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AbsTRACT
Objectives We sought to investigate whether 
genetic effects on response to TnF inhibitors (TnFi) 
in rheumatoid arthritis (ra) could be localised by 
considering known genetic susceptibility loci for relevant 
traits and to evaluate the usefulness of these genetic loci 
for stratifying drug response.
Methods We studied the relation of TnFi response, 
quantified by change in swollen joint counts (∆ sJc) 
and erythrocyte sedimentation rate (∆ esr) with locus-
specific scores constructed from genome-wide assocation 
study summary statistics in 2938 genotyped individuals: 
37 scores for ra; scores for 19 immune cell traits; scores 
for expression or methylation of 93 genes with previously 
reported associations between transcript level and drug 
response. Multivariate associations were evaluated in 
penalised regression models by cross-validation.
Results We detected a statistically significant 
association between ∆ sJc and the ra score at the CD40 
locus (p=0.0004) and an inverse association between ∆
 sJc and the score for expression of cD39 on cD4 T cells 
(p=0.00005). a previously reported association between 
cD39 expression on regulatory T cells and response to 
methotrexate was in the opposite direction. in stratified 
analysis by concomitant methotrexate treatment, the 
inverse association was stronger in the combination 
therapy group and dissipated in the TnFi monotherapy 
group. overall, ability to predict TnFi response from 
genotypic scores was limited, with models explaining less 
than 1% of phenotypic variance.
Conclusions The association with the cD39 trait is 
difficult to interpret because patients with ra are often 
prescribed TnFi after failing to respond to methotrexate. 
The cD39 and CD40 pathways could be relevant for 
targeting drug therapy.

InTROduCTIOn
Biologic therapies have transformed the outlook for 
rheumatoid arthritis (RA). However, for the most 
commonly used class of agent, tumour necrosis 

factor inhibitors (TNFi), there is substantial vari-
ability in response to treatment among patients with 
RA.1 This has spurred efforts to discover predictors 
of response and more generally to understand how 
to subtype this heterogeneous disease to predict 
which therapies will work.2 3

Genome-wide association studies (GWAS) of 
response to TNFi have shown that common single 

Key messages

What is already known about this subject?
 ► To date, no strong associations of individual 
genetic loci with response to tumour necrosis 
factor inhibitors (TNFi) in rheumatoid arthritis 
(RA) have been identified, despite recent large 
efforts based on conventional genome-wide 
association studies and a crowdsourcing 
initiative.

What does this study add?
 ► We introduced a new methodological approach 
for localising genetic effects by using genotypic 
risk scores based on known genetic loci for 
related traits and likely biomarkers.

 ► We identified two genetic loci strongly 
associated with TNFi response in RA and 
demonstrated that the genetic determinants 
of TNFi response are different to the known 
susceptibility loci for RA.

How might this impact on clinical practice or 
future developments?

 ► Measurements of expression of CD40 and CD39 
and their corresponding pathways could be 
relevant for targeting drug therapy in RA.

 ► Our new methodological approach could be 
useful for localising genetic effects in traits 
for which assembling large sample sizes is not 
feasible, such as drug response.
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Table 1 Sample information per cohort.

bRAGGss dREAM EIRA ReAct WTCCC Other* Total

Sample size 954 764 283 258 556 123 2938

Sex, female % 76 68 74 77 77 82 74

Concomitant non-biologic 
DMARD %

85 74 74 50 73 97 76

TNF inihibitor

Adalimumab 416 441 47 258 64 29 1255

Certolizumab 34 0 0 0 0 0 34

Etanercept 293 66 97 0 246 19 721

Golimumab 17 0 0 0 0 0 17

Infliximab 194 138 139 0 246 75 792

Baseline disease activity, mean (SD) 

DAS28-ESR4 6.3 (1.0) 5.4 (1.2) 5.3 (1.2) 5.8 (1.0) 6.7 (0.9) 5.6 (1.1) 6.0 (1.2)

ESR 36.2 (26.2) 27.7 (21.3) 32.4 (22.9) 31.2 (21.4) 45.0 (28.8) 30.2 (21.5) 34.6 (25.4)

SJC 10.1 (6.1) 10.3 (5.5) 9.2 (6.0) 9.9 (5.1) 11.8 (6.4) 10.5 (6.3) 10.4 (6.0)

TJC 15.4 (7.3) 10.0 (7.4) 8.3 (6.0) 13.1 (6.5) 17.0 (7.3) 10.7 (6.3) 13.2 (7.8)

GHVAS 71.0 (19.2) 62.3 (22.1) 56.1 (23.3) 59.7 (20.8) 72.6 (18.1) 59.3 (23.9) 66.1 (21.4)

6-month disease activity, mean (SD) 

DAS28-ESR4 3.7 (1.6) 3.6 (1.3) 3.5 (1.4) 3.7 (1.4) 4.2 (1.5) 3.9 (1.6) 3.8 (1.5)

ESR 22.8 (22.0) 18.1 (16.9) 20.0 (17.3) 18.6 (17.0) 27.6 (24.9) 22.2 (19.7) 21.8 (20.7)

SJC 3.0 (4.0) 4.8 (4.4) 3.4 (3.8) 3.6 (3.6) 4.0 (4.7) 5.0 (4.9) 3.8 (4.3)

TJC 5.0 (6.3) 3.7 (4.6) 3.6 (4.9) 4.7 (5.5) 6.3 (6.6) 5.1 (6.1) 4.7 (5.8)

GHVAS 37.2 (25.2) 34.5 (21.7) 34.4 (25.2) 31.8 (25.9) 37.1 (25.0) 31.8 (26.6) 35.5 (24.5)

* ‘Other’ displays aggregate sample characteristics for collections with sample size <100
BRAGGSS, Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate; DAS, Disease Activity Score; DMARD, disease-modifying antirheumatic drug; DREAM, Dutch 
Rheumatoid Arthritis Monitoring Registry; EIRA, Swedish Epidemiological Investigation of Rheumatoid Arthritis; ESR, erythrocyte sedimentation rate; GHVAS, global health 
assessment rated on a visual analogue scale; ReAct, French Research in Active Rheumatoid Arthritis; SJC, swollen joint count; TJC, tender joint count; TNF, tumour necrosis factor; 
WTCCC, Wellcome Trust Case Control Consortium.

nucleotide polymorphisms (SNPs) explain an estimated 40% and 
50% of the variance of change in swollen joint counts (SJC) and 
erythrocyte sedimentation rate (ESR), respectively; however, no 
strong associations with individual SNPs have been detected.4 
Thus, as with many complex phenotypes, the genetic architec-
ture of response to TNFi is likely to be polygenic with many 
small genetic effects.5 In this situation, the sample size required 
to learn a predictive model is very large—up to 10 cases per vari-
able6—and it may not be feasible to assemble such large sample 
sizes for studying response to a single drug or drug class.

It has been suggested that improving prediction of complex 
clinical outcomes may be possible by incorporating information 
about the genetics of relevant traits in the prediction model.7 8 
One such approach is to use publicly available summary GWAS 
results of relevant traits to compute genotypic scores, which 
can then be used as variables (‘features’) from which to build 
predictive models. By harnessing the genetic profiles of interme-
diate traits, these scores aggregate the effects of individual SNPs 
into larger regional or whole-genome effects. Relevant traits can 
include diseases, biomarkers and gene transcription levels. For 
polygenic traits such as RA, for which multiple genetic suscep-
tibility loci have been identified, we can construct locus-specific 
scores allowing us to examine the extent to which drug response 
is related to genetic heterogeneity of the disease.

In the current study, we incorporated available genetic infor-
mation on susceptibility to RA,9 immune cell traits from a 
publicly available bioresource10 and expression or methylation 
of genes implicated in response to TNFi treatment in RA.11 The 
genotypic scores associated with these intermediate traits were 
then tested for association with response to TNFi; by reducing 
the number of hypotheses being explored, the thresholds for 

claiming statistical significance are relaxed, which could help 
identify useful predictors.

MATERIAls And METHOds
Cohorts
We used a sample of 2938 individuals of European ancestry for 
whom complete clinical and GWAS data were available. This 
sample comprised individuals from a pre-existing international 
collaboration formed to study the genetics of response to TNFi 
agents12 and individuals recruited to the Biologics in Rheumatoid 
Arthritis Genetics and Genomics Study Syndicate (BRAGGSS) 
after 2013.4

Table 1 shows sample sizes, phenotypes and clinical variables 
for each of the data collections used in this study. All participants 
provided informed consent, and institutional review board/
ethics approvals were in place as described in Cui et al12 and 
Massey et al.4

definition of response to TnFi treatment
In RA, response to treatment is quantified by change in the Disease 
Activity Score (DAS), which depends on four measurements: 
ESR, SJC, tender joint count (TJC) and patient global health 
assessment rated on a visual analogue scale (GHVAS). Previous 
work has shown that only the SJC and ESR measurements have 
evidence of non-zero heritability4 and correlate significantly 
with synovitis quantified by ultrasound or MRI.13 14 Since TNFi 
were developed to control synovitis, we used the two objective 
components of the DAS (ESR and SJC) as primary outcomes for 
evaluating genetic effects and the two subjective components 
(TJC and GHVAS) and the composite score (DAS28-ESR4) as 
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Table 2 Prediction of response to TNFi using penalised regional 
genotypic scores for different types of intermediate traits

Intermediate 
trait type

no of 
regional 
scores

no of 
filtered 
scores

Prediction of
∆sJC (%)

Prediction of
∆EsR (%)

Rheumatoid 
arthritis

37 37 5.3 (0.26) −1.6 (0)

Immune cell 
traits

508 470 −0.7 (0) 2.9 (0.17)

eQTLs 94 87 3.4 (0.16) 2.9 (0.17)

eQTLs and 
mQTLs

268 228 2.5 (0.11) 1.6 (0.09)

Prediction performance is quantified by the difference in test log-likelihood (in nats) 
between a model with clinical covariates and genotypic scores and a model with 
clinical covariates only and by the per cent of phenotypic variance explained (in 
parenthesis). Results from 10-fold cross-validation.
eQTL, expression quantitative trait loci; mQTL, methylation quantitative trait 
loci.ESR, erythrocyte sedimentation rate; SJC, swollen joint count; TNFi, tumour 
necrosis factor inhibitors;

secondary outcomes. For each outcome, a baseline measurement 
was taken before initiation of TNFi treatment, and a follow-up 
measurement was taken between 3 and 6 months after initiation 
of TNFi treatment. The measurements for each component were 
transformed in accordance to the DAS28-ESR4 formula (see 
online supplementary methods). Response was modelled as the 
difference between the baseline and the follow-up measurement.

Genotypic risk scores
We used the GENOSCORES platform (https:// pm2. phs. ed. ac. 
uk/ genoscores/) to compute genotypic risk scores for the inter-
mediate traits. GENOSCORES is a database of published SNP to 
trait associations from a large number of well-powered GWAS, 
including GWAS of disease traits, biomarkers, gene expres-
sion and methylation. The database is accompanied by a soft-
ware package implemented in R that can be used to compute 
genotypic risk scores and run downstream statistical analyses in 
cohorts with SNP data.

We queried the GENOSCORES database for genetic associa-
tions with RA risk,9 149 heritable immune cell traits reported by 
Roederer et al,10 and whole-blood expression and methylation 
for 93 genes reported in a recent meta-analysis11 as differentially 
expressed before treatment between responder and non-re-
sponder patients with RA treated with TNFi. GWAS summary 
statistics reported by Westra et al15 and Gusev et al16 were used 
for expression quantitative trait loci (eQTLs). GWAS summary 
statistics reported by Gaunt et al17 were used for methylation 
quantitative trait loci (mQTLs).

GWAS summary statistics for each intermediate trait were 
filtered at p value< 10−5 . SNPs were then split into trait-asso-
ciated regions, with regions defined as genomic loci containing 
at least one SNP with p value< 10−7 . Only 19 of the immune 
cell traits had a corresponding trait-associated region. SNPs not 
assigned to a region were discarded. For each trait-associated 
region, a genotypic score was computed as a sum of SNP geno-
types,  g , weighted by the effect size estimates,  β  (log OR for 
binary traits, regression slope for quantitative traits) and adjusted 
for linkage disequilibrium. The regional score,  sitr , for an indi-
vidual  i , trait  t  and region r  was computed as:  sitr = βT

tr R
−1
r gir

 , where  Rr  denotes the SNP–SNP correlation matrix in genomic 
region r .

Additional details about the GENOSCORES platform, the 
score computation and the specific regional scores used in this 
study are given in online supplementary materials (see online 
supplementary methods, online supplementary tables S1–S5, 
online supplementary figure S1).

Predictive modelling
To evaluate genetic prediction of response to TNFi, we 
compared a model with clinical covariates only to a model with 
clinical covariates and genotypic scores for each type of interme-
diate trait. To avoid numerical instabilities, we removed highly 
correlated scores prior to fitting a model (see online supplemen-
tary methods). The number of filtered regional scores for each 
type of intermediate trait is shown in table 2.

We expected that only a subset of genotypic scores would be 
relevant for prediction of response to TNFi, and thus used a 
hierarchical shrinkage prior for the score coefficients. We imple-
mented the prediction models in STAN18 using a horseshoe prior 
distribution and performed inference with Markov chain Monte 
Carlo sampling.19 20 To rank the importance of genotypic scores 
in a model, we applied projection predictive variable selection, 

an approach that projects posterior draws from the high-dimen-
sional model to lower dimensional subspaces.21

We used a statistical model with the following clinical covari-
ates: measurements for the four DAS components before initi-
ation of TNFi treatment, gender, whether the patient was 
concomitantly treated with any non-biologic disease-modifying 
antirheumatic drugs (DMARDs), cohort (which is also a proxy 
for country), genotyping array and the 10 first principal compo-
nents computed from the genotypic data of the full data set. We 
used individuals with complete measurements in the statistical 
analyses of each TNFi response outcome (see online supplemen-
tary table S6).

Evaluation of prediction
We used two measures to quantify improvement in prediction: 
the difference in log-likelihood between a model with clin-
ical covariates and genotypic scores and a model with clinical 
covariates only (measured in natural log units (nats)); and the 
per cent of residual variance explained by the genotypic scores. 
Both measures were computed on the testing data from 10-fold 
cross-validation on the full data set.

For readers who prefer a frequentist interpretation, the 
asymptotic equivalence of model choice by cross-validation and 
Akaike’s information criterion (AIC)22 implies that a p value of 
0.01 for comparison of nested models is equivalent to a differ-
ence in test log-likelihood of 2.3 nats (likelihood ratio of 10) for 
models differing by one extra parameter. The large sample size 
of this study means that small robust increments in predictive 
performance can be detected.

univariate associations
For models with a test log-likelihood difference of at least two 
nats, we further examined the univariate associations between 
genotypic scores and the TNFi response outcomes. We used the 
full data set to test the univariate association and included the 
same clinical covariates as in the multivariate prediction, in addi-
tion to a score.

For genotypic scores significantly associated with TNFi 
response at the Bonferroni-corrected p value threshold, we 
compared the estimated effects among groups receiving different 
TNFi agents. We considered etanercept, adalimumab and inflix-
imab, where a large enough sample size was available. Addi-
tionally, we tested if the associations held when we adjusted 
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Figure 1 Contribution of top 10 RA regional scores to prediction of 
response to TNFi phenotypes, starting from a model containing only 
clinical covariates. The curve gradually converges to one with the 
addition of all remaining scores. ESR, erythrocyte sedimentation rate; 
RA, rheumatoid arthritis; SJC, swollen joint count; TNFi, tumour necrosis 
factor inhibitors.

Table 3 Univariate associations between response phenotypes and 
regional genotypic scores of interest

Response 
phenotype Genetic score Coefficient P value

Genotypic scores at the CD40 locus

∆SJC RA score at CD40 0.07 0.0004

∆SJC CD40 eQTL 0.06 0.002

∆SJC CD40 mQTL −0.05 0.009

∆ESR RA score at CD40 0.05 0.01

∆ESR CD40 eQTL 0.03 0.06

∆ESR CD40 mQTL −0.03 0.07

Genotypic scores for immune cell traits at the ENTPD1 locus

∆SJC CD39 on CD4 T −0.07 5e−05

∆SJC mDC:%32+ −0.02 0.2

∆SJC CD8:%39+ −0.06 0.001

∆SJC CD4:%Treg(39+) −0.07 0.0001

∆SJC CD4:%Treg(39+73-) −0.07 0.0001

∆SJC CD4:%Treg(39+73+) −0.07 0.0002

∆SJC NKeff:%314−158a+ −0.04 0.02

∆SJC CD4 T:%CD39+CD38+PD1− −0.07 8e−05

∆ESR CD39 on CD4 T −0.003 0.9

∆ESR mDC:%32+ −0.01 0.5

∆ESR CD8:%39+ −0.008 0.7

∆ESR CD4:%Treg(39+) −0.004 0.8

∆ESR CD4:%Treg(39+73−) −0.004 0.8

∆ESR CD4:%Treg(39+73+) 0.006 0.8

∆ESR NKeff:%314−158a+ 0.04 0.04

∆ESR CD4 T:%CD39+CD38+PD1− −0.004 0.8

The coefficients are the effect sizes of the standardised score on the standardised 
phenotype.
eQTL, expression quantitative trait loci; mTQL, methylation quantitative trait 
loci.ESR, erythrocyte sedimentation rate; RA, rheumatoid arthritis; SJC, swollen joint 
count;

for additional covariates: anticitrullinated protein antibodies 
(ACPA) status and smoking status. These covariates have been 
reported to influence TNFi response but were only available for 
a third of the samples, and thus were not included in the full 
models.

A diagram of the statistical analysis pipeline is given in online 
supplementary figure S2.

REsulTs
In the following sections, we focus on the results for the primary 
TNFi response outcomes. The results for secondary outcomes 
are discussed in the online supplementary results (see online 
supplementary table S7).

RA genotypic scores
Prediction of response to TNFi as quantified by ∆ SJC improved 
by including the regional genotypic scores for RA risk in a penal-
ised regression model (table 2). The test log-likelihood increased 
by 5.3 nats, suggesting that some of the genetic drivers for RA 
are also influencing response to TNFi; however, the absolute 
improvement in prediction was small, with less than 1% of 
phenotypic variance being explained by the RA genotypic scores.

The regional score at the CD40 locus had the highest explan-
atory power for both response phenotypes (figure 1). The direc-
tion of the effect was consistent for response as measured by 
both phenotypes, with higher RA load at the CD40 locus being 
associated with better TNFi response. The univariate associa-
tion of the RA score at the CD40 locus with ∆ SJC passed the p 
value threshold corrected for the number of RA scores and two 
response phenotypes (table 3).

The regional score for RA at the CD40 locus was correlated 
with a cis-acting eQTL score for CD40 expression in whole 
blood (correlation=0.65) and a cis-acting mQTL score for 
methylation of CD40 in whole blood (correlation=−0.70). The 
strongest association between response to TNFi and genotypic 
scores at the CD40 locus was with the score for RA (table 3). 
The estimated effect did not change when we stratified by TNFi 
agent and when we adjusted for ACPA and smoking status (see 
online supplementary tables S8 and S9).

Genotypic scores for immune cell traits
Prediction of response to TNFi as measured by ∆ ESR improved 
by adding penalised genotypic scores for immune cell traits in 
the model (table 2). In univariate analyses, the regional scores 
for a number of immune cell traits at the ENTPD1 locus (which 
codes for CD39) had suggestive associations with ∆ SJC (table 3). 
The association of ∆ SJC with the genotypic score for ‘CD39 on 
CD4 T cells’ at the ENTPD1 locus passed the p value threshold 
corrected for the number of immune cell trait scores tested (470) 
and two response phenotypes. This score was correlated with 
the cis-acting eQTL score for ENTPD1 (correlation=0.65). 
Higher score for ‘CD39 on CD4 T cells’ at the ENTPD1 locus 
was associated with worse TNFi response as quantified by ∆ SJC. 
There was no association between ∆ ESR and genotypic scores 
at the ENTPD1 locus (table 3) and no association between either 
 ∆ ESR or ∆ SJC and a genotypic score for cell subset frequency 
of CD73, which is the second ectonucleotidase involved in 
adenosine production in regulatory T cells (see online supple-
mentary results).

Previously, Peres et al23 showed that low expression of 
CD39 on peripheral regulatory T cells was associated with 
worse response to methotrexate (MTX) in patients with RA. 
We note that the direction of the effect is reversed, but this is 
not unlikely since we considered response to TNFi. To further 
investigate the effect of ‘CD39 on CD4 T cells’ expression 
on TNFi response, we performed two analyses stratified by 
concomitant treatment. Information on whether a patient was 
receiving a concomitant non-biologic DMARD was available for 
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Table 4 Univariate association between ∆SJC and genotypic score 
for the expression of ‘CD39 on CD4 T cells’ at the ENTPD1 locus 
stratified by concomitant treatments

Patient group Coefficient (sE) P value sample size

All samples, adjusted for 
concomitant DMARD

−0.07 (0.02) 5e−05 2922

All samples, no 
adjustment for DMARD

−0.08 (0.02) 2e−05 2922

Samples not on 
concomitant DMARD

−0.02 (0.04) 0.5 691

Samples on concomitant 
DMARD

−0.09 (0.02) 1e−05 2231

Samples on concomitant 
MTX

−0.1 (0.03) 0.002 958

The coefficients are the effect sizes of the standardised score on the standardised 
phenotype. The phenotype is adjusted for covariates: baseline DAS components, 
gender, cohort, genotyping array, 10 genetic principal components.
DAS, Disease Activity Score; DMARD, disease-modifying antirheumatic drug; MTX, 
methotrexate; SJC, swollen joint count.

all samples, while information on whether a patient was specif-
ically receiving concomitant MTX treatment was available for 
a subset of patients from the BRAGGSS cohort. Table 4 shows 
the effect of the genotypic score for expression of ‘CD39 on 
CD4 T cells’ on ∆ SJC for patients receiving TNFi treatment 
stratified by concomitant treatment with either any non-biologic 
DMARD (top) or specifically with MTX (bottom). The effect 
became stronger in the groups receiving concomitant treatment 
and attenuated in the group receiving TNFi monotherapy; the 
CIs among all groups overlapped. Similarly, we did not detect 
statistically significant differences when we stratified by TNFi 
agent and when we adjusted for ACPA status (see online supple-
mentary tables S8 and S9).

eQTl and mQTl scores
Prediction of response to TNFi as quantified by both ∆ SJC and 
 ∆ ESR improved by adding eQTL and mQTL scores of impli-
cated genes in a penalised regression model (table 2). Of the 93 
genes reported in Kim et al11 as differentially expressed between 
responders and non-responders to TNFi in RA, 54 genes had at 
least one eQTL, 54 genes had at least one mQTL and 36 had 
both. The test log-likelihood increased by 3.4 and 2.9 nats for ∆
 SJC and ∆ ESR, respectively, by adding the eQTL scores in the 
model. We did not see a further improvement by adding geno-
typic scores for mQTLs.

dIsCussIOn
In the largest international study of TNFi response to date, 
we have shown how using methods that leverage information 
from relevant intermediate traits can identify predictors of 
TNFi response. In a recent crowdsourced effort to use machine 
learning to construct a predictor of response to TNFi in RA, 
including SNP genotypes did not improve prediction beyond 
that obtained with clinical covariates alone.24 Genotypic predic-
tion of psychiatric disorders and related phenotypes has been 
shown to improve by exploiting genetic correlations among 
multiple related traits,7 25 and methods have been extended to 
incorporate polygenic scores for multiple traits.8

In the current study, we have combined these approaches 
and implemented them in a newly developed platform, called 
GENOSCORES, which contains GWAS data for multiple traits 
and automates construction of genotypic scores. For polygenic 
traits with multiple trait-associated loci, such as RA, locus-specific 

scores can be constructed to examine how genetic heterogeneity 
of the intermediate trait can influence the trait of interest. Our 
approach reduces the dimensionality of the prediction task 
from about 2 million common SNPs to a few hundred or a few 
thousand genotypic scores, depending on how relevant traits 
are selected. The score constructions are a type of feature engi-
neering, a task commonly used in machine learning applications.

Understanding the pathogenic mechanisms that initiate and 
perpetuate RA could give rise to informative biomarkers of prog-
nosis, therapeutic response and toxicity.26 However, in agree-
ment with earlier studies,27 we did not find strong predictors of 
TNFi response among alleles linked to the development of RA. 
A strength of the current study is the large sample size which 
allowed us to detect small robust increments in predictive perfor-
mance. Our methodological approach was to first establish the 
predictive value for a set of genetic markers using a multivariate 
model and then to examine univariate associations between each 
marker and the outcome. Using this approach, we showed that 
a model including RA scores led to a small robust improvement 
in prediction, with the regional score at the CD40 locus driving 
the predictive signal.

Higher RA risk at the CD40 locus, higher CD40 transcription 
and lower CD40 methylation were associated with better TNFi 
response. CD40 is a transmembrane protein which belongs to 
the TNF receptor superfamily, critically important in modu-
lating immune-(auto-immune) responses.28 CD40 is expressed 
by B cells and antigen-presenting cells (APCs), whereas CD40L 
is induced on CD4+ T cells following T-cell antigen receptor 
(TCR) with major histocompatability complex (MHC) molecule 
interaction. Engagement of the CD40–CD40L axis leads to B 
cell activation, proliferation and (auto)-antibody production, 
while activation of APCs by CD40L on CD4+ T cells induces 
upregulation of CD80, CD86, MHC class I and MHC class II, 
as well as secretion of proinflammatory cytokines such as inter-
leukin (IL)-12, IL-23 and TNF-α .29 30

The risk allele associated with RA is associated with elevated 
CD40 expression in whole blood.31 As high CD40 expression 
is associated with elevated TNF-α  production and CD40 and 
CD40L transcripts are increased in the disease tissue in both 
early and established disease,32 it is not surprising that patients 
with the CD40 risk allele respond better to TNFi therapies.

Overall, if there are genetic loci that predict TNFi response, 
these are mostly different to the known RA risk loci. However, 
we note that patients who receive TNFi therapy are likely to 
have more severe disease and to have failed on other treatments. 
It is therefore possible that our study sample has been selected 
with respect to genetic load for RA, thus limiting the hetero-
geneity in genetic RA risk profiles compared with a sample of 
newly diagnosed cases.

The genotypic score for the expression of the ectonucleoti-
dase CD39 on CD4 T cells was inversely associated with TNFi 
response. The SNPs contributing to this score are in the ENTPD1 
gene which encodes CD39. In stratified analyses, the inverse asso-
ciation with response was stronger in the groups receiving TNFi 
concomitantly with MTX or another non-biologic DMARD 
compared with the group receiving TNFi monotherapy and 
was stronger in the group receiving infliximab compared with 
the groups receiving adalimumab or etanercept. The CIs of the 
estimated effects among all groups overlapped. This effect on 
response to TNFi agents is in the opposite direction to the asso-
ciation reported between low expression of CD39 on regulatory 
T cells and resistance to MTX in RA.23

Interpreting the association between drug response and the 
CD39 trait is difficult both epidemiologically and mechanistically. 
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The reasons for this being that in the UK and most European 
countries TNFi are usually prescribed only after patients have 
had a poor response to MTX and, unless of intolerance, always 
in combination with MTX. Therefore, these patients are likely 
to represent a selected group; this, together with the almost 
universal use of combination MTX/TNFi therapy, hinders 
progress in dissecting the potential mechanisms responsible for 
the divergence. Nonetheless, as RA is a highly heterogeneous 
disease, it is plausible to speculate that different cellular and 
molecular networks may be involved in driving diverse immune/
inflammatory responses in different patients to different drugs. 
For example, as mentioned above, the poor response to MTX 
has been associated with low CD39 expression by regulatory 
T cells, while increased CD39 expression has been reported 
to be important in the expansion of Th17 cells driven by IL-6 
and TGF-β via Stat3 and Gfi-1 transcription factors.33 In turn, 
the expansion of Th17 cells has been reported to be associated 
with incomplete response to TNFi.34 It remains to be estab-
lished whether measurements of CD39/ENTPD1 expression 
or genotype may be useful in the choice of MTX, TNFi agent 
or concomitant treatment as first-line therapy for patients who 
need a DMARD.

Using previously reported associations between transcripts 
and TNFi response to select relevant genes, we have shown 
evidence that eQTL scores for these genes contain information 
that predicts TNFi response, even though the proportion of 
variance explained was low and no single genes associated with 
response could be identified.

Improved genomic prediction of treatment response requires 
measuring response more precisely to capture the molecular in 
addition to the clinical phenotype. The detected associations 
between genotypic scores and TNFi response were not the same 
for the two measures of response—change in SJC and change in 
ESR—suggesting that the two measures reflect different aspects 
of disease activity affected by TNFi. To derive refined measures 
of drug response, large data sets with multiple inflammatory 
biomarkers, joint imaging and clinical variables before and after 
treatment are needed.
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