆ ′ + i)) corresponding to the second order substitu-

tion Φ ′(∆ ′ + i) → Φ ′(∆+ i) + Y that maps each term y(i) (with y

in Y and i ∈ Nom) to y, is a bijection. Let (_)Y denote the inverse of

this bijection.

Lemma 4.1.3 χ is adequate for β ′C.
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Proof. It is very easy to see that any signature with a nominal is
adequate, hence the signature extension ∆ ′ → ∆ ′ + i is adequate for
β ′C. By hypothesis we know that (χSign, 1Nom, 1Λ) is adequate for
β ′C, hence by Fact 2.3.1 we get that χ, which is the composition of
these signature morphisms, is adequate for β ′C too. 2

Finally:

Corollary 4.1.1 (Satisfaction condition for (Φ ′C,α ′,β ′C)) Under the

conditions of Theorem 4.1.1 above, (Φ ′C,α ′,β ′C) is comorphism

(SignHI, SenHI, ModC, |=)→ FOLpres,

i.e. for any ∆ ∈ |SignHI|, ρ ∈ SenHI(∆) and

M ′ ∈ |ModFOLpres
((Φ ′C)(∆))|,

β ′C∆ (M ′) |=∆ ρ if and only ifM ′ |=Φ ′C(∆) α
′
∆(ρ).

4.2 E X A M P L E S

We illustrate the method of the previous section with a number of ex-
amples.

Example 4.2.1 (HPL2FOL) Consider the case of HPL discussed in
Example 3.2.1. The base comorphism (Φ,α,β) is the canonical em-
bedding of PL into FOL presented on Example 2.3.14. This means the
D’s and the Γ ’s are empty. The quantification space for the hybridi-
sation consists of extensions with nominal variables. Hence, for any
signature (Prop, Nom),

Φ ′(Prop, Nom) = ({ST}, Nom, [Prop] + λ).

Moreover, for any sentence ρ ∈ SignHPL(Prop, Nom),

α ′(Prop,Nom)(ρ) = (∀x)αx(Prop,Nom)(ρ),

where

• for each ρ ∈ SenHPL(Prop), α ′x(Prop,Nom)(ρ) = [αProp(ρ)]
x

• α ′x(Prop,Nom)(i) = (i = x), i ∈ Nom;

• α ′x(Prop,Nom)(@iρ) = α
′i
(Prop,Nom)(ρ);
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• α ′x(Prop,Nom)([λ]ρ = (∀y) λ(x,y)⇒α
′y
(Prop,Nom)

(ρ);

• α ′x(Prop,Nom)(ρ1 ? ρ2) = α
′x
(Prop,Nom)(ρ1) ?α

′x
(Prop,Nom)(ρ2), ? ∈

{∨,∧,⇒};

• α ′x(Prop,Nom)(¬ρ) = ¬α ′x(Prop,Nom)(ρ);

• α ′x(Prop,Nom)((∀i)ρ) = (∀i)α ′x(Prop,Nom+{i})(ρ).

Observe that, as expected, the transformation α ′ coincides with the
so-called “standard translation” for the propositional hybrid logic (e.g.
[Bla00, Bra10]).

The models translation,
M ′ ∈ModHPL(Φ ′(Prop, Nom)) (= (ModHPL({ST}, Nom, [Prop]+
λ)), β ′(Prop,Nom)(M

′) = (M,W) is obtained as follows:

• W =M ′�({ST},Nom,λ);

• for any w ∈W,
Mw = βProp((M

′�[prop])|w) = (M ′�[prop])|w, i.e., for any p ∈
Prop, (Mw)p iff w ∈M ′

p.

Hence, conditions (11) and (12) of Theorem 4.1.1 are vacuously
satisfied.

Let us consider now the case of T-hybrid propositional logic (see
Example 3.2.1). In this case we have to constrain the models that the
accessible relation Wλ is reflexive. The functor C is such that each
C(P, Nom) is the presentation containing the sentence (∀x)λ(x, x).
Note that Φ ′C maps any signature (P, Nom) to the FOL-presentation
(({ST}, Nom, [P] + λ), (∀x)λ(x, x)). Again, conditions (11) and (12)
of Theorem 4.1.1 are vacuously satisfied, as well as the adequacy con-
dition for β ′C (of the same theorem). ◦

Example 4.2.2 (HTRM2FOL) Let us consider the comorphism
TRM2FOL of Example 2.3.13. Then the method yields

Φ ′(∗, Nom,Λ) =
(
{St}, Nom,p∗ : ST +Λ), ∅

)
.

Moreover, for any sentence ρ ∈ SignHTRM(∗, Nom,Λ),

α ′(∗,Nom,Λ)(ρ) = (∀x)αx(ρ),

where
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• α ′x(i) = (i = x), i ∈ Nom;

• α ′x(@iρ) = α ′i(ρ);
• α ′x([λ](ρ1, . . . , ρn)) =
∀y1, . . . ,yn

(
λ(x,y1, . . . ,yn)⇒

∨
16i6n α

′yi(ρi)
)
;

• α ′x(〈λ〉(ρ1, . . . , ρn)) =
∃y1, . . . ,yn

(
λ(x,y1, . . . ,yn)∧

∧
16i6n α

′yi(ρi)
)
;

• α ′x(ρ1 ? ρ2) = α ′x(ρ1) ?α ′x(ρ2), ? ∈ {∨,∧,⇒};

• α ′x(¬ρ) = ¬α ′x(ρ);

The models translation,M ′ ∈ModHTRM(Φ ′(∗, Nom,Λ)),

β ′(Prop,Nom)(M
′) = (M,W)

is obtained as follows:

• W =M ′�({ST},Nom,λ);

• for any w ∈W,Mw = ∗

Since we have no Ds neither Γ and since this is a quantifier-free hy-
bridisation, we have that all the conditions of Theorem 4.1.1 trivially
hold. ◦

Example 4.2.3 (H2PL2FOL) Let us now consider the case of H2PL
presented in Example 3.2.3. We take, as base comorphism, the comor-
phism between the free hybridisation of PL into FOL Example 4.2.1.
Hence, we have Φ(Prop, Nom ′) = ({ST ′}, Nom ′, [Prop] + {λ}). We
denote the sort of states with a prime, ST ′, in order to distinguish it
from the sort ST introduced in the hybridisation process.

Thus,Φ ′((Prop, Nom ′), Nom,Λ) =

([{ST ′}], [Nom ′] +Nom,DST ′ + [[Prop] + {λ}],D
[Nom ′]+Nom).

As expected we have now a sort of states for each level of hybridisa-
tion [{ST ′}] = {ST, ST ′}. Predicate DST ′ plays the role of a “sub-state-
relation”. A nominal i of the basis signature has now a different inter-
pretation for each “super-state” of ST (by i : ST → ST ′(∈ [Nom ′]))
and similarly for the base modality λ (by a predicate λ : ST× ST ′ ×
ST ′).
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In order to get condition (11) of Theorem 4.1.1 fulfilled, since for
any ρ ∈ SenHPL(Prop, Nom ′), α(Prop,Nom)(ρ) is ST ′-universally
quantified, we have to take

C((Prop, Nom ′), Nom,Λ) = {(∀x,y)DST ′(x,y)}. (14)

This implies directly C((Prop, Nom ′), Nom,Λ) |= D
[Nom ′]+Nom.

Since the hybridisation is free, the adequacy condition for β ′C of The-
orem 4.1.1 trivially holds. Moreover, because we admit, at the hy-
bridisation level, quantification over the nominals, condition (12) of
Theorem 4.1.1 is vacuously satisfied. Thus

Φ ′C((Prop,Nom ′), Nom,Λ) =

(
([{ST ′}], [Nom ′]+Nom,DST ′ +[[Prop]+ {λ}]), (∀x,y)DST ′(x,y)

)
.(15)

Regarding the constraint version H2PL ′, the sharing of the sub-
states universe can be specified by (∀x,y, z)DST ′(x, z) ⇔ DST ′(y, z).
Again, since it is a consequence of (14),Φ ′C((Prop,Nom ′), Nom,Λ)
is still defined as in (15).

◦

Example 4.2.4 Let us now consider the free hybridisation of FOL
with only quantification over nominal variables. The base comorphism
(Φ,α,β) is the identity, hence all Γ ’s are empty. Hence,

Φ ′((S, F,P), Nom,Λ) = ([S], [F] + Nom, (Ds)s∈S + [P] +Λ,DF).

In order to get the condition (11) of Theorem 4.1.1 fulfilled we define

C((S, F,P), Nom,Λ) = {(∀x,y)Ds(x,y) | s ∈ S}.

Note that C((S, F,P), Nom,Λ) |= DF. Hence we may write

Φ ′C((S, F,P), Nom,Λ) =

([S], [F] + Nom, (Ds)s∈S + [P] +Λ, {(∀x,y)Ds(x,y) | s ∈ S}).

Because in this case only quantifications over nominal variables are
allowed the condition (12) of Theorem 4.1.1 is vacuously fulfilled and
so is the adequacy condition for β ′C (of the same theorem).
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The variant of this example in which the base institution is the quantifier-
free fragment of FOL rather that the whole of FOL, has all C’s empty,
and hence Φ ′C = Φ ′.

The version of the above variant which considers quantification with
first order variables at the level of the hybridisation, requires, to get
condition (12) of Theorem 4.1.1 fulfilled, that

C((S, F,P), Nom,Λ) |= {(∀z1, z2)y(z1) = y(z2) | y ∈ F→s, s ∈ S}.
However because the hybridisation is free there is no way to get the
adequacy condition for β ′C. Hence in this case it is not possible to
build the encoding comorphism.

Example 4.2.5 When encoding HREL ′ (of Example 3.2.5) the base
comorphism (Φ,α,β) is the canonical embedding of REL into FOL
determined by the embedding of REL signatures as FOL signatures.
Hence all Γ ’s are empty. Thus,

Φ ′((C,P), Nom,Λ) = (({ST, ?}, [C] + Nom, {D?}+ [P] +Λ),DC).

The sharing of the underlying universe requires all C’s to contain

(∀x,y, z)D?(x, z)⇔ D?(y, z).

However in order to get condition (11) of Theorem 4.1.1 fulfilled
(∀x,y)D?(x,y) is also needed. Since the latter sentence implies the
former and also implies DC, we can do only with (∀x,y)D?(x,y). Fi-
nally, the sharing of the interpretations of constants requires
{(∀x,y)σ(x) = σ(y) | σ ∈ C}. This also meets (12) of Theorem 4.1.1.
Hence: Φ ′C((C,P), Nom,Λ) =
(({ST, ?}, [C] + Nom, {D?}+ [P] +Λ), {(∀x,y)D?(x,y)}∪
{(∀x,y)σ(x) = σ(y) | σ ∈ C}). It remains to check the adequacy con-
dition for β ′C, which is a very easy task. Let ∆ denote the HREL sig-
nature ((C,P), Nom,Λ). For any block Y of variables for the REL sig-
nature (C,P), any HREL ′-model (N,W) for ∆+ Y, and anyΦ ′C(∆)-
modelM ′ such that (N,W)�∆ = β ′(M ′),

ModHREL ′
(∆) ModFOLpres

(Φ ′C(∆))
β ′C
∆oo

ModHREL ′
(∆+ Y)

OO

ModFOLpres
(Φ ′C(∆+ Y))

OO

β ′C
∆+Y

oo
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the amalgamation ofM ′ and (N,W) is theΦ ′C(∆+ Y)-expansionN ′

ofM ′ defined byN ′y(z) = (Nw)y ∈Ms, for any z ∈M ′
ST = |W| and

any w ∈ |W|. This definition does not depend on s because the under-
lying universe and the interpretation of the constants are shared. Note
also thatN ′ satisfies indeed the sentences ofΦ ′C(∆+ Y) since, by the
satisfaction condition in FOL, it satisfies the sentences of Φ ′C(∆) and
also (∀z1, z2)y(z1) = y(z2) for each y ∈ Y.

Let us also recall HREL ′0 in Example 3.2.5. In this case, the “in-
crease of the domains” should be axiomatized, for any λ ∈ Λ, as

(∀x,y, z)
[
λ(x,y)⇒ ((D?(x, z)⇒ D?(y, z))

]
.

Since we have no basic quantification, neither any constraint on the uni-
verses or constants sharing, conditions (11) and (12) of Theorem 4.1.1
are trivially fulfilled.

◦

Example 4.2.6 In the case of the encoding of HFOLR ′ (see Exam-
ple 3.2.6) the quantification space DHFOLR consists of extensions with
nominal variables and rigid first-order variables. The base comorphism
(Φ,α,β) is defined as follows:

1. Φ is the forgetful functor SignFOLR → SignFOL that maps a
signature (S,S0, F, F0,P,P0) to (S, F,P),

2. α(S,S0,F,F0,P,P0) is the inclusion SenFOLR(S,S0, F, F0,P,P0) ⊆
SenFOL(S, F,P) (the difference is given by the quantification
which in FOLR is restricted to the rigid symbols), and

3. β(S,S0,F,F0,P,P0) is the identity on ModFOL(S, F,P).

This is a comorphism mapping signatures to signatures. Hence all Γ ’s
are empty. Thus,

Φ ′
(
(S,S0, F, F0,P,P0)

)
= ([S], [F] + Nom,D+ [P] +Λ,DF)

The specification of the model constraints requires that
C
(
(S,S0, F, F0,P,P0)

)
contains the following sentences:

1. for each s ∈ S0, (∀x,y, z)Ds(x, z)⇔ Ds(y, z),

2. for each σ in F0, (∀x,y,Z)σ(x,Z) = σ(y,Z), and
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3. for each π in P0, (∀x,y,Z)π(x,Z)⇔ π(y,Z).

Note that these already cover condition (12) of Theorem 4.1.1. For
condition (11) of Theorem 4.1.1 we have to add also the sentences
(∀x,y)Ds(x,y) for each s ∈ S0, which are stronger than

(∀x,y, z)Ds(x, z)⇔ Ds(y, z).

All these together define the functorC that specifies the constraints. Fi-
nally, the adequacy condition for β ′C is checked as in Example 4.2.5.

◦

Example 4.2.7 In the case of the encoding of HPAR ′ (see Exam-
ple 3.2.7) the base comorphism (Φ,α,β) extends canonically the first
encoding comorphism PA → FOLpres, presented in Example 2.3.15,
say (Φ0,α0,β0), to a comorphism PAR→ FOLpres making

- Φ(S,S0, TF, TF0,PF,PF0) = Φ0(S, TF,PF),

- α = α0 and

- β = β0.

The encoding to FOLpres obtained as an instance of the general en-
coding presented above yieldsΦ ′(S,S0, TF, TF0,PF,PF0) =

(
([S], [TF+

PF] + Nom, (Ds)s∈S + [(Defs)s∈S] +Λ),DTF+PF ∪ Γ(S,TF,PF)
)
. For any

HPAR signature ((S,S0, TF, TF0,PF,PF0), Nom,Λ), the rigidification
constraint on S0 and TF0 are axiomatized by {(∀x, z)Ds(x, z) | s ∈ S0}
and {(∀x,y,Z)σ(x,Z) = σ(y,Z) | σ in TF0} respectively. The con-
straints on the definability of PF0 must be axiomatized, for any σ ∈
(PF0)ar→s, ar ∈ S∗, s ∈ S as

Defs(x, (σ(x,Z))⇔ Defs(y, (σ(y,Z)).

Hence,
C((S,S0, TF, TF0,PF,PF0), Nom,Λ) =

{(∀x, z)Ds(x, z) | s ∈ S0} ∪
{(∀x,y,Z)σ(x,Z) = σ(y,Z) | σ in TF0} ∪
{(∀x,y,Z)Defs(x, (σ(x,Z))⇔
Defs(y, (σ(y,Z)) | σ ∈ (PF0)ar→s, ar ∈ S∗, s ∈ S}
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Note that the first component in the definition of C covers also con-
dition (11) of Theorem 4.1.1 while condition (12) of Theorem 4.1.1 is
entailed by the second component of C. Finally, the adequacy condi-
tion for β ′C is checked in Example 4.2.5 ◦

4.3 C O N S E RVAT I V I T Y

In this section we give a general method to lift the conservativity prop-
erty from the base comorphism (Φ,α,β) : I → FOLpres to comor-
phism (Φ ′C,α ′,β ′) : HIC → FOLpres. We assume the conditions
and notation of Theorem 4.1.1 above.

Proposition 4.3.1 Let us assume, for each I-signature Σ, a mapping

δΣ : |ModI(Σ)|→ |ModFOLpres
(Φ(Σ))|

such that for each Σ-model A, βΣ(δΣ(A)) = A. For each HI signa-

ture ∆ = (Σ, Nom,Λ) and each model (M,W) ∈ |ModHI(∆)| such

that, for any sort of a variable occurring in a quantification of some

sentence inΦ(Σ), and any w,w ′ ∈ |W|, we have that

δΣ(Mw)s = δΣ(Mw ′)s. (16)

Then, there exists aΦ ′(∆)-model δ ′∆(M,W) such thatβ ′∆(δ
′
∆(M,W)) =

(M,W).

Proof. Let Φ(Σ) = ((SΣ, FΣ,PΣ), ΓΣ). We define a Φ ′(∆)-model M ′

as follows:

– M ′
ST = |W|,

– M ′
i =Wi for each i ∈ Nom,

– M ′
λ =Wλ for each modality symbol λ in Λ,

– for each s ∈ SΣ,M ′
s =

⋃
w∈|W| δΣ(Mw)s andM ′

Ds
= {(w,m) |

m ∈ δΣ(Mw)s},

– for each σ ∈ (FΣ)ar→v,

M ′
σ(w,m) =

δΣ(Mw)σ(m), whenm ∈ δΣ(Mw)ar;

any y ∈ δΣ(Mw)v, otherwise.
Note that the correctness of this definition relies upon our basic
hypothesis that the FOL-models have non-empty carriers.
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– for each π in PΣ,M ′
π = {(w,m) | m ∈ δΣ(Mw)π}.

Now we have to prove that M ′ satisfies the sentences of Φ ′(∆). That
M ′ |= DFΣ follows immediately from the definitions of M ′

Ds
and

of M ′
σ. Also from the hypothesis (16) we have that M ′ |= V(ΓΣ).

For each w ∈ |W| we let M ′|w be defined as in Definition 4.1.7 and
Lemma 4.1.1. Note that for each

w ∈ |W|, M ′|w = δΣ(Mw). (17)

Since δΣ(Mw) |= ΓΣ, from (17) and Lemma 4.1.1 it follows that
M ′w |= {[γ]x | γ ∈ ΓΣ}, (where M ′w denotes the expansion of M ′

to the signature extended with the constant x such that M ′w
x = w).

From the latter relation we deduce thatM ′ |= ΓΣ.
That β ′(M ′) = (M,W) may be noted immediately with the help of

the relation (17). Hence we define δ ′∆(M,W) =M ′. 2

Corollary 4.3.1 Any comorphism as in Corollary 4.1.1, such that for

each constrained model (M,W) ∈ |ModC(∆)|,

1. (M,W) satisfies condition (16) of Proposition 4.3.1, and

2. δ ′∆(M,W) |= C(∆)

is conservative.

Example 4.3.1 The encoding of S4 hybrid propositional logic of Ex-
ample 4.2.1 is conservative according to Corollary 4.3.1, as follows:

– δΣ are identities,

– condition (16) of Proposition 4.3.1 is vacuously fulfilled (all Γ ’s
are empty), and

– obviously, for each S4 HPL model (M,W),

δ ′∆(M,W) |= (∀x)λ(x, x).

◦

Example 4.3.2 (HTRM2FOL) The comorphism HTRM2FOL is con-

servative according to Corollary 4.3.1:
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• δ∗ is the identity;

• since all Γ ’s are empty, the condition (16) of Proposition 4.3.1 is

vacuously fulfilled.

◦

Example 4.3.3 (H2PL2FOL) Let as characterize the conservativity of
H2PL2FOL of Example 4.2.3. Consider therefore the map

δ(Prop,Nom ′) : ModHPL(Prop, Nom ′)→ModFOL({ST ′}, Nom ′, [Prop]+λ)

where δ(Prop,Nom ′)(M,W) =M ′ and

- M ′
ST =W,

- for any p ∈ [Prop], w ∈M ′
ST,M ′

p(w) iff (Mw)p,

- for any i ∈ Nom ′,M ′
i =Wi and

- M ′
λ =Wλ.

Hence we have β(Prop,Nom ′)(M
′) = (M1,W1) (cf. Example 4.2.3),

where

- W1 =M
′
ST =W;

- for any p ∈ Prop, (M1w)p iff w ∈M ′
p iff (Mw)p;

- for any i ∈ Nom, (W1)i =Mi =Wi and

- (W1)λ =M
′
λ =Wλ.

Therefore (M1,W1) = (M,W), i.e.,

δ(Prop,Nom ′)(β(Prop,Nom ′)(M,W)) = (M,W).

Moreover, condition (16) of Proposition 4.3.1 is vacuously fulfilled
(all Γ ’s are empty). Finally, we observe that there are models (M,W)

failing to verify δ ′∆(M,W) |= (∀x,y)DST ′(x,y). By this reason, the
comorphism is not conservative.

For the case H2PL ′, we have by the definition of δ ′ (cf. proof of
Proposition 4.3.1) that δ ′(M,W)DST ′ = {(w,m) | m ∈ δΣ(Mw)ST ′}.
Since we have sharing on the sub-states universe, this is equal to |M ′

ST|×
|M ′

ST ′ |. Hence δ ′∆(M,W) |= (∀x,y)DST ′(x,y) and, therefore,
H2PL ′2FOL is conservative. ◦
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Example 4.3.4 The encoding of the quantifier free hybridisation of
FOL of Example 4.2.4 is not conservative. Although the condition
(16) of Proposition 4.3.1 is vacuously fulfilled (the Γ ’s are empty) the
example fails in the condition introduced by Corollary 4.3.1 since there
are models (M,W) such that δ ′∆(M,W) 6|= (∀x,y)Ds(x,y).

However the variant of the example that takes the quantifier free
fragment of FOL as a base institution is conservative because in that
case the C’s are empty (see Example 4.2.4) and thus the condition
introduced by Corollary 4.3.1 is vacuously fulfilled. ◦

Example 4.3.5 The encoding of the hybridisation HREL ′ of REL of
Example 4.2.5 is conservative according to Corollary 4.3.1 because:

1. δΣ are identities,

2. condition (16) of Proposition 4.3.1 is vacuously fulfilled (all Γ ’s
are empty), and

3. for each HREL ′ model (M,W), δ ′∆(M,W) satisfiesC(∆) since
for all w,w ′ ∈ |W|,

δΣ(Mw)x = (Mw)x = (Mw ′)x = δΣ(Mw ′)x

for each sort symbol or constant x.

The conservativity of comorphism HREL ′02FOLpres can be established
considering points 1 and 2 as above, and observing that for each HREL ′0
model (M,W), δ ′∆(M,W) satisfiesC(∆) as follows: by the constraint
definition we have that, for all w,w ′ ∈ |W|, and for any λ ∈ Λ such
that (w,w ′) ∈ Wλ, |Mw| ⊆ |Mw ′ |. Moreover, by the definition of δ ′,
that for any w ∈W, |(M ′

D?
|w)| = |Mw|. Hence

|(M ′
D?

|w)| = |Mw| ⊆ |Mw ′ | = |(M ′
D?

|w ′)|.

Therefore, for anym,M ′
D?

(w,m) ⊆M ′
D?

(w ′,m). Hence,

M ′ |= (∀x,y, z)[λ(x,y)⇒ (D?(x, z)⇒ D?(y, z))]

◦

Example 4.3.6 The encoding of the hybridisation of FOLR of Exam-
ple 4.2.6 is conservative according to Corollary 4.3.1 by arguments
similar to those expressed in Example 4.3.5 above. ◦
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Example 4.3.7 Consider now the encoding of the hybridisation HPAR ′

in Example 4.2.7. This is conservative according to Corollary 4.3.1.
Actually, for each Σ = (S0,S, TF0, TF,PF0,PF)-model M, δΣ(M) is
defined as follows:

– for any s ∈ S, δΣ(M)s = Ms ∪ {⊥} where ⊥ is a new element;
and δΣ(M)Defs =Ms

– for any σ ∈ (TF+ PF)ar→s,

δΣ(M)σ(m) =


Mσ(m), ifm ∈ δΣ(M)Defar and

Mσ(m) is defined

⊥, otherwise.

It is easy to check that δΣ(M) |= Γ(S,TF,PF) and that βΣ(δΣ(M)) =M.
The condition (16) of Proposition 4.3.1 is satisfied as follows. For

each (M,W) ∈ |ModHPAR ′
(∆)|, each rigid sort s (since all quantifi-

cations with first order variables are over rigid sorts) and any w,w ′ ∈
|W|, we have

δΣ(Mw)s = (Mw)s ∪ {⊥} (definition of δ)

= (Mw ′)s ∪ {⊥} ((Mw)s = (Mw ′)s because s is rigid )

= δΣ(Mw ′)s (definition of δ).

The justification that for each HPAR ′ model (M,W), δ ′∆(M,W) |=

C(∆) goes as follows:

1. for each s ∈ S0, δ ′∆(M,W) |= (∀x, z)Ds(x, z) means that for
eachw ∈ |W| and eachm ∈ δ ′∆(M,W)s, (w,m) ∈ δ ′∆(M,W)Ds
which, according to the definition of δ ′∆(M,W)Ds from the proof
of Proposition 4.3.1 means m ∈ δΣ(Mw)s. But δ ′∆(M,W)s =

δΣ(Mw)s because s is rigid (which according to an argument
above implies that for all w,w ′ ∈ |W|, δΣ(Mw)s = δΣ(Mw ′)s).

2. for each σ in TF0, δ ′∆(M,W) |= (∀x,y,Z)σ(x,Z) = σ(y,Z)
holds because of the following facts:

– for each rigid sort s and each w ∈ |W|, δ ′∆(M,W)s =

δΣ(Mw)s;
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– since σ is rigid and total, for each w,w ′ ∈ |W|, (Mw)σ =

(Mw ′)σ;

– for each w ∈ |W|, δ ′∆(M,W)σ(w,m) = δΣ(Mw)σ(m)

because δ ′∆(M,W)s = δΣ(Mw)s.

3. For all ar ∈ S∗, s ∈ S and σ ∈ (PF0)ar→s,

δ ′∆(M,W) |= (∀x,y,Z)Defs(x, (σ(x,Z))⇔ Defs(y, (σ(y,Z))

which means that for all w,w ′ ∈ |W|, δ ′∆(M,W)σ(w,m) ∈
δΣ(Mw)Defs = (Mw)s if and only if δ ′∆(M,W)σ(w

′,m) ∈
δΣ(Mw ′)Defs = (Mw ′)s. But (Mw)s = (Mw ′)s and

δ ′∆(M,W)σ(w,m) = δΣ(Mw)σ(m)

and δ ′∆(M,W)σ(w
′,m) = δΣ(Mw ′)σ(m). Thus the property

is equivalent to the fact that (Mw)σ(m) is defined if and only
if (Mw ′)σ(m) is defined, which holds by the rigidity of σ, i.e.
because (Mw)σ and (Mw ′)σ have the same domain.

◦
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We introduce in this chapter the definition and the characterisation of
suitable relations to compare and relate models of hybridised logics.
There are two important relations to consider: behavioural equiva-

lence, relating models with indistinguishable behaviours and refine-

ment, relating abstract with more concrete models preserving all of
its abstract properties. The choice of bisimilarity to base behavioural
equivalence of models and similarity to base refinement seems quite
standard as a fine grained approach to observation based methods for
system’s comparison. The notion of bisimulation and the associated
conductive proof method were originated in concurrency theory due to
the seminal work of David Park [Par81] and Robin Milner [Mil89] in
the quest for an appropriate definition of observational equivalence for
communicating processes as understood in the CCS calculus [Mil80,
Mil89].

The notion is now pervasive in Computer Science as the standard
behavioural equivalence for a wide range of transition systems. Spe-
cific formalizations range from the case of classical automata and la-

beled transition systems [BBS88, DMV90] to the theory of the most so-
phisticated processes models as probabilistic timed automata or fuzzy

transition systems [ST10, CCK11]. A very abstract unifying notion
of bisimulation was purposed and characterized in universal coalgebra
[AM89, Rut00]. But the concept also arose independently in modal
logic as a refinement of notions of homomorphism between algebraic
models — see [San09] for an extensive historical account, including
its role in the development of (non well-founded) set theory.

This Chapter is organized as follows: Subsection 5.1 introduces a
general notion of bisimulation for hybridised logics and characterizes
the preservation of logic satisfaction under it. Then Subsection 5.2
follows a similar path, but focussing on refinement witnessed by a sim-
ulation relation.

95
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5.1 B I S I M U L AT I O N F O R H Y B R I D I S E D L O G I C S

Intuitively a bisimulation relates states which exhibit the “same" (ob-
servable) information and preserves this property along transitions. Thus,
to define a general notion of bisimulation over Kripke structures whose
states are models of whatever base logic was chosen for specifications,
we have to make precise what the “same" information actually means.
In a previous work [MMB12] on infinitary equational hybrid logic we
required from bisimilar states that the generated varieties of each local
algebra be identical. In the more general setting of an hybridised in-
stitution HI, the corresponding notion is elementary equivalence for

first-order logic (e.g.[Hod97]). We therefore explore this possibility,
requiring (local) I-models of bisimilar states to be elementarily equiv-
alent. Formally,

Definition 5.1.1 Let M,M ′ ∈ ModI(Σ) and Sen ′ be a subfunctor of

SenI. Models M and M ′ are elementarily equivalent with respect to

sentences in Sen ′(Σ), in symbolsM ≡Sen ′
M ′, if for any ρ ∈ Sen ′(Σ)

M |=I ρ⇔M ′ |=I ρ. (18)

If only the implication ⇒ of (18) holds in the right hand side of the

above equivalence we writeM�Sen ′
ϕ M ′.

Note the role of ϕ above: as a signature morphism it captures the
possible change of notation from a specification to another.

Under the institution theory motto — truth is invariant under change

of notation — we writeM ≡Sen ′
ϕ M ′ wheneverM ≡Sen ′

ModI(ϕ)(M ′)

for a given ϕ ∈ SignI(Σ,Σ ′), M ∈ ModI(Σ) and M ′ ∈ ModI(Σ ′).
ModelsM andM ′ are said to be (ϕ, Sen ′)-elementarily equivalent.

Resorting to the satisfaction condition in I, the following character-
isation of (ϕ, Sen ′)-elementary equivalence pops out:

Corollary 5.1.1 On the conditions of Definition 5.1.1, M ≡Sen ′
ϕ M ′

iff for any ρ ∈ Sen ′(Σ), M |=I
Σ ρ⇔M ′ |=I

Σ Sen ′(ϕ)(ρ).

However, its pertinence becomes clear in refinement situations, as
discussed in the next section, where it may accommodate many forms
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of interface enrichment or adaptation (e.g. through the introduction of
auxiliary operations).

Definition 5.1.2 Let HI be the quantifier-free hybridisation of the in-

stitution I and ϕ ∈ SignHI(∆,∆ ′) a signature morphism. Let Sen ′

be a subfunctor of SenI. A (ϕ, Sen ′)-bisimulation between models
(M,W) ∈ ModHI(∆) and (M ′,W ′) ∈ ModHI(∆ ′) is a non-empty

relation Bϕ ⊆ |W|× |W ′| such that

(i) For any λ ∈ Λn, if (w,w1, . . . ,wn) ∈ Wλ and wBϕw ′, then

for each k ∈ {1, . . . ,n} there is aw ′k ∈ |W ′| such thatwkBϕw ′k
and (w ′,w ′1, . . . ,w

′
n) ∈W ′ϕMS(λ)

.

(ii) For any λ ∈ Λn if (w ′,w ′1, . . . ,w
′
n) ∈ W ′ϕMS(λ)

and wBϕw ′,
then for each k ∈ {1, . . . ,n} there is a wk ∈ |W|, such that

wkBϕw ′k and (w,w1, . . . ,wn) ∈Wλ.

(iii) for any wBϕw ′, and for any i ∈ Nom,

Wi = w iffW ′ϕNom(i) = w
′.

(iv) for any i ∈ Nom,WiBϕW ′ϕNom(i).

(v) for any wBϕw ′,Mw ≡Sen ′
ϕSign

M ′
w ′ .

We say that (M,W) and (M ′,W ′) are (ϕ, Sen ′)-bisimilar, and write

(M,W) ⇀↽ϕ (M ′,W ′), if there is a (ϕ, Sen ′)-bisimulation Bϕ be-

tween them. Whenever ϕ is the identity we simply talk of a bisimula-

tion B and bisimilarity ⇀↽.

Next theorem establishes that, for quantifier-free hybridisations, the
(local)-hybrid satisfaction |=HI is invariant under (ϕ, Sen)-bisimulations:

Theorem 5.1.1 Let HI be a quantified-free hybridisation of the insti-

tution I and ϕ ∈ SignHI(∆,∆ ′) a signature morphism. Let Bϕ ⊆
|W|× |W ′| be a (ϕ, Sen)-bisimulation. Then, for any wBϕw ′ and for

any ρ ∈ SenHI(∆),

(M,W) |=w ρ iff (M ′,W ′) |=w
′

SenHI(ϕ)(ρ). (19)

Proof. The proof is by induction on the structure of the sentences.
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1. ρ = i for some i ∈ Nom:

(M,W) |=w i

⇔ { defn. of |=w}

Wi = w

⇔ { (iii) of Definition 5.1.2 }

W ′ϕ(i) = w
′

⇔ { defn. of |=w
′
}

(M ′,W ′) |=w
′
ϕNom(i)

⇔ { defn of SenHI(ϕ)}

(M ′,W ′) |=w
′

SenHI(ϕ)(i)

2. ρ ∈ SenI(Σ):

(M,W) |=w ρ

⇔ { defn. of |=w}

Mw |=I ρ

⇔ { by hypothesisMw ≡ϕSign M
′
w ′ + Corollary 5.1.1}

M ′
w ′ |= SenI(ϕSign)(ρ)

⇔ { defn. of |=w
′
}

(M ′,W ′) |=w
′

SenI(ϕSign)(ρ)

⇔ { defn of SenHI(ϕ)}

(M ′,W ′) |=w
′

SenHI(ϕ)(ρ)

3. ρ = ξ∨ ξ ′ for some ξ, ξ ′ ∈ SenHI(∆):

(M,W) |=w ξ∨ ξ ′

⇔ { defn. of |=w}

(M,W) |=w ξ or (M,W) |=w ξ ′

⇔ { I.H.}

(M ′,W ′) |=w
′

SenHI(ϕ)(ξ) or

(M ′,W ′) |=w
′

SenHI(ϕ)(ξ ′)
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⇔ { defn. of |=w}

(M ′,W ′) |=w
′

SenHI(ϕ)(ξ∨ ξ ′)

The proofs for cases ρ = ξ∧ ξ ′, ρ = ξ⇒ ξ ′, ρ = ¬ξ, etc. are
analogous.

4. ρ = [λ](ξ1, . . . , ξn) for some ξ1, . . . , ξn ∈ SenHI(∆), λ ∈
Λn+1:

(M,W) |=w [λ](ξ1 , . . . , ξn)

⇔ { defn. of |=w}

for any (w,w1, . . . ,wn) ∈Wλ there is some

k ∈ {1, . . . ,n} such that (M,W) |=wk ξk

⇔ { * }

for any (w ′,w ′1, . . . ,w
′
n) ∈W ′ϕMS(λ)

there is some

p ∈ {1, . . . ,n} such that (M ′,W ′) |=w
′
p SenHI(ϕ)(ξp)

⇔ { defn. of |=w
′
}

(M ′,W ′) |=w
′
[ϕMS(λ)](SenHI(ϕ)(ξ1), . . . , SenHI(ϕ)(ξn))

⇔ { defn. of SenHI(ϕ)}

(M ′,W ′) |=w
′

SenHI(ϕ)([λ](ξ1, . . . , ξn))

For the step marked with * we proceed as follows. Supposing
(w ′,w ′1, . . . ,w

′
n) ∈ W ′ϕMS(λ)

with wBϕw ′, we have by clause
(ii) of Definition 5.1.2 that there are wk, with k ∈ {1, . . . ,n},
such that (w,w1, . . . ,wn) ∈Wλ. By hypothesis, (M,W) |=wp

ξp for some p ∈ {1, . . . ,n}. Moreover, by I.H. (M ′,W ′) |=w
′
p

SenHI(ϕ)(ξp). Clause (i) of Definition 5.1.2 entails the con-
verse implication. The proof for sentences of form ρ = 〈λ〉(ξ1, . . . , ξn)
is analogous.

5. ρ = @iξ for some ξ ∈ SenHI(∆) and i ∈ Nom:
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(M,W) |=w @iξ

⇔ { defn. of |=w}

(M,W) |=Wi ξ

⇔ { I.H. and clause (iv) of Definition 5.1.2}

(M ′,W ′) |=W
′
ϕNom(i) SenHI(ϕ)(ξ)

⇔ { defn. of |=w}

(M ′,W ′) |=w @ϕNom(i)SenHI(ϕ)(ξ)

⇔ { defn. of SenHI(ϕ)}

(M ′,W ′) |=w SenHI(ϕ)(@iξ)

2

As a direct consequence of the previous theorem we get the follow-
ing characterisation of the preservation of (global) satisfaction, |=HI,
under ϕ-bisimilarity:

Corollary 5.1.2 On the conditions of Theorem 5.1.1, let (M,W) ⇀↽ϕ

(M ′,W ′) witnessed by a total and surjective bisimulation. Then,

(M,W) |=HI ρ iff (M ′,W ′) |=HI SenHI(ϕ)(ρ). (20)

Example 5.1.1 (Bisimulation in HPL) Let us instantiate Definition 5.1.2
for the HPL case (cf. Example 3.2.1), consideringϕ = id and Sen ′ =
SenI. Let consider the models

(M,W), (M ′,W ′) ∈ |ModHPL(P, Nom, {λ})|.

B is a bisimulation between (M,W) and (M ′,W ′) if

(i) for any (w,w1) ∈ Wλ with wBw ′, there is a w ′1 ∈ |W ′| such
that w1Bw ′1 and (w1,w ′1) ∈W ′λ;

(ii) for any (w ′,w ′1) ∈ W ′λ with wBw ′, there is a w1 ∈ |W| such
that w1Bw ′1 and (w1,w ′1) ∈W ′λ;

(iii) for any i ∈ Nom, wBw ′, w =Wi iff w ′ =W ′i ;
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(iv) for any i ∈ Nom,WiBW ′i ;

(v) Mw ≡M ′
w ′ , i.e., bisimilar states satisfy the same sentences.

Note that condition (v) is equivalent to say that bisimilar states have
assigned the same set of propositions (for any p ∈ P, Mw(p) = >
iff M ′

w ′(p) = >). As expected, this definition corresponds exactly to
standard bisimulation for propositional hybrid logic (see, e.g. [tC05,
Defn 4.1.1]). ◦

The definition of bisimulation computed in the previous example,
can also capture the case of propositional modal logic: just consider
pure modal signatures (i.e., with an empty set of nominals), as con-
dition (iii) and (iv)is trivially satisfied. Moreover, instantiating The-
orem 5.1.1 we get the classical result on the preservation of modal
satisfaction by bisimulation (cf. [BVB07]).

Example 5.1.2 (Bisimulation for HEQ) Consider now the instantia-
tion of 5.1.2 for HEQ. All one has to do is to replace condition (iv)
in Definition 5.1.2 by its instantiation for algebras: two algebras are
equationaly equivalent if the respective generated varieties coincides
[Grä79]. ◦

5.2 R E F I N E M E N T S F O R G E N E R I C H Y B R I D I S E D L O G I C S

A standard notion of refinement for Kripke models, and in general for
transition systems, is based on simulations. On the one hand, it entails
preservation (but not reflection ) of transitions, from the abstract to the
concrete system. On the other hand, at each local state, preservation
of the original properties along local refinement. In the context of the
approach, this amounts to our following characterization:

Definition 5.2.1 Let HI be the quantified-free hybridisation of an in-

stitution I, ϕ ∈ SignHI(∆,∆ ′) a signature morphism and Sen ′ a sub-

functor of SenI. A (ϕ, Sen ′)-refinement of (M,W) ∈ ModHI(∆) by
(M ′,W ′) ∈ ModHI(∆ ′) consists of a non-empty relation RSen ′

ϕ ⊆
|W|× |W ′| such that, for any wRSen ′

ϕ w ′,

(f.i) for any i ∈ Nom, ifWi = w thenW ′ϕNom(i) = w
′.
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(f.ii) Mw �Sen ′
ϕ M ′

w ′ .

(f.iii) for any i ∈ Nom,Wi RSen ′
ϕ W ′ϕNom(i).

(f.iv) For any λ ∈ Λn, if (w,w1, . . . ,wn) ∈ Wλ then for each k ∈
{1, . . . ,n} there is a w ′k ∈ |W ′| such that wkRϕw ′k and

(w ′,w ′1, . . . ,w
′
n) ∈W ′ϕMS(λ)

.

Is (hybrid) satisfaction preserved by refinement? On a first attempt,
it is natural to accept a positive answer which, although intuitive, is
wrong. Actually, not all hybrid sentences can be preserved along a
refinement chain. Note on the proof of Theorem 5.1.1, that the preser-
vation of hybrid satisfaction of sentences [λ](ξ1, . . . , ξn) is entailed
by condition (ii) of Definition 5.1.1, but the latter is stated on the op-
posite direction to refinement. As a simple counter-example, define a
Rϕ-refinement from a ∆-hybrid model (M,W) with |W| = {w} and
Wλ = ∅ for λ ∈ Λn to any other ∆ ′-hybrid model (M ′,W ′) such
that ModHI(ϕSign)(M

′
w ′) = Mw for some w ′ ∈ |W ′|. Sentence

[λ](ξ1, . . . , ξn), which trivially holds in the state w of (M,W), may
fail to be satisfied in the Rϕ-related state w ′ of (M ′,W ′). Sentences
like ¬ξ provide another counter-example. The reason is that, by hy-
pothesis, preservation is only assumed on the refinement direction and,
of course, non satisfaction in one direction, does not imply non satis-
faction in the other. Therefore, differently from the bisimulation case,
the preservation of the satisfaction under refinement does not hold for
all the hybrid sentences. Actually, the ‘boxed’ and negated sentences
are exactly the cases in which this may fail.

Finally, a note regarding parameter Sen ′ in condition (f.ii). First
of all note that the “unrestricted” implication of clause (f.ii) in Defini-
tion 5.2.1 is very strong: it often implies the converse implication as
well. For instance, in HPL, the condition holds if and only if Mw =

Mod(ϕ)(M ′
w ′). In particular, an id-refinement implies the equal-

ity of realisations of related states (since, the implication “Mw |=PL

¬p thenM ′
w ′ |=PL ¬p” is equivalent to the implication “M ′

w ′ |=PL

p thenMw |=PL p”. Hence, Mw = M ′
w ′). It seems reasonable to

somehow weaken this condition to yield a strict inclusion. One way to
do this is to restrict the focus to a subset of the sentences in the base
institution. In the example mentioned above this will correspond to
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exclude PL negations, which amounts to take as Sen ′(Prop) the set of
propositional sentences without negations.

Given an institution I = (SignI, SenI, ModI, (|=Σ)Σ∈|SignI|
) and a

sentences subfunctor Sen ′ ⊆ SenI, we denote by HI ′ the hybridisa-
tion of the institution I ′ = (SignI, Sen ′, ModI, (|=Σ)Σ∈|SignI|

).

Definition 5.2.2 (Sen ′-Positive Existencial sentences) The Sen ′-
positive existencial sentences of a signature ∆ ∈ |SignHI| are given by

a subfunctor SenHI
+ ⊆ SenHI ′ defined recursivly for each signature ∆

as SenHI ′(∆) but excluding both negations and box modalities. For

each signature morphism ϕ : ∆ → ∆ ′, SenHI
+ (ϕ) is the restriction of

SenHI ′(ϕ) to SenHI
+ (∆).

Theorem 5.2.1 Let HI be the quantifier free hybridisation of an in-

stitution I, Sen ′ a subfunctor of SenI, ϕ ∈ SignHI(∆,∆ ′) a signa-

ture morphism, (M,W) ∈ ModHI(∆) and (M ′,W ′) ∈ ModHI(∆ ′).

Suppose that (M ′,W ′) is a refinement of (M,W) witnessed by the

relation RSen ′
ϕ . Then, for any wRSen ′

ϕ w ′ and ρ ∈ SenHI
+ (∆),

(M,W) |=w ρ implies that (M ′,W ′) |=w
′

SenHI(ϕ)(ρ).

Proof. The proof is by induction on the structure of the existential pos-
itive sentences and comes directly from the proof of Theorem 5.1.1,
taking the right to left implication. Preservation of base sentences
follows exactly the same proof since the induction hypothesis is pre-
cisely about the Sen ′ sentences. What remains to be proved is the case
ρ = 〈λ〉(ξ1, . . . , ξn). We have,

(M,W) |=w 〈λ〉(ξ1 , . . . , ξn)

⇔ { defn. of |=w}

there exists (w,w1, . . . ,wn) ∈Wλ

such that (M,W) |=wk ξk for any k ∈ {1, . . . ,n}

⇒ { By (f.iii), we have wkRϕw ′
k for any k ∈ {1, . . . ,n} + I.H. }

there exists (w ′,w ′1, . . . ,w
′
n) ∈W ′ϕMS(λ)

such that (M ′,W ′) |=w
′
k ξk for any k ∈ {1, . . . ,n}

⇔ { defn. of |=w
′
}

(M ′,W ′) |=w
′ 〈ϕMS(λ)〉(SenHI(ϕ)(ξ1), . . . , SenHI(ϕ)(ξn))
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⇔ { defn. of SenHI(ϕ)}

(M ′,W ′) |=w
′

SenHI(ϕ)(〈λ〉(ξ1, . . . , ξn))

2

Corollary 5.2.1 In the conditions of Theorem 5.2.1, for any ρ ∈ SenHI
+ (∆),

if Rϕ is surjective, then

(M,W) |= ρ implies that (M ′,W ′) |= SenHI(ϕ)(ρ).

The following examples illustrate refinement situations in this set-
ting.

Example 5.2.1 (Refinement in HMVLL) Figure 2 illustrates an ex-
ample of a Sen ′-refinement in HMVLL4 , for L4 represented in Fig-
ure 2. Consider Sen ′ ⊆ SenI restricting the base sentences to propo-
sitions, i.e., Sen ′(LProp) = {(p, l)|p ∈ LProp and l ∈ L4}. Con-

p = ?; q = b

p = ?; q = b

p = ?; q = >

p = ?; q = >

closeclose
p = ?; q = >

>

?

a bL4

p = ?; q = a

p = ?; q = a

p = ?; q = >

Figure 2: Refinement in HMVLL.

ditions (f.i) and (f.iii) of Definition 5.2.1 are obviously satisfied. In
what concerns the verification of condition (f.ii) for which (p, l) ∈
Sen ′(LProp), Mw |=

MVLL4
LProp (p, l) ⇒ M ′

w ′ |=
MVLL4
LProp (p, l), it is suffi-

cient to see that, (Mw |= p) 6 (M ′
w ′ |= p), p ∈ LProp. ◦

Example 5.2.2 (Refinement in HEQ) Consider a store system abstractly
modelled as the initial algebra A of the ((S, F), Γ) where
S = {mem, elem}, Fmemelem→mem = {write}, Fmem→mem = {del}

and Far→s = ∅ otherwise and Γ = {del(write(m, e)) = m}. Sup-
pose one intends to refine this structure into a read function config-
urable in two different modes: in one of them it reads the first element
in the store, in the other the last. Reconfiguration between the two
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execution modes is enforced by an external event shift. Note that
the abstract model can be seen as the

(
(S, F), ∅, {shift}

)
-hybrid model

M = (M,W), taking |W| = {?}, Wshift = ∅ and M? = A. Then,
we take the inclusion morphism ϕSign : (S, F) ↪→ (S, F ′) where F ′

extends F with Fmem→elem = read and Fmem = {empty}. For the
envisaged refinement let us consider the model M ′ = (M ′,W ′) where
W ′ = {s1, s2} and W ′shift = {(s1, s2), (s2, s1)} and where Ms1 and
Ms2 are the initial algebras of the equations presented in Figure 3. It

del(write(m, e)) = m shiftshift

del(write(m, e)) = m

del(write(m, e)) = m

read(write(m, e)) = e

read(write(empty, e)) = e
read(write(m, e)) = read(m)

M
M0

Figure 3: Refinement in HEQ.

is not difficult to see that R = {(?, s1), (?, s2)} is a ϕ-refinement rela-
tion: conditions (f.i) and (f.iii) of Definition 5.2.1 are trivially fulfilled
and, condition (f.ii) is a direct consequence of initiallity. ◦
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6
H Y B R I D I S AT I O N F O R T H E W O R K I N G
S O F T WA R E E N G I N E E R

6.1 M OT I VAT I O N

As a complex artefact software has to meet requirements formulated
and verified at different levels of abstraction. As mentioned in the intro-
duction of this thesis, a basic distinction is drawn between behavioural
(dynamic) and data (static) aspects. Another one distinguishes between
the local and global levels. This is particularly relevant in the project
of reconfigurable systems where the former encompasses the services
and operations provided in each configuration, and the latter concerns
the overall system dynamics leading from one configuration to another.

Actually, what a software component may offer at each stage de-
pends on its own evolution and history. It typically acts as an evolving

structure which may change from one mode of operation to another,
entailing corresponding updates in what counts, at each mode or stage,
as a valid description of its behaviour. For example, a component in
a sensor network may be unable to restart a particular equipment if
in an alarm stage of operation, but not in a normal one. On the other
hand, the way it computes the result of sensoring a number of hard-
ware control devices may change from one mode to another (changing,
for example, the palette of weights used to compute a weighted sum of
measurements).

This entails the need to consider in the project of reconfigurable soft-
ware two different levels of specification. The global view is that of a
transition system whose transitions are triggered by events that enforce
a move from a configuration to another. Modal logics provide the stan-
dard language to express properties and reason about this sort of struc-
tures. On the other hand, the specification of each configuration may
resort to whatever formalism fits better the problem domain. Equation
logic, as well as its partial or hidden, variants are typical choices in
classical algebraic specification [EM85, Wir90, ST12]. But less com-

109
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mon alternatives are equally useful, for example, multivalued logic to
express a certain degree of vagueness in the problem, or modal logic
itself when each configuration is described by a local transition sys-
tem, for instance by a process algebra expression. Reference [Bjø06a],
the second volume of Dines Bjørner monumental treatise on Software
Engineering, offers a detailed discussion on the choice of specification
logics for different problem domains.

As stated in the Introduction, this thesis aims at building foundations
for a specification method in which these two levels are not only made
explicit and juxtaposed, but formally interrelated. The key to achieve
such a goal is the hybridisation process characterised in Chapters 3 to
5. Actually, through the hybridisation of whatever is taken as a local
specification formalism, the relation between the local and global lev-
els becomes internalised in the logic itself. This leads to a specification
method for reconfigurable systems whose development is documented
in reference [MFMB11]. The second part of this thesis, encompassing
Chapters 6 and 7, is devoted to its introduction and illustration. The
overall approach is presented in this chapter. Tool support and addi-
tional techniques are discussed in Chapter 7.

Note that at each specification stage one needs to consider the math-
ematical structures suitable to model systems’ components; the lan-

guages in which such models can be described and, finally, the rela-

tionship between the (semantic) structures and the (syntactic) formu-
lation of requirements as sentences in the specification language. In a
quite canonical way, the three aspects can be put under the common
umbrella of an institution [GB92] which, as an abstract representation
of a logical system, encompasses syntax, semantics and satisfaction,
and provides ways to relate, compare and combine specification log-
ics. As argued below, it is remarkable how the theory of institutions
not only provides a standard, mathematically solid basis for the ap-
proach discussed here, but also paves the way to suitable tool support.
A discussion on the use of the HETS platform [MMCL13] for validat-
ing our specifications is included in Chapter 7.
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6.2 T H E A P P RO AC H

As suggested by the title of this chapter, the approach proposed in
the sequel to the specification of reconfigurable systems builds upon
the the hybridisation process introduced in Part I. This is done at two
levels:

• First of all the introduction of hybrid features on top of the modal
language used to specify the overall transition structure, makes
possible to refer to individual configurations in an explicit way,
leading to more flexible and precise specifications. For exam-
ple, nominals and the corresponding satisfaction operators give
the specifier a “surgical” precision in talking about the system’s
configurations.

• On the other hand, through hybridisation of whatever logic is
chosen to specify individual configurations, we get a single, pow-
erful logic weaving together local and global aspects to reason
about the system. The two conceptual levels mentioned above
get unified through the use of a common logic which bears in its
own structure local and global means of expression.

• Finally, the institution-based construction used provides a pre-
cise way to transport specifications and proofs from a logic to
another to seek for appropriate tool support for the method.

These three aspects characterise the methodological contribution of
the thesis and, in our opinion, distinguish it from other proposals in the
literature.

The approach is depicted in Figure 4, where I stands for the logic
used locally to specify individual configurations and HI is its hybridis-
ation. The former will be referred to as the base logic, to be consistent
with the terminology already used in Part I. The picture details our
motto:

reconfigurations as transitions, configurations as local models

This is made concrete in a rather straightforward way. Models for
reconfigurable software are structured transition systems: states corre-
sponds to the possible configurations, and transitions to the admissible
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reconfigurations. The novelty is that the approach is parametric on
how configurations are modelled, or, more precisely, on the base logic.
It is exactly in this sense that we claim the method discussed in this
chapter to be institution independent.

Reconfiguration Dynamics

States = configurations
transitions = reconfigurations

configuration modeling

modeling local behavior and 
functionality

transition
structure

configurations 
are

-models

classical modal 
logic

-senteces

naming states +indexing 

-models
 

-sentences

Hybrid features 

Figure 4: Specification of reconfigurable systems: The approach.

The upper part of Figure 4 refers to the global level of a specification;
the lower one to the local description of configurations. The line in the
middle emphasises the role of hybrid features: in a formula they pro-
vide a way to name evaluation states, whereas in a model they index the
relevant configuration. Actually, each configuration is characterised by
a local model capturing its functionality and behaviour. Hybrid models
(M,W), discussed in Chapter 3, seem appropriate for this role. Recall
W is a model in REL interpreting nominals and modalities, whereasM
associates to each state the corresponding (local) model of the configu-
ration it stands for. Of course, the kind of structures these local models
possess is determined by the choice of the base logic (institution) I.

We shall now outline the main steps of the specification method pro-
posed and illustrate its application through a small but detailed exam-
ple. Section 6.3, on its turn, elaborates on the choice of a base logic to
meet specific application requirements.

The method depicted in Figure 5, is divided in four phases:

• definition of the specification framework,

• interface description,

• specification of properties and
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• analysis and validation.

Quantification 
space 

Kind of 
quantifications 
intended

Q

Base institution 

Logic for the 
configurations

Constraint 
Models  

Semantical 
restrictions 
needed

Mod0

Framework

 Defn of

List of the 
configurations

Nom

Defn of

List of the 
reconfiguration 
events

⇤

Defn of 

Define the  
interface of the 
system

⌃

 

Global configurations
properties
⇢, ⇢ 2 SenI(⌃)

Local configuration
properties
@i⇢, ⇢ 2 SenI(⌃), i 2 Nom

 

Reconfigurations 
specification

@ih�ij, @i[�]j

. . .
⇢ ) h�i⇢0

PropertiesInterface Validation

- using FOL 
provers
- manually 

Property 
Cheking

- construction 
and analysis of 
particular models 

Modelling

Figure 5: Specification of reconfigurable systems: The method.

Example 6.2.1 (A plastic buffer) Our tour through the different stages
of the specification method will be illustrated with the following exam-
ple.

A ‘plastic buffer’, depicted in Figure 6, is a versatile data

structure with two distinct modes of execution: in one of

them it behaves like a stack; in the other like a queue. The

reconfiguration is triggered by an event ‘shift’ which may

abstract some sort of internal condition, e.g. an increase

on the the difference between the rates associated to the

incoming and outcoming data streams.

◦

Definition of the specification framework

In this first stage the Software Engineer is supposed to fix the speci-
fication framework by generating the specification language through
hybridisation of a base logic. This entails the need to instantiating the
triple parameter of the hybridisation method by choosing

• the institution representing the base logic suitable to specify in-
dividual configurations of the problem at hands,
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fifolifo

shift

shift

Figure 6: A plastic buffer.

• the quantification space, and

• the relevant constrained models

These choices are the crucial ones as they fix the working institu-
tion and therefore constrains all subsequent development. In particular,
the choice of the base institution I needs to be made only after most
of the problem informal requirements were given and clearly under-
stood. One may, for example, specify configurations as multialgebras

to cope with non determinism, or with multi-valued logic to deal with
uncertainty. Another possibility is partial equational logic to deal with
exceptions, or observational logics when the local level encapsulates
hidden spaces. Moreover, as mentioned above, in some cases each
configuration can be regarded as a transition system itself and a modal
language in then in order.

The other two parameters play also relevant roles. The decision
about what kind of quantification is to be allowed has a direct impact
on the expressiveness of the framework. On the other hand, enforcing
additional constraints upon the models provides the technical support
to deal with sharing (e.g. of data, operations or both) across configura-
tions. Such constraints may also tune the accessibility relation which
expresses the reconfigurations dynamics (imposing, for example, a re-
flexive or an ordered structure). Both issues are closely related: for
example, global quantification over the universes of individual config-
urations requires the previous choice of a suitable constrained model.
In practice the following kinds of quantification are find useful:

• Quantification over the base institution, i.e. over the domains of
system’s configurations. This can be
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– global, if a shared universe for all the configurations is cho-
sen and the quantified variables are assumed to be rigid.
Actually, this is the typical way to ‘relate computations of’
or to ‘communicate values across’ different configurations.

– or local, i.e., ranging over each particular configuration do-
main. Technically, this is obtained by taking a quantifier-
free hybridisation with respect to the first component of
the quantification morphisms.

• Quantification over nominals, which makes possible to express
properties about the systems global state space. This is particu-
larly useful, for instance, to express the existence of configura-
tions satisfying a given requirement.

• Quantification over modalities, a rather powerful form of quan-
tification useful to express enabling/disabling of reconfigurations,
discussed later in Subsection 7.2.

As usual, when facing these choices the specifier should take into ac-
count the compromise between expressiveness and formal tractability.
For instance, quantification over modalities should not be used if the
aim is to take advantage of the first-order encodings discussed in Chap-
ter 4 to obtain suitable tool support for validating the specifications.
Similarly, the relationships between the choice of constrained mod-
els and that of quantification spaces cannot be overlooked (cf. Theo-
rem 4.1.1).

Example 6.2.2 (A plastic buffer) A specification framework for the
‘plastic buffer’ example must take into consideration the partiality in-
herent to the reading operations (undefined whenever the buffer is
empty). This suggests the adoption of a version of PA as the base
institution. On the other hand, as the data handled in both config-
urations is the same, i.e., their definition shared, rigidifications over
signatures should be enforced. The combination of these two aspects
recommends the choice of PAR introduced in Example 3.2.7 as the
base institution to fix the specification framework. ◦
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Interface description

At this stage all the relevant ‘vocabulary’ to specify the intended sys-
tem is declared. This includes the enumeration of all configurations to
be considered (i.e., the component Nom) and the events triggering re-
configurations (i.e., the componentΛ). Moreover, a (local) I-signature
for the specification of individual configurations (i.e., the component
Σ) is required. In a sense, the latter can be understood as the actual
interface of the system since the services and functions offered at each
configuration must be declared at this stage.

In order to represent hybrid signatures in an uniform way we resort
to a terse notation, close to that of the specification language CASL
[ABK+02]. In particularly, we use the following header:

spec SPECNAME in HBASEINST =

Nom
list of nominal symbols

Modal
list of modality symbols

BaseSig
signature of the base institution

Axioms
set of axioms

SPECNAME is the specification identifier, and BASEINST stands for
the base institution I adopted when fixing the specification framework.
The fields Nom and Modal are used for the declaration of nominal and
modality symbols, respectively. Arities of modalities are given by nat-
ural numbers and are presented in front of the respective symbol (e.g.
event:k means that the modality event has arity k). The parameter
BaseSig is the declaration of the I-signature Σ. Since the structure of
those signatures is specific for each hybridisation, there is no way to
fix the syntax for this declaration. Finally, the field Axioms contains
the specification expressed in axioms of the chosen logic.

Example 6.2.3 (A plastic buffer) The‘plastic buffer’ has to commute
between two different configurations denoted by nominals fifo (for the
queue mode) and lifo (for the stack mode), respectively. The event re-
sponsible for triggering a reconfiguration is denoted by the modality
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symbol shift. This makes up the global, REL-based component of the
hybrid signature. Basically, its role is to express the system’s reconfig-
uration semantics.

The local interface is a PAR-signature with the following compo-
nents:

• a sort mem of stacks/queues;

• a sort elem of elements;

• a total operation write to denote the ‘push/enqueue’ operation;

• a constant new to denote the empty buffer;

• a partial operation read to denote the ‘top/front’ operation;

• a partial operation del to denote the ‘pop/dequeue’ operation.

On its turn rigidification is discussed as follows:

• since the buffer stores data of the same type in both configura-
tions, elem and mem are declared to be rigid;

• operation write is also rigid and, since it is total, it has the same
effect in both configurations;

• operations read and del play different roles in each individual
configuration. However, both are declared as rigid because they
are partial and in HPAR this means that while their interpre-
tation might differ from one configuration to another, their do-
mains remain fixed (cf. Example 3.2.7). In this case both read

and del are defined on non-empty stacks/queues.

The local, PAR-based component of the hybrid signature is depicted
in Figure 7 in an ADJ-like diagram. Partiality and rigidity of opera-
tions is marked by a circle and a ramified source, respectively. The
hybrid signature is given as follows, where symbol R is used to mark
the rigid components:

Nom
fifo

lifo
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elemmem

read

new

write

del

Figure 7: Plastic Buffer PAR signature.

Modal
shift : 1

BaseSig
sorts mem R

elem R
ops new :→ mem R

write : mem × elem→ mem R
del : mem→? mem R
read : mem→? elem R

◦

Specification of properties

Properties, both local and global, are introduced at this stage. They
correspond to requirements placed at different levels of abstraction. In
particular, the Software Engineer has to consider

1. the global properties, i.e., properties holding in all the configura-
tions, which are expressed through (atomic) I-sentences;

2. the local properties, i.e. relative to specific configurations, which
are expressed by tagging I-sentences with the satisfaction opera-
tor @ (@iρ is used to express that property ρ holds in the config-
uration named by i);

3. and, finally, the reconfiguration dynamics whose specification
resorts to the modal features introduced in the hybridisation pro-
cess.
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Example 6.2.4 (A plastic buffer) For the ‘plastic buffer’ example our
starting point is the classical specification of queues and stacks in par-
tial equational logic. Then satisfaction operators @ are used to assign
each set of local properties to the corresponding configuration. For the
local specification of configuration lifo we use

∀© e : elem; ∀©m : mem;

• @lifodel(write(m, e)) e
= m

• @liforead(write(m, e)) e
= e

Similarly, for the local specification of configuration fifo,

∀© e : elem; ∀©m : mem;

• @fiforead(write(new, e)) e
= e

• @fifodel(write(new, e)) e
= new

• @fifo read(m)
e
= read(m)⇒ read(write(m, e)) e

= read(m)

• @fifo read(m)
e
= read(m)⇒ del(write(m, e)) e

= write(del(m), e)

Finally, the reconfiguration dynamics is given by

• @fifo〈shift〉lifo ∧ @lifo〈shift〉fifo

expressing configuration alternation triggered by event shift. The com-
plete specification is depicted in Figure 8.

Note that the quantification is local which means it is placed at
the level of the base institution (hence the use of notation ∀© ; see
Fact 3.1.3). For example the first sentence in the specification reads
as @lifo( ∀© e)( ∀©m)del(write(m, e)) e

= m.

Other properties could also be considered to avoid ‘anomalous’ mod-
els. Actually, as it always happens in loose semantics, the specification
admits other models behind the ones in which all configurations are
distinguished and suitably identified by nominals. Such ‘junk configu-

rations’ exist, as well as one may have to deal with ‘confusion on the

configurations’ whenever different nominals identify the same state.
Both situations can be avoided by considering some additional axioms.
In particular, the first case is ruled out by including

lifo ∨ fifo
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spec PLASTICBUFFER in HPAR =
nom

fifo
lifo

modal
shift : 1

BaseSig
sorts mem R

elem R
ops new :→ mem R

write : mem × elem→ mem R
del : mem→? mem R
read : mem→? elem R

∀© e : elem; ∀©m : mem;
%(stack properties)%

• @lifodel(write(m, e)) e
= m

• @liforead(write(m, e)) e
= e

%(queue properties)%
• @fiforead(write(new, e)) e

= e
• @fifodel(write(new, e)) e

= new
• @fifo read(m)

e
= read(m)⇒ read(write(m, e)) e

= read(m)
• @fifo read(m)

e
= read(m)⇒ del(write(m, e)) e

= write(del(m), e)
%(reconfigurations spec)%

• @fifo〈shift〉lifo ∧ @lifo〈shift〉fifo
end

Figure 8: Plastic Buffer HPAR Specification.
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as an axiom. Similarly
¬@lifo fifo

or, equivalently, ¬@fifo lifo, avoids confusion.

Analysis and validation

The construction and the analysis of particular models of a specifica-
tion is a most relevant step in the design process. In a sense, it can be
understood as a high level implementation of the specification, a first
prototype acting as a proof-of-concept for the system. Once a model is
available, its validation, i.e. the systematic verification of the specified
properties, becomes crucial. Although this can be done with ‘paper
and pencil’, the availability of computational proof-support tools is a
necessary condition for the methodology to be considered a viable al-
ternative in the software industry.

There is a number of provers available for propositional hybrid log-
ics. They can of course be of use when dealing with hybrid(ised)
propositional logic. Among the implementations of logical calculi for
HPL we single out HTAB [HA09], HYLOTAB [vE02] and SPARTA-
CUS [GKS10]). Other works, for example [Lan09, HS08], study model
checking procedures for hybrid propositional models.

Unfortunately, propositional hybrid logic has a limited use in the
specification of reconfigurable systems. Actually, it only suits the case
in which states have no structure, i.e. when the local description of
individual configurations is irrelevant. On the other hand, and to the
best of our knowledge, there is no effective tool support for richer hy-
brid logics. The method proposed in this thesis, considering first or-
der encodings of hybridised logics emerges as a promising solution to
support a wide class of specifications. Such encodings in FOL presen-
tations were introduced in Chapter 4. Whenever they are supported
by the base institution (and in practice they often are as most logics
used in specifications admit them), there are a number of tools for vali-
dating the (translated) specification. For example, SPASS [WDF+09],
VAMPIRE [RV02], PROVER9 [McC10] and DARWIN [BPT12] are well
known examples of successful automatic theorem provers. Model find-
ing technics, as implemented, for example, in MACE4 [McC10], can
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also help in checking consistency or disproving statements (by the gen-
eration of suitable counter-examples).

HETS — the Heterogeneous Tool Set [MML07, MMCL13], pro-
vides a flexible interface to interrelate logics and the corresponding
support tools. In particular, most of the FOL-provers mentioned above
are already accessible from HETS. The integration of the hybridisation
process proposed in this thesis into the HETS framework is discussed
in Section 7.1.

Example 6.2.5 (A model for the plastic buffer) Let us consider a model
(M,W) for the specification of a ‘plastic buffer’ discussed above. The
global, REL component of the signature is interpreted as follows:

– |W| = {sfifo, slifo};

– Wlifo = slifo andWfifo = sfifo;

– Wshift = {(sfifo, slifo), (slifo, sfifo)}.

A buffer over an arbitrary data type A can be implemented by a se-
quence ofA values, i.e. an element ofA∗. The sequence concatenation
is denoted by _._ and ε stands for the empty sequence.

– (Msfifo)elem = (Mslifo)elem = A;

– (Msfifo)mem = (Mslifo)mem = A∗;

– (Mslifo)new = (Mslifo)new = ε;

– (Msfifo)write(L,a) = (Mslifo)write(L,a) = L.a;

– (Mslifo)del(L) = J if L = J.a for J ∈ A∗, a ∈ A and is unde-
fined otherwise;

– (Msfifo)del(L) = J if L = a.J for J ∈ A∗, a ∈ A and is unde-
fined otherwise;

– (Mslifo)read(L) = a if L = J.a, for J ∈ A∗, a ∈ A and is
undefined otherwise;

– (Msfifo)read(L) = a if L = a.J, for J ∈ A∗, a ∈ A and is
undefined otherwise;
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One may now conjecture whether the following properties are valid.

( ∀© e, e ′,m,m ′)

[shift](m ′ = write(e,m))⇔ (m ′ = write(e,m)) (21)

( ∀© e, e ′,m,m ′)

〈shift〉(m ′ = write(e,m))⇔ (m ′ = write(e,m)) (22)

( ∀©m,m ′,m1,m2)(m
′ = del(m1))∧ [shift](m1 = del(m))

⇔ ([shift](m ′ = del(m2))∧ (m2 = del(m)) (23)

To proceed we start building the FOL encoding of the specification.

Example 6.2.6 (A first-order encoding) We shall now build the en-
coding of the ‘plastic buffer’ HPAR ′ specification into FOL, following
closely the procedure discussed in Example 4.2.7.

The starting point is, of course, the definition of the signature:

logic CASL.FOL

spec PLASTICBUFFERFOL =

sorts ST;

mem;

elem

ops fifo : ST;

lifo : ST;

new : ST → mem;

write : ST × mem × elem→ mem;

read : ST × mem→ elem;

del : ST × mem→ mem

preds shift : ST × ST;

Def_mem : ST × mem;

Def_elem : ST × elem;

D_mem : ST × mem;

D_elem : ST × elem
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The Γ(S,TF,PF):

∀ e : elem; w : ST; m : mem

• Def_mem(w, new(w))

• Def_mem(w, m) ∧ Def_elem(w, e)⇔ Def_mem(w, write(w, m, e))

• Def_mem(w, del(w, m))⇒ Def_mem(w, m)

• Def_elem(w, read(w, m))⇒ Def_mem(w, m)

• D_mem(w, m)

• D_elem(w, e)

The specification of the DTF+PF-sentences is redundant as they are all
consequences of V(Γ) (i.e. the previous two sentences). Thus, they
can be safely skipped. The same happens for the first two sentences
determined by the constraint functor C. The other sentences are as
follows:

∀ e : elem; w, v : ST; m : mem

• new(w) = new(v)

• write(w, m, e) = write(v, m, e)

• Def_mem(w, del(w, m))⇔ Def_mem(v, del(v, m))

• Def_elem(w, read(w, m))⇔ Def_elem(v, read(v, m))

Finally, Fig. 9 depicts the complete the translation.
Using Theorem 2.3.2 combined with the conclusion of Example 4.3.7

property (22) is shown to be a consequence of the ‘plastic buffer’ spec-
ification. We performed this verification in the SPASS [WDF+09] au-
tomatic prover for first order logic. On the other hand, (21) and (23) do
not hold. Both were disproved by Darwin [BFT06], another first order
prover with (limited) disproving capabilities. However, the right-left
implication of (21) was proved by SPASS.

6.3 D E A L I N G W I T H H E T E RO G E N O U S R E Q U I R E M E N T S

An approach to the specification of reconfigurable systems based on
hybridisation was introduced in the previous section. Its application
was illustrated with a small example based on PAR-hybridisation. Sim-
ilar illustrations, corresponding to different case studies and hybri-
dising different logics appeared in [MFMB11] and [MMB13a]. The
former relies on hybridised first order logic, HFOL, the latter on hy-
bridised equational logic, HEQ.
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∀ e : elem; m : mem; w: ST;

• (Def _mem (lifo,m) ∧ Def _elem (lifo,e))⇒
(Def _mem (lifo,m) ∧ del(lifo,write(lifo,m,e)) = m))

• (Def _mem (lifo,m) ∧ Def _elem (lifo,e))⇒
(Def _elem (lifo,e) ∧ read(lifo,write(lifo,m,e)) = e));

• Def _elem (fifo,e)⇒
(Def _elem (fifo,e) ∧ read(fifo,write(fifo,new(fifo),e)) = e));

• Def _elem (fifo,e)⇒ (Def _mem (fifo,new(fifo)) ∧
del(fifo,write(fifo,new(fifo),e)) = new(fifo)));

• (Def _mem (fifo,m) ∧ Def _elem (fifo,e))⇒
(Def _elem (fifo,read(fifo,m)) ∧ read(fifo,m) = read(fifo,m)⇒
Def _elem (fifo,read(fifo,m)) ∧ read(fifo,write(fifo,m,e)) =
read(fifo,m));

• (Def _mem (fifo,m) ∧ Def _elem (fifo,e))⇒
(Def _elem (read(fifo,m)) ∧ read(fifo,m) = read(fifo,m)⇒
Def _mem (fifo,write(fifo,del(fifo,m),e)) ∧
del(fifo,write(fifo,m,e)) = write(fifo,del(fifo,m),e));

∃ y, v : ST;

• (shift(fifo,y) ∧ (y = lifo)) ∧ (shift(lifo,v) ∧ (v = fifo)).

end

Figure 9: The ‘plastic buffer’ specification translated into FOL.
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spec SWITCH in HTRM =
Nom

On; Off
Modal

TurnOff :1; TurnOn:1
BaseSig

*
Axioms
On ∨ Off
@On〈TurnOff〉Off ∧ @On[TurnOff]Off
@Off〈TurnOn〉On ∧ @Off[TurnOn]On

end

Figure 10: A HTRM specification.

In this section we intend to further explore the institution-independent

nature of the proposed method. We proceed by looking at some frag-
ments of another case study in the design of reconfigurable software:
the specification of an insulin infusion pump based on a collection of
requirements collected in [ZJJR11]. The complete case study will ap-
pear in a forthcoming MSc dissertation [Nev13]. Its interest for our
purposes lies in the heterogeneity of the requirements which entails
the need for adopting different base institutions to specify different
fragments of the overall system. We shall discuss some of these cases.

The first class of requirements concerns only the relationship be-
tween different modes of operation of the insulin bomb. The most
trivial one is the specification of the ‘pump switch’:

(R1) The pump can be turned on or off

We may identify each of these modes as configurations On and Off

through which the system commutes executing events TurnOn and
TurnOff. Since there is no further local information, the hybridisation
of TRM is enough to express the system, as shown in Figure 10.

An usual practice, however, is to characterise the configurations
through a set of propositions.To tune our framework to this case, propo-
sitional logic, PL, is chosen as the base institution. For example, sup-
pose the specification of the pump switch above is enriched with the
requirement that
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(R2) In order to be turned on, a check of the sensors integrity

should be fulfilled

Since no further information on what a check is is given, we abstract it
as a proposition ready, assumed to be true whenever the system passes
the test, and false otherwise. The resulting specification is formulated
as in Figure 10 but considering a proposition ready as the base signa-
ture and replacing the second axiom by

Off ∧ ready⇔ 〈TurnOn〉On.

In some cases a transition system is also adequate to model individ-
ual configurations themselves. From a global point of view this leads
to transition structures of transition structures, a scenario which is not
so uncommon in software design. Actually, it underlies methodologies
such as Hierarchical State-Machines in UML [Gro] or David Harel’s
statecharts [Har87]. In our own approach, if HPL is taken as the ade-
quate institution to specify transition structures, H2PL is the suitable
specification framework for the double scenario. To illustrate this con-
sider the following additional requirements for the boot operation of
the insulin pump:

(R3) When on the pump can be suspended or run normally

(R4) The pump can be turned off when running normally or

suspended

It is clear from requirement (R3) that configuration On has two pos-
sible (sub)-states, identified by Nor and Sus, respectively. Moreover,
we may now embody the check on sensors mentioned in (R2) as a
(sub)-state of Off. We denote it by the nominal Test and call Dead the
state where the system is inactive. A local event ?ready will trigger the
execution of the sensors’ diagnostic. For technical reasons, we collect
all of these components in a (unique) HPL base signature. However
we may declare which of these states are reachable in which configura-
tion (e.g. @On(Sus ∧ Nor)). Note that this sort of hybridisation allows
the specification of transitions from sub-states of a configuration into
sub-states of another. For instance, requirement (R2) is captured by

〈TurnOn〉true⇒ Off ∧ Test,
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Nor

Nor

Sus

Sus
Test

Test

Dead

Dead

GoSusp

GoRes ?ready

TurnOn

TurnOff

TurnOff

OffOn

Figure 11: Hierarchical representation of the pump boot.

which can be read as follows: “if a transition through event TurnOn

is possible, the device is in state Test of configuration Off". Here the
symbol true stands for a tautology of the H2PL. For instance, it can
abbreviate @ii for some i ∈ {On, Off }. Similarly, the last axiom of
Figure 12 expresses requirement (R4).

Systems whose configurations evolve temporally can be captured in
our approach by taking a linear discretisation of time as the reconfig-
uration space. Configurations are then time instants and a modality
after relates them chronologically. Nominals, of course, refer to such
instants. As one would expect, taking time into the picture is indepen-
dent of the base institution chosen. For example, requirement

(R5) If the reservoir is found to be empty then the alarm must

be activated;

can be captured in this framework. A simple formalisation would be
the HPL-sentence

¬full⇒ 〈after〉alarm.

For a more realistic specification one may like to take into account
other information, for example the level of confidence assigned to sen-
sors. Multi-valued logics, as the natural setting to deal with vagueness
and degrees of certainty, are good candidates for this sort of require-
ments.
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spec HIERCHSWITCH in HHTRM =
Nom

On; Off
Modal

TurnOn:1; TurnOff :1
BaseSig

Nom = {Nor, Sus, Test, Dead}
Λ = {GoSusp : 1, GoRes : 1, ?ready : 1}

Axioms
@On(Sus ∨ Nor)
@Off(Dead ∨ Test)
@On@Nor〈GoSusp〉Sus ∧ @Sus〈Res〉Nor
〈TurnOn〉true⇒ Off ∧ Test
On ∧ (Nor ∨ Sus)⇔ 〈TurnOff〉(Off ∧ Dead)

end

Figure 12: A specification in H2PL.

To go in this direction, let us consider the hybridisation of MVL3,
the multi-valued logic on the residuated lattice 3 with truth-values:
{>, u,⊥}. Hence, we may capture (R5) in a more realistic way by

(full,>) ∧ 〈after〉(full, u)⇒ 〈after〉〈next〉(alarm,>)

which reads "if the reservoir is full at given a moment, but its level
is unknown in the following one, then an alarm should be triggered
subsequently". It is also possible to assume continuous degrees of true
by using HMVLL for L the Lukasiewicz arithmetic lattice. This would
allow us to express properties like "if the reservoir is full at a given a
moment, and full with a degree of confidence of 0.5 in the following one,
then the alarm should be triggered subsequently with a confidence of
0.7".

(full, 1) ∧ 〈next〉(full, 0.5)⇒ 〈next〉〈next〉(alarm, 0.7).

This small example gives a flavour of what can be achieved by com-
bining different hybridised logics to approach different classes of re-
quirements. Actually, to whatever logic one may think of as appropri-
ate for the project of reconfigurable software, corresponds a suitable
institution to be taken as the base of a hybridisation process. Besides
the cases illustrated in this chapter, one may also mention the institu-
tions corresponding to hiding and observational logics [BD94, BH06],
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the logics of functional FPL and imperative programming introduced
in IMP [ST12], or HasCASL [SM09]. At the time of writing we are
developing an institution to capture the logic underlying Alloy [Jac11]
descriptions and studying its hybridisation [NMMB13a].

Table 1 enumerates the list of hybridisations which are discussed
in this thesis or in the author’s current work. For each of them the
base logic, quantification scheme and additional model constraints are
pointed out, as well as the existence of a an encoding to FOL and a
pointer to the relevant result.
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7
C O M P L E M E N TA RY T E C H N I C S

This chapter introduces a number of techniques which complement or
enrich the specification method discussed in Chapter 6. Section 7.1
discusses the incorporation of the hybridisation process into the HETS

framework. This is most relevant, from a pragmatical point of view, in
order to provide computer based support to reason about specifications
written in hybridised logics.

Sections 7.2 and 7.2 , on the other hand, discuss possible extensions
to the specification method. The former aims at accommodating sys-
tems in which the interfaces of local configurations vary. The latter
discusses the case in which reconfigurations are triggered by events
depending on actual values of local state variables.

The qualifier complementary emphasises not only their role in assist-
ing the specification process, but also their still exploratory character.
Actually, their full development in a complete general setting is still
part of our current research.

7.1 VA L I DAT I O N

A central ingredient for the successful integration of a formal method-
ology in the industrial practice is the existence of effective computa-
tional tools to assist and support the specification and validation pro-
cesses.

HETS, the heterogeneous tool set [MML07] emerges as a good can-
didate for the job. Using a metaphor of [MMCL13], HETS may be seen
as a “motherboard" where different “expansion cards" can be plugged.
These pieces are individual logics (with their particular analysers and
proof tools) as well as logic translations. HETS already integrates
parsers, static analysers and provers for a wide range of individual log-
ics and manages heterogeneous proofs resorting to the so-called graphs
of logics.

133
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As a generic framework, ‘agnostic’ with respect to specific logics,
HETS combines well with the institution-independent character of the
methodology proposed in this thesis. Moreover, the common grounds
on institution theory make this combination easier. HETS is also en-
dowed with a very rich support to specification in FOL, a quite relevant
aspect in order to take advantage of the general encodings developed
in Chapter 4. In particular, the theorem provers SPASS [WDF+09],
VAMPIRE [RV02], EPROVER [Sch02], E-KRHYPER [PW07] and DAR-
WIN [BFT06] are already plugged to the framework. Therefore, the use
of HETS as a suitable interface to FOL provers emerged as a comple-
ment, and possibly an alternative, to the carrying out proofs and build-
ing encodings manually (as in [MFMB11, MNMB13, DM13]) when
dealing with specifications written in hybridised logics.

As usual, the adoption of computer based support increases the meth-
ods’s applicability in practice. A first move into this direction was
to expand HETS’ graph-of-logics incrementally, hybridisation by hy-
bridisation and comorphism by comorphism. Moreover, since both the
hybridisation method and the lifting of first-order encodings are effec-
tive procedures, it is legitimate to take a more ambitious approach by
directly implementing them over the HETS’ graph-of-logics. This sec-
tion discusses some of these steps recently presented in [NMMB13b].

As a first step we integrated the hybridisation of CASL [MHST03]
in HETS. A comorphism from the resulting HCASL 1 to CASL was
also defined. Thus, assisted proof support for HCASL becomes avail-
able for free. HCASL specifications add to the usual ones in CASL a
declaration of nominals and modalities. Sentences include the typical
hybrid machinery as well as quantification over nominals. Thus, the
corresponding grammar is extended as follows:

CFro’=HFor | ... ;

HFor=@n CFor’ | <m> CFor’ | [m] CFor’ | Here n | ! n CFor’ | ? n CFor’;

where n is a nominal, m a modality, and the last two cases denote, re-
spectively, universal and existential quantification over nominals. Fig-
ure 13 depicts a code fragment of a HCASL specification — the spec-
ification of the reconfigurable calculator, from Example 7.3.1, in the
HEQ fragment of this logic.

1 where a constraint over models enforcing sharing of universes and quantification
over rigid variables is assumed.
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logic Hybrid
spec Reconf_Calc =

HNat then
nominals

Sum,Mul
modalities

Shift
ops

x_op : Nat * Nat -> Nat
%% global properties
forall n,m,p : Nat
n # m = m # n
(n # m) # p = n # (m # p)
n<=m => x_op(n,p)<=x_op(m,p)
%% configurations properties

forall n,m : Nat
. @Sum x_op(n,c) = n
. @Sum suc(n) = x_op (n,suc(c))
. @Mul x_op(n,c) = c
. @Mul x_op(n,suc(c)) = n

%% reconfigurability properties
. Here Sum \/ Here Mul

. @Sum(<Shift> Here Mul /\ [Shift] Here Mul)

. @Mul(<Shift> Here Sum /\ [Shift] Here Sum)

Figure 13: The reconfigurable calculator in HCASL.

logic Hybridise
spec X =

baselogic Hybridise
Basic_Spec {

baselogic Propositional
Basic_Spec { props p }
nominal Test,Off,Nor,Sus
modality Sus,Res,NotOk,Activate
Test \/ Off \/ Nor \/ Sus

}
nominal On,Off
modality TurnOn,TurnOff
%% The possible super states
On \/ Off;
%% Defining and restricting relations between the
%% sub states in the super state On
@On { @Nor <Sus>" Sus /\ @Sus <Res>" Nor };
@On { ( <Sus> true -> Nor /\ <Res> true -> Sus )
/\ not ( <NotOk> true \/ <Activate> true ) };

%% Defining and restricting relations between
%%the sub states in the super state Off
@Off { @Test <NotOk>" Off /\ @Off <Activate>" Test} ;
@Off { ( <NotOk> true -> Test /\ <Activate> true -> Off )
/\ not ( <Res> true \/ <Sus> true ) };

%% Defining and restricting relations between the
%%super and sub states
Off /\ {Test} <-> ( <TurnOn>" (On /\ {Nor}) );
<TurnOn> true -> Off /\ {Test};
On /\ {Nor} <-> ( <TurnOff>" (Off /\ {Off}) );
<TurnOn> true -> Off /\ {Off}

Figure 14: A specification parsed by the generic engine.
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A few steps were also taken into the more ambitious direction of a
direct implementation of the hybridisation method. In particular, we
implemented a generic parser for hybridising institutions already sup-
ported by HETS. Currently, propositional logic, CASL and CoCASL

have been fully hybridised and made available in the platform. Addi-
tionally, any previously hybridised logic, can again be hybridised. In
each case the resulting hybridised specifications composes a specifica-
tion in the base logic with the declaration of nominals and modalities
and the sentences enriched with hybrid properties. Figure 14 illustrates
how the specification in H2PL discussed in the previous chapter looks
like in this setting. Note that the underline notation is replaced here by
wrapping the sentences between curly brackets (c.f. 3.2.3).

Other features of HETS can be explored in the context of the method-
ology proposed here. For instance, the model finder associated to DAR-
WIN, already integrated in HETS, may be used as a consistency checker
for hybridised specifications. Moreover, available encodings of FOL
into HasCASL, a specification language for functional programs, open
further perspectives for validating specifications in hybridised logics
(see [MMCL13]).

7.2 E VO LV I N G I N T E R F AC E S

The approach to the specification of reconfigurable systems introduced
in the previous chapter assumes that all configurations share the same
signature, i.e., the interface provided at any local state is fixed. Or, to
put it in yet another way, that the system’s interface is invariant with
respect to the reconfiguration process.

In practice, however, this may be a too strong assumption. Actually,
not only the realisation of a service may change from a configuration
to another, but also the set of services provided may itself vary. In
other words, sometimes in reconfigurable systems the local interfaces
may evolve as well.

Although taking up this challenge in a completely general setting
would require a substantial review of the method, a partial answer can
be obtained by exploring the generated (hybrid) languages. This sec-
tion proposes a technique, published in [MNMB13], to deal with in-
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terface reconfiguration whenever the local specifications are given in
EQ. We want to allow not only a possibly different algebra in each
state, but also different algebras over different signatures. Technically,
this is achieved through the introduction of (hybrid) partial algebra-
specifications to “simulate” the intended, independent (hybrid) equa-

tional ones. Note, however, that, even resorting to partial specifica-
tions, models will always be (total) algebras with respect to the corre-
sponding local interface.

As in chapter 6, let us suppose we start with

• a set of relevant configurations named by the set of nominals
Nom;

• and a family of modalities Λ to trigger reconfigurations.

Suppose, however, that in the place of a unique (static) interface (S, F),
we consider

• a family (Si, Fi)i∈Nom of local signatures, indexed by the set of
nominals.

The technique proceeds by building a presentation((
(S, TF,PF), Nom,Λ

)
, Γ
)
∈ |SignHPApres

|

in the institution HPApres of presentations over HPA, where all this
information can be considered, and the hybridisation process discussed
in Subsection 6.2 applied.

The first step is to define a signature (S, TF,PF) in PA able to cap-
ture all the possible interfaces. Thus, operations are split into the
ones which are globally defined (i.e., presented in any (Si, Fi), for
i ∈ Nom) and those which concern only to a specific state. These
two sets of operations define a (global) HPA-signature:

S =
⋃
i∈Nom S

i

TFar→w =
{
σ|σ ∈ ⋂i∈Nom F

i
}

PFar→w =
{
σ|σ ∈ (Fi)ar→w \ TFar→w, i ∈ Nom

}
Thus, we recovered an unique base signature to proceed with the speci-
fication. However, the information about which of those operations are
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defined in which configuration has yet to be considered. This is done
by the following axioms:

Γ =
{

@i(∀X)df(σ(X))|σ ∈ (Fi)ar→w ∩ PFar→w, i ∈ Nom
}
∪{

¬@i(∃X)df(σ(X))|σ ∈ PFar→w \ (Fi)ar→w, i ∈ Nom
}

Therefore, one ends up with a presentation((
(S, TF,PF), Nom,Λ

)
, Γ
)

collecting all the intended information on the interfaces. The speci-
fication method can be safely applied from this point on. In broad
terms, we are going to simulate local, total functions with global, par-

tial ones. This entails the need for adopting strong equality to specify
“global properties” of operations defined in a specific configuration.
For instance, any existential equation t e

= t ′ involving operations in
PF is inconsistent because it fails on configurations where these op-
erations are not defined. Of course, this is not the case of existential
equations prefixed by satisfaction operators, i.e., of sentences of form
@i(t

e
= t ′). But, in general, this is not enough: all operations must be

“locally”-total or “completely”-undefined.

Example 7.2.1

Suppose that, in the context of a client server architecture, a

buffering component is required to store and manage incoming

messages from different clients. Depending on the server’s ex-

ecution mode, i.e., on its current configuration, issues like the

order in which calls have arrive or the number of repeated mes-

sages may, or may not, be relevant. Therefore, the shape of the

buffering component may vary, typically being determined by

an external manager.

A model for this component comprises four kinds of configurations
endowed with, respectively,

i) an algebra of sequences (for configurations where both order and
multiplicities are relevant issues),

ii) an algebra of multi sets (when the order may be left out),
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iii) an algebra of sets (when the application may abstract over order
and repetitions), and finally

iv) an algebra of repetition free sequences (to cater only for the mes-
sages’ order).

Going from one configuration to another involves not only a change
in the way a service is realised (e.g., insertion clearly differs from one
state to the other), but also a change at the interface level. For example,
an operation to count the number of replicated messages does not make
sense if sets are used as a local model.

We start by defining a set Nom = {OM,Om,oM,om} of nom-
inals, where the capitalised letters correspond to the relevance of or-

der and multiplicity issues (for instance, Om refers to a configuration
where order, but not multiplicity, is the relevant issue). Then, for the
reconfigurations events, take a set of modal symbols

Λ = {goto_OM,goto_Om,goto_oM,goto_om}.

Consider now the local interfaces. For (Som, Fom) choose the usual sig-
nature of Sets comprising the set of sorts Som = {Elem,Store,Bool}
and operation symbols FomStore = {empty}, FomElem×Store→Bool =
{is_in}; FomElem×Store→Store = {insert}; and Fomar→s = ∅ for
the other arities. Clearly, (SOm, FOm) = (Som, Fom). The remain-
ing cases need to deal with multiplicities; therefore signatures have
to be enriched with new operations. Hence, (SoM, FoM) can be de-
fined as SoM = Som ] {Nat} and FoMElem×Store→Nat = {mult}

and FoMar→s = Fomar→s for the other arities. Again, (SOM, FOM) =

(SoM, FoM). Therefore, the following “global” partial signature is de-
fined:

((
(S, TF,PF), Nom,Λ

)
, Γ
)

taking S =
⋃
i∈Nom S

i = SOM,
TF = Fom and PFElem×Store→Nat = {mult} and PFar→s = ∅ for
the other arities. On its turn, Γ is defined by the sentences

@i(∀s)(∀e) df(mult(e, s)), for i ∈ {oM,OM}

¬@i(∀s)(∀e) df(mult(e, s)), for i ∈ {om,Om}.

In this setting, we may now proceed with the specification of the
global properties, as for example,

(∀e : elem) is_in(e, empty) = False
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For the local properties one resorts to the hybrid satisfaction operator.
This allows, for example, to record the fact that ordering and the mul-
tiple insertion are irrelevant for the configuration om:

@om(∀e, e ′)(∀s)insert(e ′, insert(e, s)) = insert(e, insert(e ′, s))

@om(∀e)(∀s) insert(e, insert(e, s)) = insert(e, s)

On the other hand, the specification of mult in configuration oM is
introduced as

@oM(∀e, e ′)(∀s)¬e = e ′ ⇒ mult(e, insert(e ′, s)) = mult(e, s)

@oM(∀e)mult(e, empty) = 0.

Finally, we have to specify the possible reconfigurations. For this, one
may use sentences as direct as

@om〈goto_OM〉OM

stating that a reconfiguration from om to OM is possible, or opt for
more elaborated forms as e.g.,

(∀e, e ′)(∀s) insert(e ′, insert(e, s)) = insert(e, insert(e ′, s))

⇒ 〈goto_Om〉Om.

The latter states the system can evolve to configuration Om (through
the event goto_Om) from any other configuration where the order of
insertion is irrelevant. ◦

We conclude here the illustration of the specification method ex-
tended to accommodate the presence of different interfaces (i.e., al-
gebraic signatures) in different configuration states. Notice, however,
that a number of details were not considered here; for example, a defi-
nition of the natural numbers and the booleans should be included (and
all signatures extended accordingly).

7.3 E N A B L I N G R E C O N F I G U R AT I O N S

In the specification method introduced in chapter 6 the Kripke structure
which captures the reconfiguration dynamics is global. This means
that reconfiguration events, encoded into modalities, are placed at a
level of abstraction different from that of configurations themselves.
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The approach is, therefore, unsuitable to model situations in which
what triggers a reconfiguration (and, therefore, a transition in the un-
derlying Kripke structure) depends on local state values, i.e. it is a
function of parameters recorded in the variables of the current config-
uration.

This entails the need for complementing the definition of the Kripke
structure with information about which transitions are enabled or dis-
abled in response to current values of local state variables. Actually,
hybrid models are unable to capture directly this type of transitions.

The solution put forward in this section is based on the use of a
form of quantification over modalities. To go in this direction, let us
suppose for the remaining of the section that we are working into a
arbitrary hybridised institution HI with a quantification space which
allows expansions of sets of nominals and of modality symbols.

Our standpoint is that the set of enabled transitions, for a given val-
uation of local state variables, defines a substructure of the Kripke
structure. More precisely, the enabling of a (guarded) event denoted
by λ can be seen as an event (denoted by) λ ′ such that its realisation
Rλ ′ ⊆ Rλ satisfies the guard.

Suppose, for example, one wants to specify a transition identified by
λ and guarded by a sentence ρ from a state called i into a state called j.
Assuming that λ ′ is a sub-modality of λ, i.e., λ ′ is such that

(∀i, j)@i〈λ ′〉j⇒ @i〈λ〉j,

this can be expressed by

@iρ⇒ (∃λ ′)@i[λ ′]j.

Therefore the intended guarded transition can be specified by the sen-
tence

@iρ⇒
[
(∃λ ′)

(
(∀i, j)(@i〈λ ′〉j⇒ @i〈λ〉j)∧ @i[λ ′]j

)]
.

Of course, if ρ is a quantified sentence, the particular Kripke substruc-
ture corresponding to λ ′ becomes defined on the respective expansions
of the model. Each one of these substructures specify an enabling re-
lation.
Abbreviating λ ′ ⊆ λ abr

= (∀i, j)@i〈λ ′〉j⇒ @i〈λ〉i, we write

@iρ⇒ (∃λ ′)
(
λ ′ ⊆ λ∧ @i[λ ′]j

)
.
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Along the same lines we may express requirements involving patterns
like “property ρ enables a reconfiguration into j"

ρ⇒ (∃λ ′)
(
λ ′ ⊆ λ∧ [λ ′]j

)
,

or, more generally, “property ρ enables a move to configurations satis-
fying property ρ ′", by

ρ⇒ (∃λ ′)
(
λ ′ ⊆ λ∧ [λ ′]ρ ′

)
.

At first sight, the reader may wonder whether it is suitable to resort
to existential quantifications to characterise the semantic model. Ac-
tually, the enabling relations, which characterise the Kripke substruc-
tures, are not part of the model but just of its extensions. However, the
basic idea is well-known in standard algebraic specification: for exam-
ple, the existence of an inverse for sum in the classical specification of
the integers may be expressed as (∀n)(∃n ′) n+n ′ = 0.

An example will illustrate the technique suggested in this section.

Example 7.3.1 Consider the following requirements:

An ‘adaptable calculator’ offers a single binary operation over

the natural numbers, denoted by ?. The system has two different

modes of execution: a mode sum where the ? is interpreted as

addition, and a mode mult where ? behaves as multiplication.

There is also an event shift to trigger the reconfiguration of the

system from one mode to the other.

HFOL equipped with the trivial quantification space is a suitable in-
stitution for the specification of reconfigurable systems whose modes
can be seen as “non-communicating worlds”. Consider then this insti-
tution with the signature (Nat?, {sum,mult}, {shift}), where Nat?
is the standard one-sorted signature of the natural numbers, with the
zero constant and the successor function, enriched with a binary opera-
tion ?, and shift is a unary modality symbol. In such a setting we are
able to relate modes through their local properties. For instance,

(∀m : nat) ? (m, 0) = 0⇒ [shift](∀m : nat) ? (m, 0) = m

However, in the absence of global quantification (over rigid variables),
these properties may not be related “by values”.
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On the other hand, a suitable logic to specify systems whose modes
are regarded as “communicating worlds" is HFOLR ′ with quantifica-
tions over rigid variables, i.e., taking as a quantification space, the mor-
phism inclusions

χ : ((S,S0, F, F0,P,P0), Nom,Λ) ↪→ ((S,S0, F, F0+X,P,P0), Nom,Λ)

With such an extension it becomes possible to specify how the system
evolves from one mode to another by relating computations between
them. For instance, adapting signature Nat? above to make both the
sort and the successor function rigid, say into a signature NatR?, we
are able to specify multiplication by means of sums:

(∀m,n : nat)(∃w, z : nat)

@mult
(
? (suc(n),m) = z∧ ?(n,m) = w∧ [shift] ? (w,m) = z

)

Note that the variable z plays the role of a “communicating bridge”
between two different modes, or configurations, of this simple system.

◦

Let us now propose a possible refinement of our running example.

Example 7.3.2 Consider the following new requirement for the ‘adapt-
able calculator’:

The calculator’s evolution from one mode to another is trig-

gered by the comparison of the values of two internal variables,

say a and b. In particular, a reconfiguration to the mult-mode

is enabled when a > b. Otherwise, the only enabled reconfigu-

ration is to the sum-mode.

As mentioned above, enabling transitions are particular sub-relations
of the accessibility relation. For instance, a reconfiguration into the
mult-mode can be specified by

(∀a,b : nat) a > b⇒ (∃shift ′)
(
shift ′ ⊆ shift∧ [shift ′]mult

)
.

Reconfigurations into the sum-mode can be specified, analogously, by

(∀a,b : nat) a < b⇒ (∃shift ′)
(
shift ′ ⊆ shift∧ [shift ′]sum

)
.
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For instance, let us consider the hybrid structure M = (M,R) where
Mmult and Msum are realized by the natural numbers with the usual
multiplication and sum operations respectively, |R| = {s×, s+}, Rmult =
s× and Rsum = s+. Assume Rshift as the universal relation over |R|.
Consider also a {a,b}-expansion of M, say Ma>b, such that Ma>b |=

a > b, i.e., Ma>b
a > Ma>b

b . Finally, consider a shift ′-expansion

Ma>b,shift ′ such that R
a>b,shift ′

shift ′ = {(s+, s×), (s×, s×)}. Since, Rshift ′ ⊆
Rshift and Ma>b,shift ′ |= [shift ′]mult, we have

Ma>b |= (∃shift ′)
[
shift ′ ⊆ shift∧ [shift ′]mult

]
.

Similarly, for {a,b}-expansions whereMa<b
a < Ma<b

b , we have

Ma<b |= (∃shift ′)
[
shift ⊆ shift ′ ∧ [shift ′]mult

]
.

Therefore,

M |= (∀a,b : nat)a > b⇒ (∃shift ′)
[
shift ⊆ [shift ′]∧ [shift]mult

]
.

Analogously, taking R
a<b,shift ′

shift ′ = {(s+, s+), (s×, s+)} we have

M |= (∀a,b : nat)a < b⇒ (∃shift ′)
[
shift ⊆ shift ′ ∧ [shift ′]mult

]
.

Hence M is a model for the given specification. ◦
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8.1 C O N C L U D I N G

On concluding the thesis it may be appropriate to recall its driving
force: the development of foundations and techniques for the formal
specification of reconfigurable systems.

The approach proposed was, from the outset, summed up in the
motto configurations-as-local-models, reconfigurations-as-transitions.
The message was clear: we wanted to understand the dynamics of soft-
ware reconfiguration in terms of a transition structure whose states,
representing the systems’ individual configurations, are endowed with
specific, often complex, local specifications. Furthermore, the method
was intended to be generic, i.e. independent of whatever logic was
found suitable to express the operational requirements of each config-
uration.

To achieve the envisaged level of generality the whole approach was
developed in an institution-independent way. In particular, we defined
a method to build institutions which combines a base logic with the hy-
brid logics features. Along the thesis this was called the hybridisation

process. To provide suitable tool support for validating specifications,
we proposed a way to ‘generate first-order encodings’ for hybridised
logics starting from a first-order encoding of the base institution, when-
ever it exists. Generic notions of bisimulation and refinement for hy-
brid models were also studied.

This foundational work made possible the development of a rig-
orous, but flexible, specification method for reconfigurable software.
This, again due to the institutional framework adopted, embodies a
methodological principle: build the right tool for each job. Or, in
other words, tune the method (and the corresponding tools) to what-
ever logic is found most appropriate for specifying the system’s local
layer.

In this context, a few topics for future work are enumerated below.

145
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Further work

Extending the encodings. There is a number of adjustments that can
be considered to increase the applicability of the specfication method
introduced in the thesis. For instance, one could extend the lifting of
comorphisms from I2FOLpres to HI2FOLpres, into the lifting of co-
morphisms HI2CASLpres to HI2CASLpres straightforwardly. This
simple extension would lead to a significative enlargement of the class
of hybridisations with proof support in HETS (see [Mos02] for an ex-
tensive list of institutions encodable in CASL, part of them already
integrated into the HETS framework). Furthermore the extension of
first order to second order encodings should be considered. Recall, for
example, that quantification over modalities, in which a proper treat-
ment of ‘specification enabling’ can be formulated, has second order
nature.

Hybridisation for quantitative reasoning. Specification frameworks
for quantitative reasoning, dealing for example with weighted or prob-
abilistic transition systems, emerged recently as a main challenge for
Software Engineers. This witnesses a shift from classical models of
computation, such as labeled transition systems, to similar structures
where quantities can be handled. Examples include weighted [DG07],
hybrid [Hen96, LSVW95] or probabilistic [Seg95] automata, as well
as their coalgebraic rendering (e.g. [Sok11]).

An interesting topic to pursue is taking up this ‘quantitative’ chal-
lenge within the context of the hybridisation process itself. The sim-
plest move in such a direction proceeds by instantiation. In this case
quantitative reasoning is just reflected and expressed at the local level
of concrete, specific configurations. A complementary path may fo-
cus on generalising the underlying semantic structures, replacing the
REL-component in models by coalgebras over suitable categories of
probability distributions, metric, or topological spaces.

Calculus. Comparing the calculus for hybrid propositional logic in
reference [Bra10] with the one for hybrid first-order logic in [Bra05],
a common structure pops out: both “share" rules involving sentences
with nominals and satisfaction operators (i.e., formulas of a “hybrid
nature”) and have specific rules to reason about “atomic sentences" that
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come from the base institution. Hence, it makes sense to consider the
development of a general proof calculus for hybrid institutions built on
top of the calculus for the corresponding base institution, in the style
of [Bor02, CG08].

Structured specifications and initial semantics. Hybridised logics rep-
resent a class of institutions. Therefore, all mechanisms used in ab-

stract specification theory (e.g. [Tar03, DT11]), developed for arbi-
trary institutions, can and should be applied here. For example, dealing
with structured specification procedures is essential to lift our approach
to modular specifications.

Specifications used in the thesis typically adopt a loose semantics.
Whenever possible, on the other hand, the use of an initial semantics,
to construct canonical models, provides all the advantages well moti-
vated in the literature. Revisiting this work with the initial semantics
paradigm in mind is an interesting direction to pursue. A recent paper,
[Dia13], may shed some light on the necessary discussion.

Industrial assessment. Although the industrial context where this the-
sis was developed provided a number of examples and challenges to
the envisaged specification method, a more systematic assessment, re-
sorting, for example, to real, industrial case studies, remains to be
done.
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há um rio nesta água

Ana

Formal specification and development of complex systems has been
a major issue in the author’s research. This dates back to his first aca-
demic dissertation, in the context of a MSc degree in Mathematics,
focussed on hidden algebra and observational equality [Mad08]. Lat-
ter it was again a major motivation to pursue a PhD project blending
Mathematics and Computer Science.

The project was partially supported by an industrial grant offered by
CRITICAL SOFTWARE, a Portuguese, leading IT company devoted to
the development of safety and mission-critical software. This provided
an interesting context for the thesis, contributing for a deeper under-
standing of the challenges and needs inherent to the rigorous design
of reliable systems. In particular, it was determinant in the choice of
reconfigurable systems as a technical target for the thesis and an engi-
neering challenge to the author’s mathematical background. Later, the
author became part of a team who launched a new spin-off company
directed to formal software development.

The author’s interest on the theory of institutions goes back to a visit
of Răzvan Diaconescu, his external supervisor, to Portugal in June of
2010, as an advisor for the MONDRIAN project. In particular, the work
on the institution - independent account of hybridisation that underlies
the thesis started during this visit. This was also the kick-off for the
line of research documented here.

However, as often happens in a long term exploratory project, a num-
ber of other research directions were explored and omitted from the
final version of the thesis, because they fall out of its scope. This final
remark closes pointing out two main branches crossed along the way:

• The first was the work on an alternative notion of refinement
of algebraic specifications taking as witnesses logical interpre-

tations rather than the more usual (surjective) homomorphisms.
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First formalised for specifications in equational logic [MMB09b],
the method was generalised to k-deductive systems in [MMB09a],
and further to Π-institutions [RMMB11]. The study of the cor-
respondence between logical interpretations and morphisms of
a certain kind of coalgebras, so that usual coalgebraic construc-
tions, such as simulations and bisimulations, could be used to ex-
plore interpretations between (abstract) logics, was worked out
and published in [MMB13b].

• A second branch of research, although of a preliminary nature,
was an initial attempt to explore dialgebras [PZ01, Vou10] as a
suitable model for reconfigurable systems. A few initial ideas
were presented in [MMB11].
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[Dia13] Răzvan Diaconescu. Quasi-varieties and initial seman-
tics in hybridized institutions. Journal of Logic and

Computation, 2013. in print.

[DKL10] Julien Dormoy, Olga Kouchnarenko, and Arnaud
Lanoix. Using temporal logic for dynamic reconfigu-
rations of components. In L. S. Barbosa and M. Lumpe,
editors, Formal Aspects of Component Software (Re-

vised Selected Papers of FACS 2010, Guimaraes, Por-

tugal, October 14-16, 2010), volume 6921 of Lecture

Notes in Computer Science, pages 200–217. Springer,
2010.

[DLN07] Stéphane Demri, Ranko Lazić, and David Nowak. On
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