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Uncertainty relations express limits on the extent to which the outcomes of distinct measurements on a
single state can be made jointly predictable. The existence of nontrivial uncertainty relations in quantum
theory is generally considered to be a way in which it entails a departure from the classical worldview.
However, this perspective is undermined by the fact that there exist operational theories which exhibit
nontrivial uncertainty relations but which are consistent with the classical worldview insofar as they admit
of a generalized-noncontextual ontological model. This prompts the question of what aspects of uncertainty
relations, if any, cannot be realized in this way and so constitute evidence of genuine nonclassicality. We
here consider uncertainty relations describing the tradeoff between the predictability of a pair of binary-
outcome measurements (e.g., measurements of Pauli X and Pauli Z observables in quantum theory). We
show that, for a class of theories satisfying a particular symmetry property, the functional form of this
predictability tradeoff is constrained by noncontextuality to be below a linear curve. Because qubit
quantum theory has the relevant symmetry property, the fact that its predictability tradeoff describes a
section of a circle is a violation of this noncontextual bound, and therefore constitutes an example of
how the functional form of an uncertainty relation can witness contextuality. We also deduce the
implications for a selected group of operational foils to quantum theory and consider the generalization to
three measurements.

DOI: 10.1103/PhysRevLett.129.240401

A wide range of phenomena have been viewed as
intrinsically quantum, in the sense that they are thought
to resist classical explanation—noncommutativity, inter-
ference, collapse, no cloning, teleportation, remote steer-
ing, and entanglement, to name just a few. However, the
aspects of all of these phenomena (and many more) that
have traditionally been regarded as relevant to establishing
this claim can in fact be reproduced in a noncontextual [1]
ontological model [2], as demonstrated in Refs. [4–7].
Therefore, if one takes the possibility of a noncontextual
ontological model as a good notion of classical explain-
ability (there are many arguments in favor of doing so; see
Sec. V.A.3 of Ref. [7] or the introduction of Ref. [8]), then
the possibility of reproducing these aspects undermines the
claim that they resist classical explanation. This prompts
the question: for each item on the list, are there more
nuanced aspects of the full phenomenology that actually do
resist explanation in terms of a noncontextual ontological
model? In other words: what is genuinely nonclassical
about its phenomenology? This question has been inves-
tigated, for instance, for minimum-error state discrimina-
tion [9], unambiguous state discrimination [10,11], state-
dependent cloning [12], scenarios with preselection and
postselection [13–15], and linear response theory [16].

This Letter undertakes an investigation of what is
genuinely nonclassical about uncertainty relations. Many
different notions have been termed “uncertainty relations.”
We are here concerned with the version that asserts that
there are pairs of measurements for which there is a
nontrivial tradeoff in their predictabilities [17]. Previous
works have noted that there are operational theories that
admit of a noncontextual ontological model and for which
an uncertainty relation holds, such as Gaussian quantum
mechanics [5] and the stabilizer theory of qudits where d is
an odd prime [21,22]. Thus, although it is conventionally
thought that the mere existence of an uncertainty relation is
an intrinsically quantum phenomenon, the fact that this
happens in theories that admit of a noncontextual onto-
logical model demonstrates that it is not at odds with the
classical worldview. The question, therefore, is whether
one can identify other aspects of uncertainty relations that
provably cannot arise in a noncontextual ontological
model.
We here demonstrate that for a certain class of opera-

tional theories, an uncertainty relation describing the
predictability tradeoff for a pair of binary-outcome mea-
surements can witness contextuality through its func-
tional form.
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A class of uncertainty relations for a qubit.—In the early
days of quantum theory, uncertainty relations were formu-
lated in terms of products of standard deviations [23–25].
As has been pointed out by several authors [26,27], these are
unsatisfactory for finite-dimensional systems because they
involve a bound that depends on the state and which can be
trivial for certain states. One solution to this problem is to
focus on sums of standard deviations rather than products,
because such sums satisfy a nontrivial bound for all states.
We will here focus on the Pauli X and Z observables, which
are complementary and represent discrete analogs of posi-
tion and momentum. The strongest uncertainty relation that
can be derived for X and Z is ΔX2 þ ΔZ2 ≥ 1, as we
demonstrate in Sec. IV of the Supplemental Material [28].
There, we show that this can be written in several other
useful forms, one of which is the form in which it was (to
our knowledge) first proposed [39], by building on the work
of Ref. [40]. The form that we will prefer for the purposes of
this Letter is

hXi2 þ hZi2 ≤ 1: ð1Þ

We will be taking our preferred measure of predictability
to be the absolute values of the expectation values, i.e.,
jhXij and jhZij, so that Eq. (1) expresses a tradeoff relation
between the squares of these predictabilities for every
state. It is therefore apt to refer to Eq. (1) as the quantum
ZX-uncertainty relation.
Note that Eq. (1) follows trivially from

hXi2 þ hYi2 þ hZi2 ≤ 1; ð2Þ

a relation we refer to as the quantum XYZ-uncertainty
relation and whose validity follows from the fact that it is a
description of the Bloch ball of qubit quantum states.
Operational theories.—In prepare-measure scenarios,

to which we limit ourselves here, an operational theory
stipulates the possible preparations of a system and the
possible measurements thereon, as well as an algorithm for
computing the probability PðyjM;PÞ of obtaining the out-
come y of measurement M given preparation P, for all
possible measurements and preparations. For the purposes of

making predictions, it is possible to represent each prepa-
ration P and each effect ½yjM� by real-valued vectors  sP and
 eyjM respectively, with PðyjM;PÞ ¼  sP ·  eyjM [21,41,42].
Quantum theory can be conceptualized as an operational

theory, but one can also consider operational theories that
make different predictions. These are typically studied
because of what they can teach us about quantum theory
via the contrast they provide with it. For this reason, they
are termed foil theories [6].
We discuss four examples of operational foils to qubit

quantum theory that provide a useful contrast in the domain
of uncertainty relations and that have been of independent
prior interest (see Fig. 1).

Because the real-valued vector representation of qubit
quantum theory is simply the familiar four-dimensional
Bloch representation (wherein every qubit operator is
represented as a linear combination of elements of a basis
of the four-dimensional space of Hermitian operators), we
consider foil theories that also have a four-dimensional real-
valued vector representation. In discussing these theories,
we will reuse the notation X, Y, and Z to refer to a triple of
measurements associated with directions in the real-valued
representation that are mutually orthogonal to one another
and to the unit effect.
The first two foil theories are subtheories of the qubit

theory, in the sense that they posit that only a subset of the
preparations and measurements thereof are physically
possible. First is the qubit stabilizer theory, defined as
the subtheory of the full qubit theory arising when the
states are restricted to the convex hull of the stabilizer
states (an octahedron embedded inside the Bloch sphere)
and the effects are restricted to the closure (under both
convex mixtures and coarse grainings) of stabilizer effects.
It has been of prior interest in quantum information
theory [43] and quantum foundations [6,22]. Second is the
η-depolarized qubit theory, defined by taking the set of
effects to be the full set of qubit effects, but taking the
states to be restricted to the image of the Bloch ball under
the η-depolarizing mapDηðρÞ≡ ð1 − ηÞρþ η 1

2
I. The state

space in this case corresponds to a contracted Bloch ball
of radius 1 − η. Note that because this is being considered
as a foil theory, the depolarization is imagined to be

FIG. 1. The state spaces of various operational theories.
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fundamental, i.e., the theory is stipulated to have intrinsic
decoherence of the type explored in collapse theories
[44,45]. Our third example of a foil theory is one that is
postquantum, in the sense that it predicts statistics in a
prepare-measure scenario that are not achievable in
quantum theory. This is the gbit theory [42,46], but
defined relative to three binary-outcome measurements
rather than a pair. We will refer to these three measure-
ments as X, Y, and Z, in analogy with the quantum case.
As such, we can describe the states and effects of the gbit
theory in the same real vector space as we used for the
other foil theories: the effect space of the gbit theory is
equivalent to that of the qubit stabilizer theory, while the
state space is a cube [47]. The gbit theory has been studied
extensively in the context of axiomatizing quantum theory
[48,49]. Finally, our fourth example of a foil theory is a
strictly classical theory describing a pair of binary random
variables, which we again denote by X and Z. This
simplicial theory has a state space which is the convex
hull of the four possible joint assignments of values to X
and Z, which is a regular tetrahedron, while the effect
space is the four-dimensional hypercube that is dual to this
simplex [42,50].
The ZX-uncertainty relations of the four foil theories

described above are as follows:

qubit stabilizer∶ jhXij þ jhZij ≤ 1; ð3Þ

η-depolarized qubit∶ hXi2 þ hZi2 ≤ ð1 − ηÞ2; ð4Þ

gbit∶ jhXij ≤ 1; jhZij ≤ 1; ð5Þ

simplicial∶ jhXij ≤ 1; jhZij ≤ 1: ð6Þ

These are implied by the geometry of the projection of their
state spaces into the x̂ ẑ plane, and are plotted in Fig. 2(a)
alongside the quantum ZX-uncertainty relation. Note that

the relations for the gbit and simplicial theory describe a
lack of any nontrivial tradeoff, i.e., both X and Z can be
made perfectly predictable simultaneously.
Ontological models and noncontextuality.—An onto-

logical model of an operational theory is defined as follows.
For each system, the model specifies a set Λ, termed an
ontic state space, describing the possible physical states, or
ontic states, of the system, denoted λ ∈ Λ. (For our
purposes, it suffices to consider Λ finite.) Each preparation
procedure P in the operational theory is represented as a
probability distribution over the ontic states, denoted
μðλjPÞ. For each measurement M and outcome y of M,
the effect ½yjM� is represented by a conditional probability
distribution, denoted ξðyjM; λÞ, that stipulates the proba-
bility of obtaining outcome y given that the measurementM
was implemented on the system and that the latter was in the
ontic state λ. It is often useful to view the probability
distribution μðλjPÞ as a vector denoted  μP, and to also view
the conditional probability distribution ξðyjM; λÞ as a vector
denoted  ξyjM. It follows that the model reproduces the
predictions of the operational theory if and only if

PðyjM;PÞ ¼
X

λ∈Λ
ξðyjM; λÞμðλjPÞ ¼  ξyjM ·  μP: ð7Þ

The principle of generalized noncontextuality, applied
to preparation procedures [51], has the following form:
two preparation procedures, P and P0, that are operation-
ally equivalent (defined as leading to the same statistics
for all possible measurements, ∀ M∶PðyjM;PÞ ¼
PðyjM;P0Þ, and denoted P ≃ P0) must be represented in
the ontological model by the same probability distribution
over ontic states:

P ≃ P0 ⇒ μðλjPÞ ¼ μðλjP0Þ: ð8Þ

The real-valued vector representation  sP of a preparation
P, described earlier, throws away all information about P
besides its operational equivalence class. It follows that a
noncontextual ontological model of an operational theory is
one wherein all preparation procedures associated to the
same vector  s are represented by the same probability
distribution over ontic states. In particular, this implies that
if two different mixtures of operational states are equal, the
same relation holds among the corresponding probability
distributions over ontic states:

X

i

wi  si ¼
X

j

w0
j  s

0
j ⇒

X

i

wi  μi ¼
X

j

w0
j  μ

0
j ð9Þ

where fwigi and fw0
jgj are probability distributions [2].

Quantum theory, conceived as an operational theory,
does not admit of a preparation-noncontextual ontological
model even for a single qubit [2]. By contrast, the qubit
stabilizer theory, when restricted to a single system in a

FIG. 2. (a) The ZX-uncertainty relation for (i) η-depolarized
qubit theory for η ¼ 1 − ð1= ffiffiffi

2
p Þ, (ii) stabilizer qubit theory,

(iii) qubit theory, and (iv) gbit theory and simplicial theory. Curve
(ii) also describes the noncontextual bound. (b) The XYZ-
uncertainty relation for (i) η-depolarized qubit theory for
η ¼ 1 − ð1= ffiffiffi

3
p Þ, (ii) stabilizer qubit theory, (iii) qubit theory,

and (iv) gbit theory and simplicial theory. Surface (ii) also
describes the noncontextual bound.
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prepare-measure scenario, admits of a noncontextual onto-
logical model [4]. The η-depolarized qubit theory admits of
a noncontextual model for η ≥ 2

3
[52]. The gbit theory, like

the qubit quantum theory, does not admit of a noncontex-
tual ontological model. Finally, the simplicial theory admits
of a noncontextual ontological model where the vertices of
the simplex are themselves the ontic states [53].
Main result.—There is an immediate challenge with

trying to cast an uncertainty relation as a noncontextuality
inequality. An uncertainty relation expresses a predictability
tradeoff between two measurements for any single quantum
state. But the simplest operational scenario in which non-
contextuality implies a nontrivial constraint on statistics
involves four quantum states [54], since this is the smallest
number for which there can be a nontrivial operational
equivalence.
To see how one solves this problem, consider the case of

the qubit theory. Note that for any given quantum state, the
values of X predictability and Z predictability that it
achieves can also be achieved by many other states, and
one can find nontrivial operational equivalences among
these. In particular, imagine a state with Bloch vector  s1.
Then one can find three other states  s2,  s3, and  s4 that give
the same predictabilities, but different signs for the expect-
ation values; that is,

hXi  s1 ¼ −hXi  s2 ¼ −hXi  s3 ¼ hXi  s4 ;
hZi  s1 ¼ hZi  s2 ¼ −hZi  s3 ¼ −hZi  s4 : ð10Þ

We refer to this as the condition that the state has equal
predictability counterparts. Moreover, one can always find
such quadruples of states which additionally satisfy the
operational equivalence relation

1

2
 s1 þ

1

2
 s3 ¼

1

2
 s2 þ

1

2
 s4: ð11Þ

An example is depicted in Fig. 3. Such a quadruple of
states forms the vertices of a rectangle in a plane that is
parallel to the x̂ ẑ plane. These vertices are the orbit of the
original state under the action of the symmetry group of a
rectangle under reflections, the Coxeter group A2

1, so we
refer to the pair of conditions on the state as the condition of
A2
1-orbit realizability.
Our main technical result is that, in any operational theory,

if one can find a pair of measurements, which we will here
denote by X and Z, and a state that satisfies the A2

1-orbit-
realizability condition (where the A2

1 symmetry is evaluated
relative to X and Z), then noncontextuality implies a
nontrivial constraint on the X predictability and Z predict-
ability for that state, namely, that they satisfy

jhXij þ jhZij ≤ 1: ð12Þ

An analytic and self-contained proof of this claim is given in
Sec. I of the Supplemental Material [28]. In Sec. II of the
Supplemental Material [28], we show that it also follows as
a special case of noncontextuality inequalities that were
previously derived using a linear program [55]. Note that the
noncontextuality inequality of Eq. (12) is noise-robust, and
can therefore be tested experimentally using the techniques
described in Refs. [56] and [47].

Equation (12) has an unconventional form for a non-
contextuality inequality given that it constrains the predic-
tions associated to a single state rather than a set of states.
This difference is only cosmetic, however, as the single state
is explicitly required to satisfy the A2

1-orbit-realizability
condition, and thus the predictabilities appearing in the
inequality in fact refer to the data one can obtain from any of
the quadruple of states in its A2

1 orbit.
For any operational theory and choice of X and Z

measurements in that theory, one can determine the subset
of states that satisfy the A2

1-orbit-realizability condition
relative to that choice. In the case of the simplicial theory,
depicted in Fig. 1(e), for instance, it is the strict subset of
states defined by the octahedron whose vertices lie at the
midpoints of the edges of the tetrahedron [i.e., the octahe-
dron depicted in Fig. 1(b)]. A vertex of the tetrahedron, for
example, fails to satisfy the A2

1-orbit-realizability condition
because although it satisfies the condition of having
equal predictability counterparts (namely, the three other
vertices), these four states do not satisfy the operational
equivalence condition. By contrast, there are operational
theories wherein all states satisfy the A2

1-orbit-realizability
condition. Examples include the qubit theory, the stabilizer
qubit theory, the η-depolarized qubit theory, and the gbit
theory. We will refer to operational theories of this sort as
having A2

1 symmetry.
Whether or not an operational theory has A2

1 symmetry,
our bound constrains the tradeoff between X predictability
and Z predictability for any state within the theory that

FIG. 3. Depiction of how an arbitrary state  s1 in qubit quantum
theory is part of a quadruple of states that satisfy the A2

1-orbit-
realizability condition.
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satisfies the A2
1-orbit-realizability condition. Consequently,

if the theory contains one or more such states that violate
the inequality, this is a proof of the failure of that theory to
admit of a noncontextual ontological model.
For operational theories that do have A2

1 symmetry, our
bound has further significance. Because in such theories all
states satisfy the A2

1-orbit-realizability condition, our bound
is a universal constraint on the predictability tradeoff within
such theories; that is, it is a constraint on the form of the
ZX-uncertainty relation within such theories.
The noncontextual bound [Eq. (12)] is comparedwith the

ZX-uncertainty relation for a qubit [Eq. (1)] in Fig. 2(a),
where it is readily seen that there can be quantum violations
of the bound. Indeed, only when jhXij ¼ 1 or jhZij ¼ 1

does the noncontextual bound intersect the quantum
ZX-uncertainty relation. The maximum quantum violation
is achieved when jhXij ¼ jhZij ¼ ð1= ffiffiffi

2
p Þ and corresponds

to jhXij þ jhZij ¼ ffiffiffi
2

p
≃ 1.414.

One can also compare this noncontextual bound with
the ZX-uncertainty relation of the three foil theories that
are in the A2

1-symmetry class. The ZX-uncertainty relation
for the η-depolarized qubit theory, Eq. (4), satisfies
the noncontextual bound if η ≥ 1 − ð1= ffiffiffi

2
p Þ ≃ 0.293.

The ZX-uncertainty relation for the qubit stabilizer theory,
Eq. (3), has exactly the same form as Eq. (12) and
therefore precisely saturates the noncontextual bound.
Finally, the uncertainty relation for the gbit theory,
Eq. (5), yields the maximum possible violation of the
noncontextual bound, namely, jhXij þ jhZij ¼ 2.

In contrast, because the simplicial theory is not in the
A2
1-symmetry class, our result does not constrain the form

of its ZX-uncertainty relation. Therefore, although the
ZX-uncertainty relation for the simplicial theory, Eq. (6),
is equivalent to that of the gbit theory and thus can violate
the bound of Eq. (12), the only states in the theory that
achieve this violation (for example, the vertices of the
simplex) do not satisfy A2

1-orbit realizability, and Eq. (12) is
not derivable from noncontextuality for them. Meanwhile,
the states that do satisfy the A2

1-orbit realizability condition
are precisely those inside of the embedded octahedron,
namely, the states arising in the qubit stabilizer theory, and
these saturate the noncontextual bound. In short, contex-
tuality is not witnessed in the case of the simplicial theory,
consistent with the fact that the latter admits of a non-
contextual model.
Generalization to three measurements.—The analog of

Eq. (12) for three measurements (which we denote X, Y,
and Z) is

jhXij þ jhYij þ jhZij ≤ 1: ð13Þ

In Sec. III of the Supplemental Material [28], we articulate
the condition of A3

1-orbit realizability under which this

bound holds (A3
1 is the symmetry group of a rectangular

prism under reflections) and provide the proof. This
constraint is depicted in red in Fig. 2(b), alongside the
XYZ-uncertainty relations for the four foil theories dis-
cussed above. Note that this inequality admits of a greater
quantum violation than Eq. (12) does. The stabilizer qubit
theory also saturates this inequality.
Discussion.—It is usually the lack of joint predictability

of X and Z (or of X, Y, and Z) that is emphasized as a
feature of quantum theory that constitutes a departure from
the classical worldview. From this perspective, what is
striking about our results is that qubit quantum theory
contains states that assign higher values of the predict-
abilities of multiple measurements, such as X and Z (or X,
Y, and Z) than can occur in any operational theory that is
noncontextually realizable (hence classically explainable)
and that has A2

1 symmetry. Similarly, the fact that the gbit
theory can achieve perfect predictability for X and Z jointly
(and even for X, Y, and Z jointly) while having A2

1

symmetry implies that it is even further than the qubit
theory from being classically explainable.
The A2

1-symmetry property is critical to understanding
why the degree of nonclassicality increases with the
degree of predictability rather than with the degree of
unpredictability. The conventional association of non-
classicality with unpredictability is based on the fact that
the simplicial theory—which must surely be included
among those that are classically explainable—allows
perfect joint predictability of X and Z. However, the
states in the simplicial theory that achieve such predict-
ability do not satisfy the A2

1-orbit-realizability condition,
and hence their ontological representations are not con-
strained by noncontextuality. Moreover, as noted above, if
one considers the subset of states within the simplicial
theory that do satisfy the A2

1-orbit-realizability condition
(namely, the embedded octahedron), they exhibit less
joint predictability for X and Z than is possible in qubit
quantum theory.
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