

Horizon 2020 European Union Funding for Research & Innovation

Predicting multiple stressor effect on zooplankton abundance, biomass and community composition in two large eutrophic lakes

<u>Fabien CREMONA</u>, Helen AGASILD, Kätlin BLANK, Juta HABERMAN, Priit ZINGEL, Peeter NÕGES, Tiina NÕGES, Alo LAAS

Estonian University of Life Sciences (EMÜ)

BIOGEOMON 2022 10th International Symposium on Ecosystem Behavior "The freshwater zooplankters occupy an important and strategic position within the trophic web of a lake ecosystem and are sensitive to anthropogenic impacts" (Caroni & Irvine 2010)

Zooplankton are sensitive to environmental stressors:

-nutrient loading and eutrophication (Jeppesen et al., 2011; Yang et al., 2017),

-warming (Rasconi et al., 2015),

-pH (Shurin et al., 2010),

-water transparency (Estlander et al., 2009),

-phytoplankton composition (Cremona et al., 2020).

(Jeppesen et al., 2000, 2011)

Additionally, stressors can carry synergistic effects (",allied attack" Moss et al. 2011).

(Moss et al., 2011)

ARTICLES https://doi.org/10.1038/s41559-020-1216-4

s41559-020-1216-4

ecology & evolution

nature

Check for updates

Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems

Sebastian Birk ¹²²², Daniel Chapman ^{3,4}, Laurence Carvalho ³, Bryan M. Spears³, Hans Estrup Andersen ⁵, Christine Argillier ⁶, Stefan Auer ⁷, Annette Baattrup-Pedersen ⁵, Lindsay Banin ³, Meryem Beklioğlu⁸, Elisabeth Bondar-Kunze ⁷, Angel Borja ⁹, Paulo Branco ¹⁰, Tuba Bucak ^{8,11}, Anthonie D. Buijse ¹², Ana Cristina Cardoso ¹³, Raoul-Marie Couture ^{14,15}, Fabien Cremona ¹⁶, Dick de Zwart¹⁷, Christian K. Feld ^{1,2}, M. Teresa Ferreira¹⁰, Heidrun Feuchtmayr ¹⁸, Mark O. Gessner ^{19,20}, Alexander Gieswein ¹, Lidija Globevnik ²¹, Daniel Graeber ^{5,22}, Wolfram Graf²³, Cayetano Gutiérrez-Cánovas ^{24,25}, Jenica Hanganu²⁶, Uğur Işkın⁸, Marko Järvinen ²⁷, Erik Jeppesen ⁵, Niina Kotamäki ²⁷, Marijn Kuijper¹², Jan U. Lemm¹, Shenglan Lu²⁸, Anne Lyche Solheim ¹⁴, Ute Mischke²⁹, S. Jannicke Moe ¹⁴, Peeter Nõges ¹⁶, Tiina Nõges ¹⁶, Steve J. Ormerod ²⁴, Yiannis Panagopoulos ^{30,31}, Geoff Phillips ⁴, Leo Posthuma ^{32,33}, Sarai Pouso ⁹, Christel Prudhomme ³, Katri Rankinen ³⁴, Jes J. Rasmussen⁵, Jessica Richardson³, Alban Sagouis^{6,29,35}, José Maria Santos ¹⁰, Ralf B. Schäfer ³⁶, Rafaela Schinegger ²³, Stefan Schmutz²³, Susanne C. Schneider ¹⁴, Lisa Schülting²³, Pedro Segurado ¹⁰, Kostas Stefanidis^{30,31}, Bernd Sures^{1,2}, Stephen J. Thackeray ¹⁸, Jarno Turunen ³⁷, María C. Uyarra⁹, Markus Venohr ²⁹, Peter Carsten von der Ohe ³⁸, Nigel Willby ⁶⁴ and Daniel Hering^{1,2}

-Stressor dominance in lakes but with up to 30% of interactive effects

-Stressor multiple effect on zooplankton studied in mesocosms but harder to quantify in natural ecosystems

-Shallow lakes : high surface area relative to their volume -> early responders and amplifiers for a variety of environmental stressors

Fig. 2 | Stressor effect types in lakes and rivers. Share of analytical cases across experiments, basin studies and cross-basin studies from lakes (n= 55) and rivers (n=119), for which only a single stressor (dominance), both stressors (additive) or their interaction significantly contributed to the variability of the biological response.

 X_2

X₁

X₁ X₂ I

Synergistic

Antagonistic

Võrtsjärv $A = 270 \text{ km}^2$ z = 2.8 m z_{max} = 6 m TP = 48 μ g L⁻¹ $TN = 0.91 \text{ mg } \text{L}^{-1}$ Dominant phytoplankton: *Limnothrix planktonica, L.* redekei Dominant zooplankton (biomass): Bosmina longirostris, Chydorus sphaericus, Mesocyclops, Thermocyclops Strong presence of ciliates

From plankton to equations

year	n	nonth	200_A	zoo_B	200_W	roti_pctA	cope_A	roti_A	clad_A	drei_A	cope_B	roti_B	clad_B	drei_B	cope_W	roti_W	clad_W	bosmina	bosmina_	bosmina_	daphnia_	daphnia_E	daphnia_1	egracilis_/	egracilis_I	egracilis_1	zoo_phyte	рН	SD
15	997 N	/AY	1431.8	1.7965	1.374375	92.45408	85.3	1340.5	6	i 0	0.601	1.1105	0.085	0	7.282164	0.821749	14.16667	5	0.078	15.6	0.5	0.0045	9	2.5	0.07	28	1.118115	0.934246	
15	998 N	AY	1608.25	2.019175	1.208316	92.64453	128.5	1474.75	5	0	1.02575	0.957175	0.03625	0	10.88069	0.648421	8.270833	2.5	0.02375	9.5	0.25	0.00475	19	0.25	0.002	8	1.080104	0.9154	2.533
15	999 N	/AY	239.2	0.221948	1.038532	90.56641	19.4	218.8	1	0	0.074216	0.13988	0.007852	0	3.913305	0.677397	7.231667	0.8	0.006852	8.565	0.2	0.001	5	0	0		0.024374		,
20	000 N	AY	758	3.11104	4.142749	49.13329	347.4	383.4	27.2	. 0	2.267	0.19484	0.6492	0	6.288989	0.502554	24.09743	16.6	0.42	25.3012	4	0.197	49.25	11	0.264	24	0.401661	0.904716	2
20	001 N	/AY	691.9346	0.8022	1.624957	87.62421	58	633.4546	0.48	0	0.417	0.3766	0.0086	0	7.232156	0.604832	30.75	0.4	0.0046	11.5	0.08	0.004	50	0.4	0.0094	23.5	0.233765	0.910624	2
20	002 N	AY	243.4	0.70062	2.93061	58.90604	68.4	151.4	23.6	0	0.3582	0.14202	0.2004	0	4.917157	0.781767	8.260852	21	0.1904	9.066667	0	0		2.2	0.0624	28.36364	0.242652	0.886773	1
20	003 N	AY	199.3333	0.321333	1.712175	54.44208	89.83333	109	0.5	0	0.2535	0.064833	0.003	(3.016049	0.616384	6	0	0		0	0		0.5	0.007	14	0.04911	0.879383	1.783
20	004 N	/AY	259.6667	1.097333	4.212323	48.4483	115.3333	136.1667	8.166667	0	0.577167	0.078	0.442167	0	4.671633	0.535947	101.7978	4.5	0.064167	14.25926	1.833333	0.125	68.18182	6	0.145333	24.22222	0.458071	0.92557	1.616
20	005 N	AY	269.1667	0.540317	1.87145	51.33023	125.5	137.5	6.166667	0	0.368	0.107317	0.065	(2.711282	0.745848	10.31429	5.666667	0.062	10.94118	0	0		0.666667	0.014	21	0.058733	0.931458	2.083
20	006 N	/AY	21.66667	0.178483	7.30808	45.17816	12	8.5	1.166667	0	0.162833	0.002983	0.012667	0	13.22063	0.343643	11.33333	0.833333	0.007	8.4	0.166667	0.004167	25	0.5	0.004167	8.333333	0.034286	0.93852	1.666
20	007 N	AY	144.5	0.450483	3.153963	24.46483	102.3333	41.16667	1	0	0.4125	0.02165	0.016333	(3.699839	0.541229	20.5	0.666667	0.014	21	0	0		0.166667	0.006667	40	0.035339	0.922206	1.88?
20	008 N	/AY	300.0768	0.9173	3.364428	44.52775	150.1667	145.2435	4.666667	0	0.7505	0.0968	0.07	(5.196508	0.787975	12.82242	1.833333	0.019	10.36364	0.5	0.018667	37.33333	5.333333	0.125667	23.5625	0.274256	0.929419	1
20	009 N	AY	79.83333	0.282133	3.881767	28.21241	54.66667	24	1.166667	0	0.255333	0.0168	0.01	(5.316143	0.701135	10.5	0.833333	0.008667	10.4	0	0		1.5	0.043667	29.11111	0.052373	0.928396	2.066
20	010 N	AY	106.5	0.425333	4.64589	24.87226	72.16667	33.5	0.833333	0	0.387	0.025333	0.013	(5.349575	0.698333	17.5	0.666667	0.012	18	0	0		1.166667	0.023	19.71429	0.094296	0.940516	1.266
20	011 N	AY	241	0.67075	2.984679	35.10066	159.3333	79.83333	1.833333	0	0.580833	0.043083	0.046833	0	4.243099	0.593738	25.54167	1.166667	0.010667	9.142857	0.166667	0.0045	27	3.5	0.0975	27.85714	0.177942	0.915136	1.68?
20	012 N	AY	62.66667	0.276367	4.985999	30.96973	42.33333	19.83333	0.5	0	0.255	0.018033	0.003333	0	6.084364	0.992246	6.666667	0.5	0.003333	6.666667	0	0		3.666667	0.1045	28.5	0.115615	0.937518	
20	013 N	AY	76.5	0.349983	4.660024	28.56006	52.83333	22.5	1.166667	0	0.303667	0.023817	0.0225	0	5.778578	1.114412	17.13333	0.333333	0.0055	16.5	0.333333	0.014333	43	2	0.045667	22.83333	0.091941		1
20	014 N	/AY	530.6974	0.894121	2.229679	46.88108	202.2631	318.3034	9.768286	0.362571	0.639714	0.103307	0.151	0.0001	3.337847	0.379254	18.28307	4.331714	0.067286	15.53328	1.812857	0.064629	35.65012	1.812857	0.064157	35.39007	0.264508	0.929419	2.007
20	015 N	YAN	298.5	0.625599	2.524833	52.45471	122.625	171.5	4.375	0	0.517897	0.047625	0.060076	0	4.777455	0.272682	17.15328	1.5	0.01086	7.240315	2.125	0.044894	21.12645	3.75	0.151678	40.44736	0.152643	0.925312	1.971
20	016 N	/AY	776.6667	1.774202	2.425821	67.20091	233.6111	518.0556	25	0	0.853315	0.577916	0.342971	0	3.63862	1.137563	15.20615	13.33333	0.128628	9.647102	8.333333	0.197994	23.7593	3.611111	0.163829	45.36792	0.462013	0.931458	1.728
20	017 N	AY	443.3929	0.821084	2.308989	81.61284	88.03571	354.1071	1.25	0	0.21656	0.587359	0.017165	0	3.081578	2.124324	12.91839	0.892857	0.015613	17.48658	0	0		0.357143	0.016691	46.73429	0.163665	0.935507	1.514
20	018 N	/AY	323.5	0.294985	0.901147	71.30121	93.5	227.625	2.375	0	0.224114	0.040428	0.030442	0	2.299922	0.15686	13.64389	1.5	0.020114	13.40946	0.25	0.008369	33.47734	0	0		0.084034	0.921166	
15	997 JI	UN	1417.5	2.963	2.016215	74.54186	312	1049.5	56	i 0	1.202	0.616	1.145	0	3.725707	0.584348	22.82199	46.5	0.9745	20.95699	3	0.15	50	5	0.083	16.6	0.94334	0.925312	2
15	11 866	UN	1364	1.3386	2.300225	82.59504	107	1241.5	15.5	0	0.7745	0.36585	0.19825	0	8.42789	0.324915	13.25708	7.25	0.09925	13.68966	1.75	0.0445	25.42857	6.25	0.18225	29.16	0.494286	0.924279	1
15	IL 666	UN	509.4	2.281748	5.696282	68.98571	73.6	398.6	37.2	0	0.674348	0.543	1.0644	0	7.754407	0.89898	22.40514	14.2	0.26	18.30986	12.4	0.7488	60.3871	2.2	0.084748	38.52182	1.249207	0.932474	- 7
20	IL 000	UN	496	2.5888	8.421069	63.0314	116.8	351.6	27.6	0	0.9068	0.0734	1.6086	(8.899464	0.200737	61.64656	4	0.0736	18.4	18.2	1.2242	67.26374	11.4	0.3774	33.10526	0.606637	0.919078	,
20)01 JI	UN	1159.216	3.35564	3.718342	72.24685	191.7562	904.7	62.7594	0	1.3268	0.88244	1.1464	0	7.065521	0.851027	18.39422	48.9994	0.8716	17.78797	5.8666	0.157	26.76167	4	0.1148	28.7	0.992215	0.939519	
20	102 JI	UN	368.8	1.65158	4.50962	52.19845	128.4	191	41.8	7.6	0.8258	0.04418	0.7772	0.0044	5.858627	0.220567	18.27417	18.6	0.3526	18.95699	13.6	0.35	25.73529	3.6	0.1226	34.05556	0.167125	0.923244	2
20	JU 200	UN	227.3333	1.553167	7.643965	42.18002	92.66667	119.1667	15.5	0	0.5315	0.67	0.351667	0	6.897643	3.950336	17.89925	10.83333	0.177	16.33846	4.666667	0.174667	37.42857	6	0.07	11.66667	0.330785	0.91698	1.783
20	004 JI	UN	355.1793	2.49455	6.990976	54.8925	121.3333	195.3333	37.67933	0.833333	0.588	0.05505	1.833	0.0185	5.101398	0.262124	48.96344	7.5	0.116667	15.55556	27.66667	1.575667	56.95181	12.66667	0.25	19.73684	1.06906	0.898999	1.591
20	105 JI	UN	354.2865	1.40145	5.696874	52.08386	82.75	219.75	51.7865	0	0.3405	0.2482	0.81275	0	4.624628	5.833344	17.68603	23.4795	0.2905	12.3725	24.1535	0.5025	20.80444	2	0.02775	13.875	0.405933	0.939519	
20	10 a00	UN	669.3333	1.143217	1.735311	70.74772	159.3333	475.1667	34.83333	0	0.567167	0.271717	0.304333	0	3.820659	0.52384	8.439955	24.33333	0.1835	7.541096	7.166667	0.0835	11.65116	3	0.045333	15.11111	0.202407	0.924279	1
20	107 JI	UN	183.6667	1.79419	10.04944	35.47394	85.16667	65.16667	32.66667	0.666667	0.665667	0.099	1.0295	2.33E-05	8.229363	1.586517	31.1299	7	0.095167	13.59524	18.33333	0.7975	43.5	23.16667	0.4215	18.19424	0.523854	0.922206	
20	IL 800	UN	172.1667	2.589283	14.98374	24.22661	80.66667	44.66667	46.83333	0	0.561833	0.17645	1.851	0	7.892881	5.174159	36.34818	9.666667	0.198333	20.51724	31	1.625833	52.44624	13.5	0.249333	18.46914	0.4111		
20	IL 600	UN	219.69	2.590533	12.80666	20.4403	106.6667	48.33333	63.69	1	0.598167	0.528867	1.463167	0.000333	6.708649	18.56777	22.4217	12.60233	0.2775	22.01973	33.71633	0.8885	26.35221	16.83333	0.204	12.11881	0.621463	0.93044	1.333
20	010 JI	UN	378.1667	2.476167	6.990862	47.09053	157.6667	177.1667	43.33333	0	0.9125	0.0625	1.501167	0	6.310774	0.342095	34.05384	7.666667	0.119833	15.63043	27.5	0.9825	35.72727	9.5	0.200333	21.08772	0.99912	0.909556	1.666
20)11 JI	UN	660.6667	2.114117	3.626921	53.7334	252.3333	381.3333	27	0	1.504667	0.123617	0.485833	0	6.794861	0.364405	13.6297	10.16667	0.145833	14.34426	9.666667	0.2575	26.63793	8.833333	0.1245	14.09434	0.841417	0.928567	2.083

B_{meta}, A_{meta}, B_{clad}, A_{clad}, B_{cope}, A_{cope}, B_{cili}, A_{cili}

wт

WT

TN, TP, NO₃, B_{cyan}, chla, T, SD, pH

Machine Learning Algorithms (boosted regression trees, random forests)

<u>Peipsi</u>

Water temperature is the dominant stressor, followed by the biomass of cyanobacteria and Secchi depth.

Response variable	Most influential predictor (%)	Predictor 2 (%)		
Aclad	B _{cyan}	WT		
A _{cope}	(WT)	TP		
A _{roti}	SD	TN		
Azoo	WT	SD		
B _{clad}	WT	B _{cyan}		
B _{cope}	WT	SD		
B _{roti}	TN	B _{cyan}		
B _{zoo}	WT	TN		

Variable	Explained variance (%)	Top 5 variable relative influence (%)
A _{meta}	67	$(T_{air}$ (46), B_{phyto} (10), pH (10), HCO ₃ (8), CODmn (8)
B _{meta}	70	$(T_{air} (58), pH (13), B_{phyto} (10), NO_3 (8), HCO_3 (3))$
Aclad	74	B _{phyto} (59.1), NO ₃ (10.8), T _{air} (9.3), pH (8.6), TN (5.8)
B _{clad}	80	NO ₃ (49.9), T _{air} (16.4), B _{phyto} (12.2), pH (10.1), TN:TP (5.1)
A _{roti}	62	$(T_{air} (23,2), B_{phyto} (12.1), HCO_3 (12), CODmn (9.4), TP (8.3)$
B _{roti}	64	Brinte (17.2), Tair (17), HCO ₃ (11), pH (10.7), CODmn (10.3)
Acope	70	$(T_{air}$ (78,6), pH (4.7), B_{phyto} (4.5), WL (3.7), CODmn (2.5)
B _{cope}	80	$(T_{au}$ (84.9), pH (3.3), WL (2.5), B_{phyto} (2.2), O ₂ (1.5)
A _{cili}	73	$(T_{air} (55.7), pH (18.7), WL (6.5), B_{phyto} (4), HCO_3 (4)$
B _{cili}	77	(Tair (45), pH (30.3), NO ₃ (4.3), WL (3.8), B _{phyto} (3.4)

Cremona et al. 2020 (*Climatic Change*) Cremona et al. 2021 (*Hydrobiologia*)

<u>Võrtsjärv</u>

Air temperature is the

followed by **pH** and the

dominant stressor,

biomass of

phytoplankton.

<u>Peipsi</u>

Antagonistic interactions:

Temperature and cyanobacteria have individual positive effect on zooplankton, but negative effect together

Opposing interaction:

Temperature and phosphorus counteract each other

Response variable	Fixed effects	Estimate	Standard error	t value	Р	Interaction
Aclad		0.20345	0.08302	2.451	0.01567*	
	B _{cyan}	0.13622	0.08415	1.619	0.10806	
(WT	0.26911	0.08451	3.184	0.00184**	
	B _{cyan} * WT	- 0.42899	0.08158	- 5.258	6.22e-07	Antagonistic
B _{clad}		0.15716	0.08000	1.964	0.0517	
	WT	0.38477	0.08144	4.725	6.18e-06***	
(B _{cyan}	0.16210	0.08109	1.999	0.0478*	
	WT* B _{cyan}	- 0.33139	0.07862	- 4.215	4.79e-05***	Antagonistic
Acope		- 0.003865	0.073323	- 0.053	0.95804	
	WT	0.500703	0.073619	6.801	4e-10***	
(TP	- 0.246638	0.074014	- 3.332	0.00114**	
	WT* TP	0.134830	0.066532	2.027	0.04487*	Opposing
B _{cope}		- 9.407 e-05	0.07754	- 0.001	0.999	
	WT	0.3699	0.07799	4.743	5.73e-06***	
	SD	0.3474	0.07918	4.388	2.43e-05***	
	WT* SD	- 0.006969	0.07207	- 0.097	0.923	Antagonistic
A _{roti}		8.453e-15	0.06474	0.000	1.00000	
	SD	0.1981	0.06511	3.043	0.00286**	
	TN	- 0.07423	0.06735	- 1.102	0.27255	
	SD* TN	0.01270	0.05754	0.221	0.82564	Opposing
B _{roti}		1.581e-16	0.07660	0.000	1.000	
	TN	- 0.1280	0.08060	- 1.589	0.115	
	B _{cyan}	- 0.05239	0.07832	- 0.669	0.505	
	TN* B _{cyan}	0.08264	0.08158	1.013	0.313	Antagonistic
Azoo		3.408e-15	0.05854	0.000	1.00000	
	WT	0.3692	0.05888	6.271	5.54e-09***	
	SD	0.1971	0.05977	3.298	0.00127**	
	WT* SD	- 0.08986	0.05441	- 1.651	0.10121	Antagonistic
B _{zoo}		- 8.017e-17	0.06867	0.000	1.0000	
	WT	0.5107	0.06926	7.373	2.14e-11***	
	TN	- 0.05577	0.06891	- 0.809	0.4199	
	WT* TN	0.1216	0.07220	1.684	0.0947	Opposing

Significant correlations are in bold

Cremona et al. 2021 (Hydrobiologia)

<u>Võrtsjärv</u>

Antagonistic interactions:

Temperature and cyanobacteria have individual positive effect on the abundance of Cladocerans, but negative effect together

Same for Temperature and pH for ciliates

Opposing interaction:

Temperature and nitrates counteract each other for the biomass of Cladocerans

Same for temperature and pH for the abundance of metazooplankton

Cremona et al. 2020 (Climatic Change)

Ameta		2.0426597	1.5178898	1.345723	0.1790
1000000.0000	$T_{\rm air}$	-0.1859277	0.1225340	-1.517357	0.1299
(pH	1.1951645	0,1848116	6.466935	0.0000***
	Tair:pH	0.0313339	0.0151221	2.072063	0.0388* (Opposing)
B _{meta}		-15.494281	1.5069015	-10.282212	0.0000***
1000	Tair	0.215435	0.1240374	1.736856	0.0831
	pH	1.691025	0.1868121	9.052010	0.0000***
	T _{air} :pH	-0.015823	0.0152917	-1.034744	0.3013 -
Aclad		-0.5743766	0.5485344	-1.047111	0.2956
	Bphyto	2.0028605	0.1924483	10.407263	0.0000***
(Tair	0.4139760	0.0629455	6.576736	0.0000***
	Bobyto: Tair	-0.0630724	0.0177083	-3.561740	0.0004*** (Antagonistic)
Bclad	T-S	-3.786633	0.11663269	-32.46631	0.0000***
1	NO ₃	-0.587169	0.06503875	-9.02798	0.0000***
	Tair	0.089813	0.01253839	7.16306	0.0000***
	$NO_3:T_{air}$	0.010716	0.00516530	2.07454	0.0388* (Opposing)
Aroti	127.0	11.181387	0.7397945	15.114180	0.0000***
	Tair	0.173952	0.0716293	2.428497	0.0156*
	HCO ₃	-0.000539	0.0028593	-0.188642	0.8505
	Tair: HCO3	-0.000409	0.0003528	-1.158549	0.2473 -
Broti		-2.7694577	0.4694393	- 5.899501	0.0000***
67 E.	Tair	0.0037402	0.0416228	0.089859	0.9284
	HCO ₃	-0.0000283	0.0016799	-0.016854	0.9866
	Tair: HCO3	0.0001782	0.0002058	0.865904	0.3870 -
1 _{cone}	100	-22.245353	6.145725	-3.619647	0.0003***
to pt	pH	3.225226	0.779640	4.136815	0.0000***
	Tair	1.026114	0.545509	1.881020	0.0606
	pH:Tair	-0.073165	0.067344	-1.086430	0.2779 -
Bcone		-8.457032	1.2459207	-6.787777	0.0000***
cope	Tair	-0.221615	0.1118503	-1.981355	0.0481*
(pH	0.608041	0.1580905	3.846154	0.0001***
	T _{air} :pH	0.042824	0.0137934	3.104700	0.0020** (Opposing)
Acili		1.5372570	1.9737848	0.778837	0.4368
	Tair	0.5500547	0.1715914	3.205607	0.0015**
(pH	1.0251586	0.2460942	4.165716	0.0000***
	T _{air} :pH	-0.0553836	0.0209392	-2.644964	0.0086** (Antagonistic)
Bcili	uni	4.548500	2.0651239	-2.202531	0.0285*
v.u	Tair	0.651256	0.1791644	3.634963	0.0003***
(pH	1.314815	0.2572185	5.111666	0.0000***
	TipH	-0.066555	0.0218499	-3.046001	0.0025** Antagonistic

Simulation of future conditions in Võrtsjärv : rise of total zooplankton biomass, but decrease of Cladocerans (large)

Simulation of future conditions in Võrtsjärv : rise of Copepods, no change for ciliates

Take home messages
-> temperature is the strongest stressor affecting zooplankton
-> multiple stressors affect zooplankton in both lakes
-> most interactions are opposing or antagonistic
-> global warming would favor smaller zooplankters (Copepods) at the expense of larger ones (Cladocerans)

Horizon 2020 European Union Funding for Research & Innovation

Thank you for your attention !

\odot

We are grateful to Tartu Environmental Research Ltd (Estonia) for water chemistry data and to the Estonian Environment Board for providing long-term air temperature data and supporting lake monitoring. This research was financed by Estonian Research Council Grant PRG709, PRG1167, and institutional research funding P210160PKKH of the Estonian Ministry of Education and Research. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 951963. Data collection within the frames of the state monitoring programme were supported by the Estonian Ministry of the Environment.