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Abstract
Estrogen influences the disease severity and sexual dimorphism in asthma, which is caused

by complex mechanisms. Besides classical nuclear estrogen receptors (ERαβ), G-protein-

coupled estrogen receptor (GPER) was recently established as an estrogen receptor on the

cell membrane. Although GPER is associated with immunoregulatory functions of estrogen,

the pathophysiological role of GPER in allergic inflammatory lung disease has not been ex-

amined. We investigated the effect of GPER-specific agonist G-1 in asthmatic mice. GPER

expression in asthmatic lung was confirmed by immunofluorescent staining. OVA-sensitized

BALB/c and C57BL/6 mice were treated with G-1 by daily subcutaneous injections during an

airway challenge phase, followed by histological and biochemical examination. Strikingly,

administration of G-1 attenuated airway hyperresponsiveness, accumulation of inflammato-

ry cells, and levels of Th2 cytokines (IL-5 and IL-13) in BAL fluid. G-1 treatment also de-

creased serum levels of anti-OVA IgE antibodies. The frequency of splenic Foxp3+CD4+

regulatory T cells and IL-10-producing GPER+CD4+ T cells was significantly increased in G-

1-treated mice. Additionally, splenocytes isolated from G-1-treated mice showed greater IL-

10 production. G-1-induced amelioration of airway inflammation and IgE production were

abolished in IL-10-deficient mice. Taken together, these results indicate that extended

GPER activation negatively regulates the acute asthmatic condition by altering the IL-10-

producing lymphocyte population. The current results have potential importance for under-

standing the mechanistic aspects of function of estrogen in allergic inflammatory response.
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Introduction
Asthma is known to be a sexually dimorphic disease in terms of severity; women have more se-
vere asthma than men with increased airway hyperresponsiveness (AHR) [1,2,3]. Indeed, ex-
perimental evidence including ours indicates that female mice are more susceptible to
development of allergic airway inflammation, AHR, and airway remodeling [4,5]. A recent
clinical study using cluster analysis revealed a female-dominant phenotype, indicating the het-
erogeneity of asthma and different pathophysiology in female asthmatics [6].

A role for estrogen in modulating asthma is deduced from the natural history of asthma.
Coincident with the onset of puberty and increasing levels of circulating estrogen, asthma be-
comes significantly more common in women than in men, particularly during the reproductive
years and pregnancy [7]. Another observation regarding the contribution of estrogen is that fe-
male asthmatics can be affected by pregnancy, menstruation cycle, menopause, and hormone
replacement therapy [8]. Many epidemiological and clinical studies have shown that estrogen
likely contributes to disease severity and development of asthma, although the results are not
consistent. In contrast, several studies have indicated that supplemental estrogen is successfully
used as a steroid-sparing agent in women with severe asthma [9,10]. The influence of estrogen
has been investigated in animal models of asthma with both favorable and unfavorable results
[11]. Therefore, understanding the functional mechanism of estrogen in asthmatics is poten-
tially important to achieve future personalized treatment.

Estrogen has a multitude of biological effects not only on the female reproductive system
but also on the immune system. The actions of estrogen have been traditionally described as
occurring through one of the two classical nuclear estrogen receptors, estrogen receptor (ER) α
and ERβ, which function as ligand-dependent transcription factors that bind directly to estro-
gen response elements in the promoter regions of genes. In addition to the long-term regula-
tion of gene expression, estrogen has also been shown to meditate many rapid biological
responses. An estrogen-binding site was found on the cell membrane [12,13], and G-protein-
coupled receptor (GPCR) was identified as an estrogen-binding membrane receptor. G-
protein-coupled estrogen receptor (GPER) is abundantly expressed not only in the brain and
cardiovascular systems but also in the lungs [14,15]. In addition to the fact that ERs and GPER
possess different signaling mechanisms, their actions are thought to be independent by several
measures of difference, such as expression, binding affinity to estrogen, and biological func-
tions. A GPER-selective agonist has been linked to a variety of pathological and physiological
events regulated by estrogen action, including female reproductive cancer and the renal and
cardiovascular systems [16]. To date, several studies have indicated the immunoregulatory
functions of GPER [17,18,19,20,21,22], although the roles of GPER in allergic inflammatory
diseases have yet to be elucidated.

Given this background, we aimed to investigate the role of GPCR in asthmatic mice using
GPER-specific agonist G-1. Our data indicated that extended GPER activation negatively
regulated the Th2-mediated airway inflammatory response in an interleukin (IL)-10-
dependent manner.

Materials and Methods

Animals
Female BALB/c, C57BL/6, and IL-10 KO mice at 8–10 weeks of age were purchased from
Charles River Japan, Inc. (Yokohama, Japan). These mice were maintained on ovalbumin
(OVA)-free diets. All experimental animals used in this study were housed under constant
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temperature and light cycles, and under a protocol approved by the Institutional Animal Care
and Use Committee of Akita University Graduate School of Medicine and Faculty of Medicine.

Sensitization and airway challenge
Mice were immunized by intraperitoneal injection of 20 μg OVA (Grade V; Sigma-Aldrich,
St. Louis, MO) emulsified in 2.25 mg of alum (Imject Alum; Pierce, Rockford, IL) in a total vol-
ume of 100 μl on Days 0 and 14. Mice were challenged via the airways with 1% OVA in saline
for 20 min on Days 28, 29, and 30 by ultrasonic nebulization (Fig 1). Lung resistance and dy-
namic lung compliance to methacholine (Sigma-Aldrich) were assessed 48 hours after the last
challenge, and tissues and cells were obtained for further assays [23,24].

Administration of G-1
G-1 (Cayman Chemical Company, Ann Arbor, MI) was purchased [25]. Mice received subcu-
taneous injections of G-1 5 μg daily [26,27], from Days 27 to 31 (Fig 1). G-1 was dissolved in
dimethyl sulfoxide (DMSO) (Sigma-Aldrich) and adjusted to a density of 5 μg/100 μL/mouse.

Evaluation of AHR
Lung resistance and dynamic lung compliance to methacholine were measured using an inva-
sive system, as previously described [28]. Briefly, mice were deeply anesthetized, and tracheoto-
mies were performed. The mice were then placed in an Elan Series Mouse RC Site chamber
(Buxco Electronics, Wilmington, NC) and ventilated mechanically. Once baseline data were es-
tablished, saline and an increasing dose of nebulized methacholine were administered. At each
dose, airflow changes in the sealed chamber and pressure changes in the airway were analyzed
with BioSystem XA software (Buxco Electronics) for 3 minutes. Lung resistance and dynamic
lung compliance for each methacholine dose were expressed as a percentage change from
baseline level.

Collection of bronchoalveolar lavage fluid and measurement of
cytokines
The lungs were lavaged through the tracheal tube with saline (1 mL, 2 times, 37°C). The vol-
ume of collected bronchoalveolar lavage (BAL) fluid was measured in each sample, and the
number of BAL cells was counted. Cytospin slides were stained with May-Giemsa, and at least
300 cells were differentiated in a blinded fashion under light microscopy. Cytokine

Fig 1. Experimental protocols and immunofluorescence staining demonstrated GPER expression.
Mice were sensitized by two intraperitoneal injections (IP) of OVA/alum and then subjected to three
consecutive days of aerosolized OVA challenge (N). To evaluate the effect of G-1 on airway
hyperresponsiveness (AHR) and airway inflammation, mice received subcutaneous injections (s.c.) of G-1
(5 μg daily) from Days 27 to 31.

doi:10.1371/journal.pone.0123210.g001
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concentrations in the BAL fluid supernatants were measured by means of enzyme-linked im-
munosorbent assay (ELISA). Colorimetric measurement was performed according to the man-
ufacturer’s instructions. The minimum detectable doses (MDD) are 2 pg/mL of mouse IL-4
and interferon gamma (IFN-γ), 7 pg/mL of IL-5, 1.5 pg/mL of IL-13, and 3 pg/mL of eotaxin,
respectively (R&D Systems, Minneapolis, MN).

Measurement of serum levels of total and OVA-specific immunoglobulin
E (IgE) antibodies
Total and OVA-specific IgE antibody levels were measured by means of ELISA (Bethyl Labora-
tories, Inc., Montgomery, TX) 48 hours after the last airway challenge [29].

Histological evaluation
The lungs were inflated through a tracheal tube with 2 mL of air and fixed in 10% formalin,
and lung tissue was embedded in paraffin. Tissue sections with a thickness of 4 μm were affixed
to microscope slides and deparaffinized. The slides were stained with hematoxylin and eosin
(H&E) and examined under light microscopy to detect inflammatory cell infiltrates. In H&E
lung sections, the numbers of inflammatory cells per square millimeter in the peribronchial
areas were analyzed using the National Institutes of Health (NIH) Image Analysis system [30].
Serial sections were also stained with Periodic acid-Schiff (PAS) and Masson trichrome (MT).
For histopathologic analysis, sample regions were randomly selected in a coded manner.

Splenocyte culture for cytokine production
The culture of splenocytes was performed as described previously [31]. Briefly, on Day 32,
mice were sacrificed, the spleens were excised, and the splenocytes were disaggregated. Splenic
mononuclear cells were isolated by density gradient using Histopaque-1083 (Sigma-Aldrich),
and the washed cells were resuspended at 8 × 106/ml in complete medium consisting of Roswell
Park Memorial Institute 1640 (RPMI 1640) (Life Technologies, Carlsbad, CA) with 10% heat-
inactivated fetal bovine serum (FCS) (Life Technologies), 50 ng/mL phorbol myristate acetate
(PMA) (Sigma-Aldrich), and 10 mM A23187 (Sigma-Aldrich). The cells were then cultured for
2 days at 37°C in a 5% CO2 humidified atmosphere. For the cytokine assay, the culture super-
natants of the cells were collected at 2 days. The levels of IL-10 in the supernatants were mea-
sured using ELISA.

Flow cytometry
Splenocytes were prepared from the C57BL/6 mice after sensitization and airway challenge
with OVA in the presence or absence of G-1 administration. Briefly, on Day 32, splenic mono-
nuclear cells were isolated as shown above. The cells were pre-incubated with an anti-mouse
FcR blocking reagent and then incubated at 4°C for cell surface staining with a combination of
fluorochrome-conjugated antibodies: 1), PE-Cy5-conjugated anti-TCRβ (BioLegend, San
Diego, CA), PE-Cy7-conjugated ant-NK1.1 (BioLegend), PE-CF594-conjugated anti-CD8a
(BD Biosciences, San Jose, CA), and Alexa Fluor 488-conjugated anti-CD4 (BioLegend). Then,
the cells were washed, permeabilized with BD Cytofix/Cytoperm (BD Biosciences), and stained
with PE-conjugated anti-IL-10 (BioLegend) to detect intracellular IL-10. 2), PE-Cy5-conju-
gated anti-TCRβ (BioLegend, San Diego, CA), PE-Cy7-conjugated ant-NK1.1 (BioLegend),
PE-Cy7-conjugated anti-CD8a (BioLegend), PE-CF594-conjugated anti-CD4 (BD Biosci-
ences), and Alexa Fluor 488-conjugated anti-GPER (Santa Cruz Biotechnology, Santa Cruz,
CA) with subsequent staining by Alexa Fluor 488-conjugated goat anti-rabbit immunoglobulin
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G (IgG) (Life Technologies). Then, the cells were washed, permeabilized with BD Cytofix/
Cytoperm (BD Biosciences), and stained with PE-conjugated anti-IL-10 (BioLegend) to detect
intracellular IL-10. 3), PE-Cy5-conjugated anti-TCRβ (BioLegend, San Diego, CA), PE-Cy7-
conjugated ant-NK1.1 (BioLegend), PE-Cy7-conjugated anti-CD8a (BioLegend), and
PE-CF594-conjugated anti-CD4 (BD Biosciences). Then, the cells were washed, permeabilized
with BD Cytofix/Cytoperm (BD Biosciences), and stained with Alexa Fluor 488-conjugated IL-
10 (BioLegend) to detect intracellular IL-10, and stained with PE-conjugated anti-Foxp3 (Bio-
Legend) to direct intracellular Foxp3.

Multicolor flow analyses were performed using the Cytomics FC 500 (Beckman Coulter,
Inc., Brea, CA) flow cytometer to allow for 5-color analysis. Acquired data were analyzed with
FlowJo software (Tree Star, Inc., Ashland, OR).

Statistical analysis
Two groups of data were compared using the Mann-Whitney U test. The P value for signifi-
cance was set at less than 0.05. All results were expressed as the mean ± SEM.

Results

GPER expression in lung tissue
The expression of GPER in human immune cells (monocytes, macrophages, eosinophils, B
cells, T cells) has been demonstrated [22,32]. GPER mRNA expression has been reported in
the lungs of the C57BL/6 mouse strain [15,33]. We first examined the expression of GPER in
the asthmatic lung tissue using immunofluorescence imaging. As shown in S1 Fig, GPER was
expressed in the lung both in BALB/c and C57BL/6 mice.

Administration of G-1 ameliorated AHR in BALB/c mice
Increased AHR induced by an immunologically non-specific stimulant such as methacholine is
a fundamental feature of asthma. OVA-induced asthmatic mice develop AHR in response to
increasing doses of inhaled methacholine. We examined the changes in airway resistance (re-
flecting AHR in large airways) and dynamic lung compliance (reflecting AHR in small airway)
to assess whether G-1 administration influences AHR. As shown in Fig 2, in response to in-
haled methacholine, asthmatic mice treated with phosphate buffered saline (PBS) had an in-
crease in airway resistance and a decrease in lung compliance. In contrast, these responses to
methacholine were significantly attenuated in G-1-treated asthmatic mice, indicating the sup-
pression of AHR.

Administration of G-1 attenuated inflammatory cell accumulation in BAL
fluid in BALB/c mice
Since airway inflammation leads to development of AHR, we next investigated inflammatory
cell infiltration into the airway by histological examination of H&E staining. In G-1-treated
mice, inflammatory cells in the peribronchial areas were significantly decreased compared with
those of non-treated BALB/c mice (Fig 3A, upper panels, Fig 3B). Goblet cells in airway epithe-
lium and collagen deposition were also examined by PAS and MT staining, respectively. As
shown in Fig 3A (lower panels), goblet cell hyperplasia and lung fibrosis were also attenuated in
G-1-treated mice. The numbers and types of inflammatory cells in the airways were determined
in BAL fluid 48 h after the last of the three consecutive allergen challenges (Fig 3C). Non-treated
mice showed a marked increase in the number of eosinophils and lymphocytes in BAL fluid,
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Fig 2. Decreased AHR in G-1-treated asthmatic BALB/c mice.Development of AHR was measured by
increased lung resistance (Rl, left panel) and decreased dynamic lung compliance (Cdyn, right panel) in
response to methacholine. AHR was significantly decreased in G-1-treated mice compared to controls.
* P<0.05, ** P<0.01, G-1-treated (n = 6) vs. non-treated mice (n = 6).

doi:10.1371/journal.pone.0123210.g002

Fig 3. Inflammatory cell accumulation was significantly decreased in G-1-treated mice. A: H&E staining (original magnification: x40 and x400, upper
panels) and PAS staining (x400, lower left panel) and MT staining (x400, lower right panel) of serial lung sections. The boxed area of the upper left panel is
seen at higher magnification. B: Quantified data of inflammatory cell accumulation, histologically examined in H&E–stained lung tissue, as described in
Materials and Methods.C: Inflammatory cell accumulation in BAL fluid. Values are expressed as the mean ± SEM. ** P<0.01, G-1-treated (n = 6) vs. non-
treated mice (n = 6).

doi:10.1371/journal.pone.0123210.g003
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whereas G-1 treatment significantly reduced the number of eosinophils and lymphocytes.
These findings indicate that administration of G-1 suppress allergic airway inflammation.

Administration of G-1 reduced levels of cytokine, chemokine, and OVA-
specific IgE in BALB/c mice
Since G-1 attenuated OVA-induced lung inflammation, we measured levels of Th1 and Th2 cy-
tokines (IL-4, 5, and 13 and INF-γ) and an eosinophil-driving chemokine eotaxin (CCL11) in
BAL fluid using ELISA. Administration of G-1 significantly reduced the levels of IL-5 and IL-
13 in BAL fluid compared with non-treated mice (Fig 4A). We also assessed the serum levels of
total and OVA-specific IgE. As shown in Fig 4B, OVA-specific IgE was significantly reduced in
G-1-treated asthmatic mice. These data suggest that G-1 administration attenuates Th2 cyto-
kines in lung and antigen-specific B cell response in this asthmatic model of mice.

Administration of G-1 attenuated allergic airway inflammation in C57BL/
6 mice
BALB/c mice are thought to be immunologically Th2 shifted and thus used in asthmatic mod-
els more frequently than C57BL/6 mice. To examine whether the G-1-induced anti-inflamma-
tory effects are limited to the Th2-shifted strain, we performed the same experiment using
C57BL/6 mice. In H&E-stained lung sections, inflammatory cells in the peribronchial areas
were significantly decreased in G-1-treated C57BL/6 mice (Fig 5A and 5B). PAS-stained goblet
cells in airway epithelium and MT-stained collagen were decreased in G-1-treated mice (Fig
5A), similar to those in G-1-treated BALB/c mice (Fig 3A). G-1 administration significantly re-
duced the number of total cells, eosinophils, and lymphocytes in BAL fluids of C57BL/6 mice
(Fig 5C). Administration of G-1 significantly reduced the levels of IL-5 and IL-13 in BAL fluid
and serum levels of total and OVA-specific IgE antibodies in C57BL/6 mice, as well (Fig 6A
and 6B). These findings indicate that the inhibition of allergic airway inflammation by G-1 is
not dependent on the strain of mouse.

IL-10 production was enhanced in splenocytes of G-1-treated C57BL/6
mice
Since GPER has been reported to be associated with increased production of self-regulatory
cytokine IL-10 [17,18], we hypothesized that IL-10 plays a pivotal role in G-1-induced anti-in-
flammatory effects. We first examined IL-10-producing CD4+ T cells and CD8+ T cells from
freshly isolated spleens (Fig 7A). The frequency of IL-10+ CD4+ T cells was significantly
higher in G-1-treated mice, although that of IL-10+ CD8+ T cells was comparable (Fig 7B and
7C). Foxp3+CD4+ regulatory T (Treg) cells have been shown to negatively regulate allergic air-
way inflammation through IL-10 [34]. Indeed, the frequency of Foxp3+CD4+ Treg cells was
significantly higher in G-1-treated mice (Fig 7D). Further, splenic GPER+ CD4+ T cells and
their IL-10 production were assessed. The frequency of GPER+CD4+ T cells was comparable
(Fig 7E), although G-1-treated mice exhibited a significant increment of IL-10-producing
populations in GPER+CD4+ T cells (Fig 7F). To confirm the upregulated IL-10 production
from these cells, the culture supernatants were analyzed using ELISA (Fig 7D). Indeed, splenic
mononuclear cells from G-1-treated mice produced a significantly higher amount of IL-10 as
compared with the controls. These data indicate that G-1 enhances the IL-10 production from
CD4+ T cell populations.
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Fig 4. Th2 cytokines and IgE were decreased in G-1-treated BALB/c mice compared to non-treated
controls. A, B: The levels of eotaxin, IL-4, IL-5, IL-13, and IFN-γ in BAL fluid and total and OVA-specific IgE
antibodies in serum of mice were measured using ELISA. The results are expressed as the mean ± SEM.
* P<0.05, ** P<0.01, G-1-treated (n = 6) vs. non-treated mice (n = 6).

doi:10.1371/journal.pone.0123210.g004
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Anti-inflammatory effects of G-1 were abolished in IL-10-deficient mice
Since IL-10 production was upregulated in splenocytes from G-1-treated mice, we examined
G-1-treated lung inflammation in IL-10 KO mice with a C57BL/6 background. Histopatholog-
ical examination demonstrated no significant differences in inflammatory cell accumulation,
goblet cell hyperplasia, and lung fibrosis between G-1-treated and non-treated IL-10 KO mice
(Fig 8A and 8B). In addition, the numbers and types of inflammatory cells in the airways did
not differ regardless of G-1 treatment (Fig 8C).

Concentrations of cytokines (IL-4, 5, and 13 and INF-γ) and a chemokine (eotaxin) in BAL
fluid were measured using ELISA. Although IL-5, IL-13, and OVA-specific IgE antibodies were
reduced in G-1-treated wild-type mice (Fig 6A and 6B), there were no differences in these be-
tween G-1-treated and non-treated IL-10 KO mice (Fig 9A). Moreover, G-1 treatment did not
reduce serum levels of total or OVA-specific IgE in IL-10-deprived mice (Fig 9B). These find-
ings indicate that the G-1-induced suppressive effect on allergic airway inflammation is depen-
dent on the IL-10 signaling pathway.

Fig 5. Inflammatory cell accumulation was significantly decreased in G-1-treated C57BL/6 mice
compared to non-treated controls. A: H&E staining (original magnification: x40 and x400, upper panels)
and PAS staining (x400, lower left panel) and MT staining (x400, lower right panel) of serial lung sections. B:
Quantified data of inflammatory cell accumulation, histologically examined in H&E–stained lung tissue, as
described in Materials and Methods. C: Inflammatory cell accumulation in BAL fluid. Values are expressed as
the mean ± SEM. * P<0.05, ** P<0.01, G-1-treated (n = 6) vs. non-treated mice (n = 7).

doi:10.1371/journal.pone.0123210.g005
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Fig 6. Th2 cytokines and IgE were decreased in G-1-treated C57BL/6 mice compared to non-treated
mice. A, B: The levels of eotaxin, IL-4, IL-5, IL-13, and IFN-γ in BAL fluid and total and OVA-specific IgE
antibodies in serum of mice were measured using ELISA. Values are expressed as the mean ± SEM.
* P<0.05, ** P<0.01, G-1-treated (n = 6) vs. non-treated mice (n = 7).

doi:10.1371/journal.pone.0123210.g006
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Fig 7. G-1 treatment increased the frequency of IL-10+CD4+ T cells and the secretion of IL-10 from splenocytes in C57BL/6 mice. A: Representative
FACS data showing frequencies of IL-10+CD4+ T cells and IL-10+CD8+ T cells in splenocytes. B, C: Splenocytes were analyzed using a flow cytometer for
the frequency of IL-10-producing CD4+ and CD8+ T cells. D: Splenocytes were analyzed using a flow cytometer for the frequency of Foxp3+CD4+ T cells. E,
F: Splenocytes were analyzed using a flow cytometer for the frequency of GPER-expressing cells and IL-10-producing GPER+CD4+ T cells.G: The levels of
IL-10 in splenocyte culture supernatant were measured by means of ELISA. Values are expressed as the mean ± SEM. * P<0.05, ** P<0.01, G-1-treated
(n = 6) vs. non-treated mice (n = 7).

doi:10.1371/journal.pone.0123210.g007
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Discussion
Understanding the mechanisms by which estrogen influences asthma is of paramount impor-
tance, especially for better treatment of female asthmatics. Here, we demonstrated that admin-
istration of a GPER-specific agonist during the allergen challenge phase inhibited allergic
airway response in two different strains of mice, i.e., those with BALB/c and C57BL/6 back-
ground. The effect was associated with increased splenic CD4+ T cells that produce IL-10. IL-
10 plays an indispensable role in the effect of G-1, evidenced by the fact that the changes in air-
way inflammation and cytokine production were not observed in IL-10 KO asthmatic mice. To
the best of our knowledge, this is the first demonstration of the involvement of GPER in allergic
airway inflammation.

Estrogen in the allergic inflammatory process is a complex phenomenon with both pro-
and anti-inflammatory effects. Estradiol can activate the inflammatory cells including mast
cells and eosinophils [35,36], although it reduces airway constriction [37,38], down-regulates
the production of pro-inflammatory cytokines [39], and protects the cells from harmful
oxidative stress [40]. The influence of estrogen on asthma has been investigated in rodent
models with exogenous estradiol administration and ovariectomy. The results have shown
that estrogen plays unfavorable [7,41], favorable [42], and dual [43] roles in allergic airway in-
flammatory response. The inconsistency is likely due to different receptors and signaling
pathways, which can be altered depending on cell type, and other confounding factors. Recent

Fig 8. IL-10 deprivation abolished G-1-induced improvement of inflammatory cell accumulation in the
lung. A: H&E staining (original magnification: x40 and x400, upper panels) and PAS staining (x400, lower left
panel) and MT staining (x400, lower right panel) of serial lung sections. B: Quantified data of inflammatory cell
accumulation, histologically examined in H&E–stained lung tissue, as described in Materials and Methods.C:
Inflammatory cell accumulation in BAL fluid. Values are expressed as the mean ± SEM for G-1-treated mice
(n = 6) and non-treated controls (n = 7).

doi:10.1371/journal.pone.0123210.g008
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Fig 9. IL-10 depletion eradicated G-1-induced reduction of Th2 cytokines in BAL fluid and serum IgE.
A, B: The levels of eotaxin, IL-4, IL-5, IL-10, IL-13, and IFN-γ in BAL fluid and total and OVA-specific IgE
antibodies in serum of IL-10 KOmice were measured using ELISA. Values are expressed as the
mean ± SEM for G-1-treated mice (n = 6) and non-treated controls (n = 7).

doi:10.1371/journal.pone.0123210.g009
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discovery of GPER and studies using the specific synthetic agonist G-1 and GPER KO mice
revealed differential effects of ER and GPER [16]. The current study protocol was aimed at ex-
amining the role of GPER activation during the allergen challenge phase using an established
asthmatic model.

The improvement of AHR by G-1 is associated with reduced airway inflammation. The di-
rect effect of G-1 on airway smooth muscle cells to induce airway relaxation is not likely, because
a recent report indicated no effect of G-1 on tracheal relaxation using ex vivo experiments [37].
The first step of leukocyte migration from the bloodstream into inflamed tissue starts with adhe-
sion to the endothelium by interaction of integrins on leukocytes with upregulated adhesion
molecules of the immunoglobulin family, such as intercellular adhesion molecule-1 (ICAM-1)
and vascular cell adhesion molecule-1 (VCAM-1) [44,45]. Leukocytes are subsequently re-
cruited in a stepwise manner involving rolling, activation, firm adhesion, and transmigration
from the blood stream into extravascular tissues, further contributing to inflammation. Chakra-
barti et al. reported that G-1 down-regulated the expression of these adhesion molecules in en-
dothelial cells [45]. GPER-dependent down-regulation of the adhesion molecules provides a
possible explanation for suppressed lung inflammation in G-1-treated mice.

The finding that G-1 treatment reduced the production of IL-5 and IL-13 in two different
mice strains is of particular importance because these cytokines have been closely linked to al-
lergic inflammation. IL-5 is the principal cytokine that modulates eosinophil function. During
an allergic response, IL-5 stimulates the differentiation of eosinophils from bone marrow cells
and maintains cell survival resulting in blood eosinophilia [46]. At the site of inflammation, IL-
5 prolongs eosinophil survival, and eosinophils release cytotoxic products including granular
proteins and oxygen radicals leading to AHR [47]. IL-13, which shares a receptor component
and signaling pathways with IL-4, plays a central role in airway eosinophilia and development
of AHR [48]. Since IL-13 directs IgE class-switching in naive B cells [49], IL-13 likely contrib-
utes to decreasing IgE production in G-1-treated mice. In contrast to other Th2 lymphocyte-
derived cytokines, IL-4 was not affected by G-1 treatment in this study. Recently, studies have
identified a family of lineage-negative innate lymphoid cells (ILCs). Among them, type 2 ILCs
(ILC2) are known to produce abundant amounts of IL-5 and IL-13 in the lung [50,51]. The re-
lationship between ILC2 and GPER is a subject for future study.

IL-10, primarily a Th2 product, is an intrinsic self-regulatory cytokine in allergic conditions
[52]. IL-10 has been known to dampen antigen-specific T cell responses such as cytokine pro-
duction and proliferation [53,54]. Estradiol has been reported to protect against development
of experimental autoimmune encephalomyelitis (EAE) in mice by decreasing the production of
inflammatory cytokines and increasing IL-10, and through expansion of Treg cells [55,56]. A
recent study revealed that GPER played a critical role in increased production of IL-10 in this
system [17]. Consistent with two independent reports [18,20], we showed an increase in IL-10
secretion from splenocytes isolated from G-1-treated mice. G-1 has been shown to elicit IL-10
expression in Th17-polarized CD4+ T cells, increasing the number of IL-10 and IL-17 double
positive cells via de novo IL-10 induction [18]. Our current data indicate that systemic adminis-
tration of G-1 increases the Treg cells. Indeed, Wang et al. reported that G-1 enhanced sup-
pressive activity of CD4+Foxp3+ Treg cells through programmed cell death-1 (PD-1) in a
GPER-dependent manner [20]. Although we could not use a littermate control, the lack of in-
hibitory effects of G-1 in IL-10 KO mice was clearly observed. Taken together, GPER activation
controls the acute asthmatic condition by increasing the lymphocyte populations that produce
IL-10, resulting in diminished airway inflammation.

In summary, in the present experimental model of acute asthma, allergic response was regu-
lated by administration of a GPER-specific agonist. The relative increase in IL-10 production
by extended GPER activation limits the production of allergenic cytokines such as IL-5 and
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IL-13, as well as the IgE production and accumulation of inflammatory cells. The current study
provides novel insights into the functional mechanism of estrogen in asthmatics. Given the im-
plication of GPER, especially in female reproductive cancer, GPER is now considered to be an
important target of drug development. In this context, the current study also highlights a po-
tential role of GPER as a novel therapeutic target for future treatments of asthma.

Supporting Information
S1 Fig. Immunofluorescence staining demonstrated GPER expression in asthmatic lung
tissue in BALB/c (A) and C57BL/6 (B) mice. The sections were blocked in blocking buffer
(3% bovine serum albumin (BSA) in PBS) for 1 hour and incubated with anti-G-protein-
coupled estrogen receptor antibodies (GPR30 (N-15)-R: sc-48525-R; rabbit polyclonal, 1:50;
SANTA CRUZ, Dallas, TX), diluted in PBS at room temperature for 2 hours. Subsequently, the
sections were rinsed in PBS, incubated with Alexa Fluor 488 goat anti-rabbit IgG (1:200, Invi-
trogen, Grand Island, NY), and counterstained with Hoechst 33342 and trihydrochloride trihy-
drate (1:5000, Invitrogen). The slides were analyzed using a confocal microscope (Carl Zeiss
LSM510). fluorescein isothiocyanate (FITC) (green) was used to visualize GPER, whereas
Hoechst 33342 (blue) was used for nuclear staining.
(TIFF)
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