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Abstract

This prospective study evaluated the accuracy of non-invasive preimplantation genetic test-

ing for aneuploidy (niPGT-A) using cell-free DNA in spent culture medium, as well as that of

preimplantation genetic testing for aneuploidy (PGT-A) using trophectoderm (TE) biopsy

after culturing beyond implantation. Twenty frozen blastocysts donated by 12 patients who

underwent IVF at our institution were investigated. Of these, 10 were frozen on day 5 and 10

on day 6. Spent culture medium and TE cells were collected from each blastocyst after

thawing, and the embryos were cultured in vitro for up to 10 days. The outgrowths after cul-

turing beyond implantation were sampled and subjected to chromosome analysis using

next-generation sequencing. Chromosomal concordance rate, sensitivity, specificity, posi-

tive predictive value (PPV), negative predictive value (NPV), false-positive rate (FPR), and

false-negative rate (FNR) of niPGT-A and PGT-A against each outgrowth were analyzed.

The concordance rate between the niPGT-A and outgrowth samples was 9/16 (56.3%), and

the concordance rate between the PGT-A and outgrowth samples was 7/16 (43.8%).

NiPGT-A exhibited 100% sensitivity, 87.5% specificity, 88.9% PPV, 100% NPV, 12.5%

FPR, and 0% FNR. PGT-A exhibited 87.5% sensitivity, 77.8% specificity, 87.5% PPV, 75%

NPV, 14.3% FPR, and 22.2% FNR. NiPGT-A may be more accurate than PGT-A in terms of

ploidy diagnostic accuracy in outgrowths.

Introduction

Human embryos are prone to chromosomal abnormalities, primarily due to chromosome sep-

aration errors occurring during meiosis [1]. Chromosomal abnormalities can cause miscar-

riages in early pregnancy and many serious chromosomal disorders [2]. The occurrence of
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chromosomal abnormalities is significantly higher in older mothers, patients who experience

recurrent miscarriages, or those with chromosomal abnormalities such as translocations that

result in poor clinical outcomes in reproductive medicine.

Studies have reported that assisted reproductive technology (ART) outcomes can be

improved by embryo selection based on preimplantation genetic testing for aneuploidy

(PGT-A) [3]. However, PGT-A offers no significant improvement in fertility rates or reduction

in miscarriage rates [4]; additionally, no consensus on its effectiveness has been reached to

date. Moreover, recent studies have reported that PGT-A performed in combination with

next-generation sequencing (NGS) leads to an increase in the detection of chromosome mosa-

icism in trophectoderm (TE) biopsies. Mosaic embryos may result in healthy births [5, 6];

however, they are associated with lower implantation rates compared to euploid embryos [7,

8]. In a previous study, we found a discrepancy between the chromosomal states of cells in TE

biopsies and the whole embryo, and the results of TE biopsies do not necessarily represent the

whole embryo (unpublished data).

Additionally, there is concern that the TE biopsy may be invasive for the embryo. In the

general PGT-A method, approximately five to ten cells from the TE in the blastocyst stage are

biopsied and analyzed [9, 10], which is susceptible to the quality of the biopsy technique.

Although biopsy-induced embryo loss is estimated to be less than 10%, some laboratories have

reported biopsy embryo loss as high as 30% [11]. The future developmental risk to embryos

that underwent TE biopsies is also controversial [12, 13]. Some researchers have proposed a

non-invasive preimplantation genetic testing for aneuploidy (niPGT-A) that analyzes a spent

culture medium. In particular, Xu et al. demonstrated a high chromosomal concordance rate

between spent culture medium and their corresponding embryos [14]. If sufficiently accurate

and reproducible, these methods could be attractive alternatives to TE biopsies for PGT-A.

One study found that niPGT-A produced by a spent culture medium was less likely to cause

errors related to embryo mosaicism and was more reliable than TE biopsy PGT-A [15]. Due to

a high DNA amplification failure rate and a low chromosomal concordance rate, spent culture

medium are not considered optimal for PGT-A, and the niPGT-A operation has not been ade-

quately determined to date [16].

The newly established embryo culturing system has enabled embryo culturing beyond

implantation up to 14 days in vitro [17, 18]. This embryo culturing system offers the opportu-

nity to investigate chromosomal instability after early post-implantation development. Using

this embryo culturing protocol, we conducted an experiment to examine how TE biopsy and

spent culture medium reflect the embryo chromosomal status in the early post-implantation

period up to day 10. Although there is still debate regarding the consensus on the clinical man-

agement of PGT-A and niPGT-A, assessing chromosomes during embryogenesis will provide

new insights into embryo selection in clinical practice. Furthermore, we examined the rela-

tionship between chromosomal status in TE biopsy and chromosomal status in spent culture

medium and embryonic growth. These findings can be expected to provide useful information

for reproductive medicine research.

Material and methods

Ethical approval

This study was approved by the Ethics Committee of Akita University (Permission number:

1090.2) and the Japan Society of Obstetrics and Gynecology (Permission number: 127). The

embryos used in this study were used after obtaining informed consent from each patient. The

donated embryos were handled according to the Japan Society of Obstetrics and Gynecology

policy regarding research using human sperm, ova, and fertilized eggs.
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Embryo source and background

This study used 20 surplus embryos recovered from 12 infertile patients at Akita University

Hospital from 2006–2016. Embryos were used after anonymization and acquisition of the writ-

ten informed consent of each donor. We used embryos that were not used clinically and

marked for disposal. Of the targeted embryos, ten were frozen on day 5 and ten on day 6. The

mean patient age (± standard deviation, SD) at the time of embryo freezing was 35.6 ± 3.2

years, and the average number of egg collections was 1.6 ± 0.9. The qualitative grade of

embryos, when frozen, was evaluated by applying the Gardner system of classification [19].

Embryo thawing and TE biopsy/spent culture medium collection

Thawing of embryos was performed using the Cryotop Safety Kit (Kitazato, Japan) according

to the manufacturer’s instructions. The thawed embryos were subjected to recovery culturing

at 37˚C, using 6% CO2 and 5% 02 Sequential Blast™ medium (ORIGIO, Denmark). Embryos

were briefly exposed to acidic Tyrode (Kitazato, Japan) to remove the zona pellucida prior to

TE biopsy. After removing the zona pellucida, 5-day-old embryos were cultured in blast

medium for 24 hours, and 6-day-old embryos were cultured in blast medium for 3 hours.

Biopsy of TE cells was performed on day 6 in all embryos. Five to ten cells were collected

using the flick method through a biopsy pipette (ORIGIO, Denmark) in a modified HTF cul-

ture medium with HEPES, HSA (Kitazato, Japan). The collected TE cell mass was immersed in

new mHTF, 1% PVP (7% polyvinylpyrrolidone (PVP) solution with HSA (Irvine Scientific,

USA) in DPBS (-) (Thermo Fisher Scientific, USA) diluted to 1%), and stored frozen in 2.5 μL

DPBS in a polymerase chain reaction (PCR)-use tube at −20˚C until analysis. During TE cell

biopsy, the spent culture medium used for culturing after removing zona pellucida was col-

lected for niPGT-A and cryopreserved. In addition, all equipment used was replaced for each

sample.

Embryo culturing beyond implantation

After performing the TE biopsy, embryo culturing beyond implantation was performed

according to the protocol presented in previous studies [17, 18, 20]. The embryos were trans-

ferred to a μ-Dish 35mm, low (ibidi, Germany) filled with IVC1 medium (Cell Guidance Sys-

tems, Cambridge). Half of the culture medium was replaced every 24 hours. The embryos were

attached on day 7 or 8, following which the medium was replaced with IVC2, and half of the

culture medium was replaced every 24 hours. Further, based on a previous study, 100 ng/mL

of recombinant human/murine/rat activin A (Peprotech, USA) was added to the culture

medium during the culturing beyond implantation (days 6–10); cultures were performed

under hypoxic conditions [20–22].

Outgrowth sampling

Long-term culturing was performed up to day 10. The embryos were evaluated morphologi-

cally every 24 hours. Embryos that did not develop compared to the previous day or embryos

that were once attached but became detached were sampled. Embryos that stopped growing

on day 8 or 9 were difficult to biopsy; consequently, the whole embryos were sampled.

Embryos that exhibited sufficient growth up to day 10 were detached from the culture dish

using a Bio-Cut Blade1 15˚ (Feather, Japan), and the center of the embryo was biopsied and

sampled. The collected sample was frozen and stored in a PCR tube at −20˚C until analysis, as

in the TE biopsy method. Further, all equipment used was replaced for each sample.
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Next-generation sequencing

Sample cell preparation, cell lysing procedures, DNA extraction, and whole genome amplifica-

tion (WGA) were performed using the SurePlex DNA Amplification System (Illumina, San

Diego, CA, USA), according to the manufacturer’s recommended conditions. The DNA con-

centration of the product after amplification was measured using a Qubit 3.0 Fluorometer

(ThermoFisher Scientific) with the Qubit dsDNA HS Assay kit (ThermoFisher Scientific).

Following WGA, the samples were treated using a VeriSeq PGS Kit (Illumina, San Diego,

CA, USA), according to the manufacturer’s instructions. NGS was performed using a MiSeq

testing device (Illumina, San Diego, CA, USA). The obtained data were analyzed using Blue-

fuse Multi software to obtain the karyotype information of the sample.

Pilot study

Culturing beyond implantation was conducted in advance on a total of five embryos according

to the culture protocol described above. In a previous report, the developmental progress rate

for the period up to day 12 was found to be 38/73 (52%) (20), but at our facility, no favorable

growth was observed until day 12. Four of five embryos developed favorably up to day 10. Dur-

ing the Carnegie stage, epiblasts and amniotic cavities were already formed by day 10 [23], and

we decided to limit the culture period to ten days in this experiment.

Statistical analysis

Statistical analysis was performed using the R statistical software v3.6.1 (R Foundation for Sta-

tistical Computing). Statistical significance was evaluated by performing McNermar’s x2 test

or finding the Kappa coefficient. P-values less than 0.05 were considered to be statistically

significant.

Results

This study evaluated embryos with unknown chromosomal profiles. From these blastocysts,

TE biopsy cells, i.e., PGT-A samples (n = 20); spent culture medium on day 6, i.e., niPGT-A

samples (n = 20); and embryo after culturing beyond implantation, i.e., outgrowth samples

(n = 20) were obtained. The study flow chart is shown below. (Fig 1) NGS analysis was per-

formed after each WGA procedure, and 55 of 60 samples were analyzed. Results were obtained

for 19/20 PGT-A (95%), 19/20 niPGT-A (95%), and 17/20 outgrowth samples (85%). Samples

that could not be analyzed were considered to be unanalyzable due to excessive noise. The

average DNA concentration after WGA was 41.4 ng/μL (34.0–49.8 ng/μL), 22.2 ng/μL (9.3–

32.8 ng/μL), and 34.8 ng/μL (4.3–44.4 ng/μL) for PGT-A, niPGT-A, and outgrowth samples,

respectively. Although the culture time after removing the zona pellucida was different

between the 5-day-old and 6-day-old embryos, there was no difference in the DNA concentra-

tion of the culture medium collected for niPGT-A (5-day-old embryo group: 22.0ng/μL vs.

6-day-old embryo group 19:22.3 ng/μL; p = 0.807).

Based on the results, each sample was classified into one of the following three categories:

euploid, aneuploid (copy number exhibits 80% or more aneuploidy), or mosaic (copy number

exhibits 20–80% aneuploidy). Table 1 shows the breakdown of each analysis result. A total of

60 analysis results were obtained from the PGT-A, niPGT-A, and outgrowth samples, and they

were subsequently compared. (Table 2)

Favorable development was observed in 10/20 (50%), 5/20 (25%), and 5/20 (25%) embryos

up to days 10, 9, and 8, respectively. When the embryos were divided into euploid and abnor-

mal (aneuploid or mosaic) groups, among those that developed until day 10, 7/9 (77.8%), 8/10
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(80%), and 7/10 (87.5%) of the PGT-A, niPGT-A, and outgrowth samples, respectively, exhib-

ited a chromosome analysis result of euploidy. Moreover, among the embryos that developed

until day 10, there were chromosomal abnormalities in 2/9 (22%), 2/10 (20%), and 3/10 (30%)

Fig 1. Study flow chart. A total of 20 blastocysts were analyzed. TE biopsy was performed for PGT-A on all embryos on day 6. Spent

culture medium used for culture after removing zona pellucida was collected for niPGT-A. Culturing beyond implantation was

subsequently performed, and five 8-day-old embryos, five 9-day-old embryos, and ten 10-day-old embryos were sampled. A total of 60

samples were analyzed using next-generation sequencing.

https://doi.org/10.1371/journal.pone.0246438.g001

Table 1. Breakdown of euploid/aneuploidy/mosaic embryos and the feasibility rate of each determinant.

PGT-A niPGT-A Outgrowth

Number of analyzed embryos 19 (95%) 19 (95%) 17 (85%)

Failed amplification 1 (5%) 1 (5%) 3 (15%)

Euploid 9 (47%) 10 (53%) 8 (47%)

Aneuploid�1 5 (26%) 4 (21%) 2 (11%)

Single 3 (16%) 3 (16%) 0

multiple 2 (11%) 1 (5%) 1 (6%)

Mosaic�2 5 (26%) 5 (26%) 7 (41%)

Twenty embryos were used; 20 PGT-A samples, 20 niPGT-A samples, 20 outgrowth samples. A total of 60 samples were analyzed.

�1 copy number exhibits aneuploidy of 80% or more �2 copy number exhibits 20–80% aneuploid

https://doi.org/10.1371/journal.pone.0246438.t001
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of PGT-A, niPGT-A, and outgrowth samples, respectively. These results also suggest that

embryos with chromosomal abnormalities exhibit poor development.

Next, we examined the autosomal concordance rate for the outgrowth of PGT-A and

niPGT-A samples for each embryo (Table 3). Only samples that were identical with respect to

the extent of polyploidy and mosaicism were considered as concordant, and partial concor-

dance was considered as a discordance. The concordance rate between the PGT-A and out-

growth samples was 7/16 (43.8%), and that between the niPGT-A and outgrowth samples was

9/16 (56.3%). There was no significant difference in the concordance rate between the PGT-A

and niPGT-A samples (p = 0.7244). Notably, there was one case where the PGT-A and out-

growth samples did not match, while the niPGT-A and outgrowth samples matched.

Table 2. Comparison of results from 60 samples obtained from 20 embryos.

No Time of freezing

(day)

Age Grade Time of Outgrowth

collection (day)

PGT-A Outgrowth niPGT-A

1 5 35 4BB 10 47XX,+14 46XX 46XX

2 5 29 3BA 9 46XX,-8(80%) 46XX,8p(del) 46XX,-8(80%), +22(80%)

3 5 36 4AA 10 46XX 46XX 46XX

4 5 36 3AA 10 46XY 46XY,+19(60%) 46XY

5 5 40 4BB 9 46XY,+15(80%), +22(80%) N/A 47XY,+15,+22(80%)

6 5 40 3BB 8 46XX,+16,-10 46XX,+16,-10 46XX,+16,-10

7 5 36 3AA 10 46XX 46XX 46XX

8 5 36 4AB 10 45XY,-14, +13(80%),+15

(80%)

46XY,+3,-14 45XY,-14

9 5 36 4AB 10 46XX 46XX,3q(dup),-20(60%) 46XX,+1(60%),+4(60%),-5

(60%),+15(80%),

10 5 40 4BB 8 45XO,-14(60%) 45XX,-14,+2(80%),-10(80%),+18

(80%), +20(80%)

46XO,+14

11 6 33 4AA 8 46XY 46XY 46XY

12 6 35 5BA 10 46XY 46XY 46XY

13 6 34 4BA 9 47XY,+15,+6(60%),+12

(60%),+16(80%)

46XY,-9(60%) N/A

14 6 34 5AB 8 46XY N/A 46XY

15 6 33 4BB 9 45XX,-15 46XY,-9(60%) 45XX,-15,-9(80%)

16 6 37 5AA 10 N/A 46XX 46XX

17 6 37 3BB 9 45XX,-11 45XX,-11,+14(60%) 45XX,-11

18 6 38 3AA 10 46XX 46XX 46XX

19 6 38 3AA 8 48XX,+8,+21 N/A 47XY,+8,-1(60%),

20 6 38 5BB 10 46XY 46XY 46XY

https://doi.org/10.1371/journal.pone.0246438.t002

Table 3. Chromosomal concordance rate.

Autosomal chromosome concordance

(%)

Sex chromosome concordance

(%)

PGT-A vs. Outgrowth 7/16(43.8) 14/16(87.5)

niPGT-A vs. Outgrowth 9/16(56.3) 14/16(87.5)

PGT-A vs. niPGT-A 10/18(55.6) 17/18(94.4)

PGT-A vs. niPGT-A vs.

Outgrowth

7/15(46.7) 13/15(86.7)

This table shows the autosomal concordance rate and the sex chromosome concordance rate.

https://doi.org/10.1371/journal.pone.0246438.t003
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There were no cases where the niPGT-A and outgrowth samples did not match, while the

PGT-A and outgrowth samples matched. The concordance rate between the PGT-A and

niPGT-A samples was 10/18 (55.6%).

The concordance rate between sex chromosomes in the PGT-A and outgrowth samples was

14/16 (87.5%), whereas that between the niPGT-A and outgrowth samples was 14/16 (87.5%).

The PGT-A and niPGT-A samples were 17/18(94.4%) in concordance.

In terms of the relationship between embryo development and concordance rate, in

10-day-old embryos, the concordance rate between the PGT-A and outgrowth samples was 5/

9 (55.6%), whereas that between the niPGT-A and outgrowth samples was 7/10 (70%). In

embryos that stopped developing on day 8 or 9, the concordance rate between PGT-A and out-

growth samples was 2/7 (28.6%), and that between the niPGT-A and outgrowth samples was

2/6 (33.3%) (Table 4). Based on these results, although the autosomal concordance rate was

not significant, this rate tended to be higher in niPGT-A samples.

We calculated sensitivity (i.e., true positive), specificity (i.e., true negative), positive predic-

tive value (PPV), negative predictive value (NPV), false-positive rate (FPR), and false-negative

rate (FNR) to estimate the diagnostic accuracy of PGT-A and niPGT-A samples with respect

to outgrowth chromosomes (Table 5).

For sensitivity (i.e., when outgrowth was abnormal), the probability that a PGT-A sample

(or niPGT-A sample) would also be abnormal was 87.5% and 100% in the PGT-A and

niPGT-A groups, respectively.

For specificity (i.e., when outgrowth was euploid), the probability that a PGT-A sample (or

niPGT-A sample) would also be euploid was 77.8% and 87.5% in the PGT-A and niPGT-A

groups, respectively.

For PPV (i.e., when PGT-A samples (or niPGT-A samples) exhibited abnormal results), the

probability of abnormal outgrowth was 87.5% and 88.9% in the PGT-A and niPGT-A groups,

respectively.

For NPV (i.e., when PGT-A samples (or niPGT-A samples) were euploid), the probability

that outgrowth was also euploid was 75% and 100% in the PGT-A and niPGT-A groups,

respectively.

For FPR (i.e., when PGT-A samples (or niPGT-A samples) were abnormal), the probability

that outgrowth was also euploid was 14.3% and 12.5% in the PGT-A and niPGT-A groups,

respectively.

For FNR (i.e., when PGT-A samples (or niPGT-A samples) were euploid), the probability

of abnormal outgrowth was 22.2% and 0% in the PGT-A and niPGT-A groups.

For diagnostic accuracy, the kappa statistic of the PGT-A and niPGT-A groups was 0.62

(95% CI: 0.25–1) and 0.77 (95% CI: 0.47–1), respectively. Although not significantly higher,

the niPGT-A group exhibited a high degree of concordance.

Based on these results, the niPGT-A group may have a higher diagnostic accuracy than the

PGT-A group.

Table 4. Comparison of autosomal concordance rate between day 10 and day 8 or day 9.

day 10 (%) day 8 or 9 (%)

PGT-A vs. Outgrowth 5/9(55.6) 2/7(28.6)

niPGT-A vs. Outgrowth 7/10(70) 2/6(33.3)

PGT-A vs. niPGT-A 6/9(66.7) 4/9(44.4)

PGT-A vs. niPGT-A vs. Outgrowth 5/9(55.6) 2/6(33.3)

This table shows the autosomal concordance rate between 10-day-old and 8-day-old or 9-day-old embryos.

https://doi.org/10.1371/journal.pone.0246438.t004
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Discussion

In this study, culturing beyond implantation was used to obtain new cytogenetic findings of

PGT-A/niPGT-A. All our analyses were TE biopsied at day 6 and cultured up to day 10. Spent

culture medium of the recovery culture from embryo thawing to TE biopsy was collected for

niPGT-A, and the results of TE biopsies of PGT-A samples were correlated with the outgrowth

chromosomal status, respectively. To the best of our knowledge, this is the first study to inves-

tigate the relationship between embryos after culturing beyond implantation and PGT-A or

niPGT-A.

The report of chromosomal mosaicism using NGS has been a subject of intense debate

regarding the diagnostic accuracy of PGT-A, especially the predictive value of TE biopsy to

reflect the chromosomal status of the whole embryo. Various studies have reported PGT-A

results obtained using TE biopsy, but the concordance rate between TE and ICM karyotypes is

approximately 62.1–86.2% [24–26]. Additionally, Ou et al. re-examined embryos considered

abnormal using PGT-SR and reported a concordance rate of 68% between TE biopsies and

total blastocysts [27]. Another study conducted at our institution also found that the TE biopsy

and total blastocysts had a chromosomal concordance rate of 67.7%. Therefore, the results of

TE biopsies do not accurately represent the chromosomal status of the entire human blasto-

cyst. In the present study, the concordance rate between the PGT-A and outgrowth samples

was 43.8%, which is low compared to previous reports of PGT-A. Embryos after culturing

beyond implantation are considered closer to the post-implantation chromosomal status than

the blastocyst stage; thus, this result also suggests that the diagnostic rate of PGT-A is not accu-

rate. To date, the only study on embryos after culturing beyond implantation and PGT-A was

the one conducted by Popovic et al. [20], who reported the diagnostic accuracy of PGT-A via

TE biopsy to be approximately 80%. Although our study applied the protocol described in

their report, the results were not similar. This is possibly because favorable embryos of 5BB or

more were analyzed by Popovic et al., whereas in the current study, only four embryos of 5BB

or more were available, and 16 embryos were graded 5BB or less. In the group of embryos

above 5BB, 3/4 PGT-A results were euploid (one was not determined), and 3/4 outgrowth

results were also euploid. Favorable development was observed even in the case of inferior

grades such as embryos No. 7 and No. 18, and while there are cases where outgrowth karyo-

type is euploid, the concordance rate between the PGT-A and outgrowth samples was 5/14

(35.7%) in embryos graded 5BB or lower.

If PGT-A by TE biopsy does not truly reflect the chromosomal status of the blastocyst, inva-

sive procedures on the embryo should be avoided. Embryo biopsies have been shown to reduce

embryo quality at the cleavage stage [28] and may be detrimental to their development and

implantation [29]. In animal studies, embryo biopsy has been found to affect neurodevelopment

Table 5. Diagnostic accuracy of PGT-A and niPGT-A groups.

PGT-A niPGT-A

sensitivity 87.5% 100%

specificity 77.8% 87.5%

PPV 87.5% 88.9%

NPV 75% 100%

FPR 14.3% 12.5%

FNR 22.2% 0%

PPV: positive predictive value; NPV: negative predictive value; FPR: false-positive rate, FNR: false-negative rate

These calculations were done with respect to outgrowth chromosomes

https://doi.org/10.1371/journal.pone.0246438.t005
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and adrenal development, but the evaluation of long-term prognosis in humans remains incom-

plete [12, 13].

The introduction of niPGT-A in clinical practice is relatively easy because it does not

require the technology related to embryo biopsy. However, one problem is the diagnostic accu-

racy of niPGT-A. Capalbo et al. reported that the concordance rate between spent culture

medium samples and TE biopsies was low at 20.8% for PGT-M and did not recommend using

spent culture medium for PGT-M [16]. Ho et al. reported that the chromosomal concordance

rate between spent culture medium on day 3 and the whole embryo was 56.3%, and chromo-

somal concordance rate between spent culture medium on day 5 and the TE biopsy was 65%

[30]. Xu et al. reported achieving high sensitivity between the spent culture medium and blas-

tocysts through multiple annealing and looping-based amplification cycles (MALBAC)-WGA

[14]. Jiao et al. reported achieving a 90% clinical concordance rate between spent culture

medium and blastocysts following modifications to the MALBAC method [31]. In our study,

the concordance rate between niPGT-A samples and outgrowth was 56.3%, which was higher

than that of PGT-A samples.

Notably, the FNR for the niPGT-A samples was 0% in our study. In previous studies, a low

FNR for niPGT-A has been reported. The FNR of niPGT-A for TE biopsy reported by Huang

et al. was 0% [15], and the FNR for niPGT-A for blastocysts reported by Xu et al. was 11.8%

[14]. In addition to the low FNR, our results also demonstrated that the niPGT-A samples

were superior in terms of sensitivity and specificity. A low FNR reduces the possibility of trans-

planting an embryo that is unsuitable for transplantation and may help improve clinical

outcomes.

In this study, the general NGS protocol was used. Accordingly, although the results of this

study may lead to the clinical application of niPGT-A, it is necessary to minimize measure-

ment noise and DNA amplification failure. Yeung et al. reported that 150/168 samples (89.3%)

were successfully amplified and sequenced [32]. The determinable average DNA concentration

following WGA was 20.0 ng/μL (2.7–59.6 ng/μL), and the average for our niPGT-A samples

(22.2 ng/μL, 9.3–32.8 ng/μL) was almost the same. As shown in the results, there was no differ-

ence between the cfDNA concentration of 5-day-old embryos and that of 6-day-old embryos.

However, this is significantly lower (p<0.01) when compared to the average DNA concentra-

tion of PGT-A samples (41.4 ng/μL). In the present study, while it was possible to determine

19/20 results for both the PGT-A and niPGT-A samples, this difference in DNA concentration

may lead to a measurement error. In the study mentioned above conducted by Xu et al., ploidy

information in 100% of 42 samples could be obtained using MALBAC-WGA [14]. NiPGT-A

has the potential to become an alternative to TE biopsy if an optimized method can be

developed.

The origin of cell-free DNA is questionable, but embryonic DNA from apoptotic cells may

contribute. In the embryos during culturing, both ICM and TE undergo apoptosis [33, 34];

consequently, DNA in the spent culture medium may be derived from both these cell lines.

Zhu et al. reported that many aneuploid cells underwent apoptosis following elimination from

the embryo [35]. In addition, Hashimoto et al. used mouse models to verify if ICM-constitut-

ing cells were selectively culled by heterogeneous cells due to cellular competition at the epi-

blast formation stage, which then developed into the fetus [36]. However, some euploid cells

also undergo apoptosis, and euploid results cannot be obtained unless DNA is discharged into

the spent culture medium. For euploid embryos, leakage of DNA from euploid cells is thought

to exceed the extent of discharge from aneuploid cells; however, further studies are warranted

in this area.

Bolton et al. conducted a study using mosaic mouse models, demonstrating that both aneu-

ploid and euploid cells undergo apoptosis from ICM and TE, thereby indicating that a higher
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proportion of ICM cells undergo apoptosis compared to TE cells [37]. This result indicates

that TE biopsies reflect only the chromosomal status of TE, whereas the cell-free DNA in the

spent culture medium reflects the chromosomal status from both ICM and TE. Thus, the

spent culture medium reflects the overall condition of blastocysts more clearly than TE

biopsies.

This study has some limitations; the embryos that could be used were limited. In addition,

it was not possible to clarify whether this method expresses the original attributes of embryos

after implantation.

Conclusions

In summary, the results of this study may support the application of niPGT-A using cell-free

DNA in spent culture medium. The high chromosomal concordance rate, sensitivity, specific-

ity, as well as FNR of 0% all suggest that niPGT-A may be superior to PGT-A. If the niPGT-A

methodology can be perfected, it may be possible to perform preimplantation screening more

easily while avoiding the potentially adverse effects of invasive procedures on the embryo. It

remains desirable to develop better WGA methods and accumulate additional research data.
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