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24(S)-Hydroxycholesterol protects 
the ex vivo rat retina from injury by 
elevated hydrostatic pressure
Makoto Ishikawa1, Takeshi Yoshitomi1, Charles F. Zorumski2,3,4 & Yukitoshi Izumi2,3,4

In the central nervous system, 24(S)-hydroxycholesterol (24(S)-HC) is an oxysterol synthesized from 
cholesterol by cholesterol 24-hydroxylase (CYP46A1) encoded by the cyp46a1 gene. In the present 
study using a rat ex vivo glaucoma model, we found that retinal 24(S)-HC synthesis is facilitated by 
pressure elevation. Moreover, we found that 24(S)-HC is neuroprotective against pressure mediated 
retinal degeneration. Quantitative real-time RT-PCR, ELISA, and immunohistochemistry revealed 
that elevated pressure facilitated the expression of cyp46a1 and CYP46A1. Immunohistochemically, 
the enhanced expression of CYP46A1 was mainly observed in retinal ganglion cells (RGC). LC-MS/MS 
revealed that 24(S)-HC levels increased in a pressure-dependent manner. Axonal injury and apoptotic 
RGC death induced by 75 mmHg high pressure was ameliorated by exogenously administered 1 μM 
24(S)-HC. In contrast, voriconazole, a CYP46A1 inhibitor, was severely toxic even at normobaric 
pressure. Under normobaric conditions, 30 μM 24(S)-HC was required to prevent the voriconazole-
mediated retinal damage. Taken together, our findings indicate that 24(S)-HC is facilitated by elevated 
pressure and plays a neuroprotective role under glaucomatous conditions, while voriconazole, an 
antifungal drug, is retinotoxic. 24(S)-HC and related compounds may serve as potential therapeutic 
targets for protecting glaucomatous eyes from pressure-induced injuries.

Glaucoma is a leading cause of irreversible blindness1,2. The global prevalence of glaucoma for individuals aged 
40–80 years is estimated as 3.54%1–4. Among subtypes of glaucoma, acute angle closure attacks (AACA) are oph-
thalmic emergencies2,5 characterized by sudden increases in intraocular pressure (IOP) that can reach 80 mmHg6, 
and result in permanent damage to retinal ganglion cells (RGC) within days5,7. However, the pathogenesis under-
lying pressure-induced RGC death in AACA remains unclear.

Excitotoxicity is a form of neuronal degeneration induced by sustained activation of glutamate receptors8 that 
is associated with retinal ischemia and thought to contribute to glaucomatous RGC damage9–11. Thus, it is hypoth-
esized that functional impairment of glutamate transporters may contribute to the pathogenesis of glaucoma. In 
support of this, glutamate transporter-knock-out mice show glaucomatous-type damage of the optic nerve12 and 
our prior studies using an ex vivo acute glaucoma model13,14 revealed that elevated hydrostatic pressure inhibited 
glutamate clearance by the glial glutamate transporter GLAST and the glutamate metabolizing enzyme glutamine 
synthetase.

Recently, it has been reported that cholesterol metabolism is altered in rat hippocampal models of 
glutamate-mediated excitotoxicity15. The major mechanism of cholesterol removal from the brain is its conversion 
into 24S-hydroxycholesterol (24(S)-HC), which diffuses out of the neurons and crosses the blood–brain barrier16. 
This reaction is catalyzed by a cytochrome P450 enzyme, cholesterol 24-hydroxylase (CYP46A1), coded by the 
gene cyp46a17–19.

As in the brain, cholesterol is synthesized endogenously in the retina20, although cholesterol from the sys-
temic circulation can also cross the retinal pigment epithelium and enter the retina21. In the retina, CYP46A1 is 
selectively expressed in the inner retina, particularly in RGC22–24. The localization of CYP46A1 in RGC supports 
a possible role of 24(S)-HC in glaucoma because RGC are the cells most affected by elevated retinal pressure. 
Consistent with this, Fourgeux et al.25,26 reported that a single nucleotide polymorphism, rs754203, in the cyp46a1 
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gene is associated with risk for POAG, though this was not replicated in a subsequent study27. Thus, the relation-
ship between cyp46a1 and glaucoma remains uncertain. Despite this, it is possible that 24(S)-HC synthesis is 
involved in glaucomatous retinal degeneration, and experimental IOP elevation in rats facilitates retinal cyp46a1 
expression followed by sustained increases in 24(S)-HC28. In the present study using an ex vivo glaucoma model 
(Fig. 1A), we examined whether retinal 24(S)-HC synthesis is altered by activation of CYP46A1. We also deter-
mined whether 24(S)-HC plays a role in regulating pressure-induced damage.

Results
Effects of pressure loading on expression of cholesterol 24-hydroxylase. In initial experiments, 
we examined the effects of pressure loading on the expression of cholesterol 24-hydroxylase, the enzyme that con-
verts cholesterol to 24(S)-HC, using a closed pressure chamber (Fig. 1A). We found that cyp46a1 mRNA expres-
sion increased in a pressure-dependent manner (Fig. 1B), with significant increase at 35 mmHg (p <  0.0001) and 
75 mmHg (p <  0.0001) compared to 10 mmHg using quantitative real-time reverse transcription (RT)-polymerase 
chain reaction (PCR) (see Supporting Data of Fig. 1B and Table S1B-1,S1B-2,S1B-3).

Consistent with changes in mRNA, we also found that pressure loading increased expression of CYP46A1 
protein. Using enzyme-linked immunosorbent assay (ELISA) measurements, we observed significant increase in 
CYP46A1 protein at 35 mmHg (p <  0.01) and 75 mmHg (p <  0.001) compared to 10 mmHg (Fig. 1C and Table S1C).

We also confirmed the effects of elevated hydrostatic pressure on the oxysterol synthetic enzyme using an anti-
body against CYP46A1 and immunocytochemistry. As reported by other investigators22–24, CYP46A1-positive 
cells were observed mostly in the ganglion cell layer (GCL) and a few cells in the inner nuclear layer (INL) at a 
normobaric pressure (Fig. 1D). At 35 mmHg, the fluorescent reaction was increased in the GCL and also apparent 
in the inner plexiform layer (IPL) and outer plexiform layer (OPL) (Fig. 1E). At 75 mmHg, immunofluorescence 
was prominent in the GCL and INL (Fig. 1F). Fluorescence intensities in each condition are summarized in 
Fig. 1G (Table S1G). The cells labelled with CYP46A1 in the GCL were considered to be RGCs because they also 
expressed NeuN (a RGC specific marker)29–31 in double labeling experiments (Fig. 1H–J).

Effects of pressure loading on endogenous levels of cholesterol and 24(S)-HC. Cholesterol 
hydroxylation is important for the maintenance of cholesterol homeostasis in the retina, where the conversion 
to 24(S)-HC catalyzed by CYP46A1 represents the major mechanism of cholesterol elimination (Fig. 2A). We 
thus measured levels of cholesterol (per wet retinal weight), the substrate of CYP46A1, in rat ex vivo eyecups, and 
found a pressure-dependent decrease in cholesterol at 35 mmHg (p <  0.05) and 75 mmHg (p <  0.001) compared 
to 10 mmHg (Fig. 2B and Table S2B). Consistently, liquid chromatography-tandem mass spectrometry (LC-MS/
MS) analysis revealed that 24(S)-HC (ng/g retinal protein), the product of enzymatic activities of CYP46A1, 
increased in hyperbaric conditions (p <  0.05 at 35 mmHg and p <  0.05 at 75 mmHg, compared to 10 mmHg) in 
units of ng/g retinal protein (Fig. 2C and Table S2C) and ng per wet retinal weight (Fig. 2D and Table S2D-1). 
Administration of 1 μ M voriconazole, an inhibitor of CYP46A132 showed no significant influence on 24(S)-HC 
concentrations, while 10 μ M voriconazole significantly diminished 24(S)-HC levels at each pressure (Fig. 2D and 
Table S2D-2,S2D-3).

Because we previously found that high pressure increases local levels of the neurosteroid, allopregnanolone 
(AlloP), and AlloP is protective against high pressure33, we also examined the effects of pressure on AlloP levels 
with or without 10 μ M voriconazole. Three eyes were examined by LC-MS/MS at each pressure, and AlloP levels 
are expressed as ng per wet retinal weight (g). In the presence of voriconazole, LC-MS/MS analysis revealed 
pressure-dependent increases of AlloP at 35 mmHg (p <  0.01) and 75 mmHg (p <  0.001) compared to 10 mmHg, 
indicating that the decrement in 24(S)-HC levels with voriconazole has some specificity and does not involve 
another major endogenous cholesterol-derived product (Fig. 2E and Table S2F). In the absence of voriconazole, 
AlloP levels at 35 mm Hg did not rise as high as they do in the presence of voriconazole (Fig. 2F and Table S2F). In 
contrast, the LC-MS/MS analysis revealed a significant increase of AlloP at 75 mm Hg compared to 10 or 35 mm 
Hg. These results suggest that AlloP production may be saturated by the severe stress of 75 mmHg (so this level 
does not change with voriconazole), but that the milder stress of 35 mmHg only elevates AlloP levels when cho-
lesterol metabolism to 24(S)-HC is blocked.

24(S)-HC preserves retinal histology in the presence of high pressure. Consistent with our previ-
ous reports13,14, retinas incubated at 10 mmHg (Fig. 3A) or 35 mmHg (Fig. 3B) exhibited no remarkable changes 
in morphology. However, retinas incubated at 75 mmHg showed axonal swelling in the nerve fiber layer (NFL), 
though the other retinal layers remained intact except for the INL and IPL where small vacuoles were present 
(Fig. 3C and Fig. S3-1). In the presence of 1 μ M 24(S)-HC administered for the 24 hour incubation period, retinas 
exhibited no remarkable changes at any pressure (Fig. 3D–F). Importantly, exogenous 24(S)-HC prevented the 
axonal swelling typically observed at 75 mmHg.

A quantitative assessment of structural changes induced by pressure elevation in the absence and presence 
of 24(S)-HC is summarized in Table 1 (also see Table 1 Source data). The nerve fiber layer thickness (NFLT), 
neuronal damage score (NDS), and density of damaged cells in the GCL in retinas incubated at 75 mmHg were 
significantly increased compared to those in control retinas incubated at 10 mm Hg (p <  0.0001). By contrast, 
administration of 1 μ M 24(S)-HC resulted in no significant changes in the NFLT, NDS, or density of damaged 
cells in the GCL in retinas incubated at 75 mmHg compared to normobaric controls.

A cholesterol 24-hydroxylase inhibitor is severely retinotoxic at low pressure. In contrast to 
24(S)-HC, we found that voriconazole was highly neurotoxic. Although administration of 1 μ M voriconazole 
showed no remarkable changes (Fig. S3-3), administration of 10 μ M voriconazole resulted in severe retinal dam-
age characterized by edematous changes in the IPL and bull’s eye cellular formation in the INL at each pressure 
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Figure 1. A closed pressure-loading system (A) and analysis of cholesterol 24-hydroxylase expression using 
quantitative real-time RT–PCR, ELISA, and immunohistochemistry (B–J). (A) The diagram shows the closed 
pressure-loading chamber. (B) Real-time RT-PCR analysis of cyp46a1 gene mRNA. Cyp46a1 mRNA expression 
increased in a pressure-dependent manner and was significantly up-regulated at 35 mmHg and 75 mmHg compared 
to the control pressure (10 mmHg). ***p <  0.001. (C) Protein levels of CYP46A1 in pressure-loaded retinas were 
measured with ELISA (N =  8 at each experiment). The levels significantly increased at 35 mmHg and 75 mmHg 
compared to control pressure (10 mmHg). ***p <  0.001. (D–F) Merge of differential interference contrast images 
and fluorescence images using DAPI and an antibody against CYP46A1. Panels D–F are at the same magnification. 
Scale bars, 50 μ m. (D) Immunostaining was detected in all RGCs (arrowheads) in a retina incubated at 10 mmHg. 
(E) At 35 mmHg, the retina showed more prominent fluorescence in the GCL (arrowheads) and INL (arrows). Weak 
fluorescence was present in the IPL and OPL. (F) Strong immunofluorescence was observed in the GCL, IPL, INL, 
and OPL at 75 mmHg. Arrowheads and arrows indicate the positive fluorescence in the GCL and INL, respectively. 
(G) Summary of immunostaining studies shows fluorescence intensity by anti-CYP46A1 antibody as mean ±  SEM. 
Fluorescence intensity significantly increased at 35 mmHg and 75 mmHg compared with 10 mmHg. *p <  0.5, 
***p <  0.0001. (H–J) Cryosections double labeled with anti-CYP46A1 (H) antibody and anti-NeuN antibody (the 
RGC marker) (J). Arrowheads indicate CYP46A1-positive RGCs in Fig. H, and arrows indicate NeuN-positive RGCs 
in Fig. J. Merge image (I) revealed that CYP46A1-positive cells in the GCL were RGCs. Double labeled RGCs with 
both antibodies are indicated by long arrows. Panels H–J are at the same magnification. Scale bars, 50 μ m.
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(Fig. 3G–I). Interestingly, the retinal damage induced by voriconazole was most prominent at 10 mmHg and least 
prominent at the highest pressure (Fig. 3G). A quantitative assessment of structural changes induced by pressure 
elevation in the presence of voriconazole is summarized in Table 1 (also see Table 1 Source data). Administration 
of 10 μ M voriconazole produced significant increases in the NDS and density of damaged cells in the GCL com-
pared to the retinas incubated without voriconazole at each pressure.

Figure 2. Effects of pressure loading on endogenous levels of cholesterol and 24(S)-HC. (A) CYP46A1 
catalyzes the conversion of cholesterol to 24(S)-HC in the retina. (B) Pressure loading revealed pressure-dependent 
decreases in retinal cholesterol concentration. *p <  0.05, **p <  0.001. (C) LC-MS/MS analysis revealed that  
24(S)-HC (ng/g retinal protein) increased in a pressure-dependent manner. *p <  0.05. (D) Measurement of 
24(S)-HC (per wet retinal weight) in retinal extracts using LC-MS/MS. 24(S)-HC levels significantly increased at 
35 mmHg and 75 mmHg compared to control pressure (10 mmHg). Administration of 1 μ M voriconazole had no 
significant effect on 24(S)-HC levels at any pressure, while 10 μ M voriconazole significantly depressed 24(S)-HC at 
each pressure. *p <  0.05, **p <  0.01. (E,F) Measurement of AlloP (per wet retinal weight) in retinas incubated with 
(E) or without 10 μ M voriconazole (F) using LC-MS/MS. AlloP levels significantly increased at both 35 mmHg 
(*p <  0.01) and 75 mmHg (**p <  0.001) compared to control pressure (10 mmHg) in the presence of voriconazole, 
but only at 75 mmHg in the absence of voriconazole.
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Figure 3. Light micrographs of pressure-dependent changes in the middle part of the retina incubated 
with 24(S)-HC or 10 μM voriconazole. (A–C) Light micrographs of pressure- dependent changes in the 
middle part of the retina. (A,B) In retinas incubated at 10 mmHg (A) and 35 mmHg (B), no abnormal changes 
were detected in any retinal layers. (C) Prominent swelling of optic nerve fibers (arrowheads) was observed 
in a retina incubated at 75 mmHg. Small vacuoles were also present in the IPL. Retinal degeneration was not 
observed in other retinal layers. (D–F) Light micrographs of the middle part of the retina incubated with 1 μ M 
24(S)-HC at 10 mmHg (D), 35 mmHg (E), and 75 mmHg (F). Administration of 1 μ M 24(S)-HC exhibited no 
remarkable changes at any pressure. (G–I) Light micrographs of the middle part of the retina incubated with 
10 μ M voriconazole at 10 mmHg (G), 35 mmHg (H), and 75 mmHg (I). Administration of 10 μ M voriconazole 
produced retinal damage characterized by edematous changes in the IPL and bull’s eye formation in the INL 
(fine arrows) at each pressure. The retinal damage induced by 10 μ M voriconazole was most prominent at 
10 mmHg. Note the axonal swelling in the NFL (arrowhead) at 75 mmHg (i). Scale bars, 15 μ m.
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In contrast to effects on high pressure alone, we found that retinal degeneration in the presence of 10 μ M 
voriconazole at 10 mmHg was not clearly diminished by 1 μ M 24(S)-HC (Fig. 4A). However, higher concentra-
tions of 24(S)-HC (10 and 30 μ M) produced concentration-dependent neuroprotection against neuronal damage 
induced by 10 μ M voriconazole (Fig. 4B), with nearly complete protection at 30 μ M (Fig. 4C).

A quantitative assessment of structural changes induced by voriconazole and 24(S)-HC at 10 mmHg is sum-
marized in Table 1 (also see Table 1 Source data). Administration of 1 μ M 24(S)-HC resulted in no neuropro-
tection, with increased NDS and density of damaged cells in the GCL in the presence of 10 μ M voriconazole 
at 10 mmHg compared to those in the control retinas incubated without voriconazole at 10 mmHg. At 30 μ M, 
however, co-administration of 24(S)-HC resulted in no significant changes in the NDS and density of damaged 
cells in the GCL in retinas incubated with 10 μ M voriconazole at 10 mmHg compared to control retinas incu-
bated at 10 mmHg in the absence of either agent. An intermediate degree of protection was observed with 10 μ M 
24(S)-HC. The NFLT did not show significant changes under any of these conditions.

Because voriconazole-induced damage has histological features similar to excitotoxicity, we also examined the 
effects of glutamate receptor antagonists. In retinas incubated with 10 μ M voriconazole at 10 mmHg, administra-
tion of either 1 μ M dizocilpine (MK801), a NMDA type glutamate receptor antagonist (Fig. 4D), or 1 μ M GYKI 
52446 (GYKI), an ionotropic non-NMDA-type glutamate receptor antagonist, alone (Fig. 4E) failed to inhibit the 
retinal damage. However, a combination of MK-801 and GYKI resulted in full neuroprotection in the presence 
of 10 μ M voriconazole (Fig. 4F).

A quantitative assessment of structural changes induced by voriconazole and glutamate receptor antagonists 
at 10 mmHg is summarized in Table 2 (also see Table 2 Source data). In the presence of either 1 μ M MK801 alone 
or 1 μ M GYKI alone, retinas incubated with 10 μ M voriconazole at 10 mmHg showed significant increases in the 
NDS (p <  0.0001) and density of damaged cells in the GCL (p <  0.0001) compared to control retinas incubated 
without voriconazole at 10 mmHg. In contrast, the combination of 1 μ M MK801 and 1 μ M GYKI with voricona-
zole showed no remarkable changes in the NDS and density of damaged cells in the GCL at 10 mmHg.

Effects of pressure elevation on RGCs and neuroprotection with 24(S)-HC. RGCs were specifically 
labeled with anti-NeuN (a RGC nuclear marker) antibody at 10 mmHg (Fig. 4G). Pressure elevation (75 mmHg) 
decreased the NeuN-positive RGC density in hyperbaric conditions (Fig. 4H), while administration of 1 μ M 
24(S)-HC reversed high pressure-induced RGC damage at 75 mmHg (Fig. 4I). Administration of 10 μ M voricona-
zole significantly reduced NeuN-positive RGCs at 10 mmHg (Fig. 4J), while co-administration of 24(S)-HC pro-
moted survival of NeuN-positive RGCs in the voriconazole (10 μ M) treated retina (Fig. 4K).

In whole mounted retinas, RGC damage induced by pressure elevation was visualized as reduced num-
bers of cells that were positive for NeuN (Fig. 5A–C). Figure 5A,A′ illustrate examples of confocal images of 
NeuN-labeled RGCs that were obtained from a control eye incubated at 10 mmHg. Pressure elevation (75 mmHg) 
reduced the number of cells that were positive for NeuN (Fig. 5B,B′). The confocal images in Fig. 5C,C′ illustrate 
the neuroprotective effect of 24(S)-HC (1 μ M) on RGC survival in hyperbaric conditions. As shown in Fig. 5D,D′, 
RGC numbers are significantly different from control images consistent with the damage induced by 10 μ M 
voriconazole at 10 mmHg. However, less disruption of the RGCs occurred when 30 μ M 24(S)-HC was applied 
with 10 μ M voriconazole (Fig. 5E,E′). Figure 5F,G show summaries of RGC survival (also see Table S5F,G).

Pressure-induced apoptosis and neuroprotection with 24(S)-HC. At 10 mmHg, a small number of 
TUNEL-positive cells are observed only in the ONL (Fig. 6A). Exposure to elevated pressure induced apoptosis 
that was apparent in the GCL and to a lesser extent in the INL (Fig. 6B). The number of TUNEL-positive cells was 
reduced when 1 μ M 24(S)-HC was administered (Fig. 6C). The graph in Fig. 6D shows the number of apoptotic 
cells in the retina in each condition (Table S6D).

Condition NFLT vs. RT (%) [p value vs. 10 mmHg] NDS [p] Damaged cells in the GCL [p]

10 mmHg 1.32 ±  0.69 [− ] 0.2 ±  0.4 [− ] 3.4 ±  1.0 [− ]

35 mmHg 1.40 ±  0.91 [0.827] 0.2 ±  0.4 [01.708000] 3.1 ±  1.2 [0.551]

75 mmHg 10.3 ±  2.02 [p <  0.0001]* 0.6 ±  0.5 [0.08564] 11.6 ±  2.4 [p <  0.0001]*

10 mmHg +  1 μ M 24(S)-HC 1.39 ±  0.87 [0.844] 0.2 ±  0.4 [0.7091.000] 3.2 ±  1.7 [0.752]

35 mmHg +  1 μ M 24(S)-HC 1.28 ±  0.84 [0.909] 0.2 ±  0.4 [0.7091.000] 4.2 ±  2.4 [0.343]

75 mmHg +  1 μ M 24(S)-HC 1.69 ±  0.79 [0.279] 0.4 ±  0.5 [0.31436] 4.9 ±  2.2 [0.065]

10 mmHg +  10 μ M Voriconazole 1.51 ±  0.63 [0.557] 3.8 ±  0.4 [p <  0.0001]* 51.4 ±  10.3 [p <  0.0001]*

35 mmHg +  10 μ M Voriconazole 1.41 ±  0.73 [0.710] 3.5 ±  0.5 [p <  0.0001]* 25.8 ±  6.7 [p <  0.0001]*

75 mmHg +  10 μ M Voriconazole 1.67 ±  1.16 [0.423] 2.0 ±  0.7 [p <  0.0001]* 18.0 ±  4.7 [p <  0.0001]*

Table 1.  Effects of pressure elevation and administration of 1 μM 24(S)-HC or 10 μM voriconazole on 
the NFLT, NDS, and density of damaged cells in the GCL. Data are mean ±  SD. NFLT vs. RT (%) refers to 
the NFLT percentage of total RT. The density of damaged cells in the GCL was counted per 250 μ m of retina. 
P values in NFLT vs. RT (%) and damaged cells in the GCL were calculated by Student’s unpaired t-test 
(*p <  0.0001), and those in NDS were by Wilcoxon-Mann-Whitney non-parametric test (*p <  0.0001).
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Figure 4. Effects of voriconazole, 24(S)-HC, and glutamate receptor antagonists and RGC survival test 
using an RGC marker. Light micrographs of the retina incubated with 10 μ M voriconazole in combination 
with 1 μ M 24(S)-HC (A), 10 μ M 24(S)-HC (B), or 30 μ M 24(S)-HC (C) at 10 mmHg. Administration of 1 μ M 
(A) or 10 μ M 24(S)-HC (B) did not completely inhibit the retinal degeneration induced by 10 μ M voriconazole. 
However, 30 μ M 24(S)-HC exhibited substantial neuroprotection against voriconazole-induced neuronal 
damage (C). Arrows indicate degenerated cells in the GCL. Note the bull’s eye formation in the INL (fine 
arrows). (D–F) Light micrographs of retinas incubated with 10 μ M voriconazole in combination with 1 μ M 
MK801 alone (D), 1 μ M GYKI alone (E), or a combination of 1 μ M MK801 and 1 μ M GYKI (F) at 10 mmHg. 
(D,E) Administration of MK801 alone (D) or GYKI alone (E) did not inhibit the excitotoxic degeneration 
induced by 10 μ M voriconazole at 10 mmHg. Arrows indicate degenerated cells in the GCL. Fine arrows 
indicate the bull’s eye formation in the INL. (F) By contrast, a combination of 1 μ M MK801 and 1 μ M GYKI 
exerted almost complete neuroprotection. Scale bars, 15 μ m. (G–K) Merge of differential interference contrast 
images and fluorescence images using DAPI and an anti-NeuN antibody. (G) At 10 mmHg, anti-NeuN antibody 
predominantly labeled RGCs. (H) Immunofluorescence was reduced in hyperbaric conditions. (I) Administration 
of 24(S)-HC is neuroprotective for RGC survival at 75 mmHg. (J) Voriconazole treatment markedly reduced 
immunofluorescence in the RGCs at 10 mmHg. (K) Combination of 30 μ M 24(S)-HC and 10 μ M voriconazole 
increased NeuN-positive RGCs. Scale bars, 50 μm.
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Discussion
24(S)-HC is synthesized from cholesterol by CYP46A1, a neuronal specific enzyme localized to the endoplasmic 
reticulum22. In the rat retina, the enzyme is expressed in the GCL and INL, where the cell bodies of neurons 
reside, but not in the IPL or OPL that contain axons and synapses23. Similar results were shown in mice: the 
enzyme is expressed in the GCL and partially in the INL22. Consistent with these prior studies, we found that 
the expression of CYP46A1 is exclusively limited to the GCL and INL under normobaric conditions (Fig. 2C). 
However, in the hyperbaric condition, enzyme expression is not only facilitated, but is also more widely distrib-
uted over several retinal layers including the IPL and OPL (Fig. 2D,E), suggesting that the distribution, as well as 
the strength of the expression, is susceptible to modulation by stressors such as elevated pressure. In the human 
retina, the distribution of 24-hydroxylase is broader than in rodents24.

During pressure elevation in the retina or an AACA in vivo, 24(S)-HC levels have been reported to increase. In 
rats, elevation of intraocular pressure in vivo stimulates CYP46A1 within 3 days followed by sustained increases 
in 24(S)-HC levels26. Consistent with this, we observed that expression of the cyp46a1 gene and CYP46A1 pro-
tein (Fig. 2A,B), as well as 24(S)-HC production (Fig. 3A) are enhanced by hyperbaric conditions. Furthermore, 
we found that enhanced immunofluorescence staining against CYP46A1 is observed over several retinal layers 
(Fig. 3B,C). In our ex vivo glaucoma model, retinas were exposed to hyperbaric conditions for only 24 hours and 
showed significant elevations in 24(S)-HC levels, suggesting that the induction of the enzyme during AACA can 
be relatively rapid. As a consequence of up-regulation of CYP46A1, the present study demonstrated a lower con-
centration of cholesterol and higher concentration of 24(S)-HC in the pressure-loaded retina compared to the ret-
ina incubated in the normobaric condition. Based on changes in these metabolite and substrate concentrations, it 
appears that retinal cholesterol turnover is increased by upregulation of CYP46A1 under hyperbaric conditions.

Is the induction of CYP46A1 during AACA physiological (neuroprotective) or pathological (neurotoxic)? 
Based on prior studies, it appears that the product of CYP46A1, 24(S)-HC, can have varying effects depending on 
experimental conditions34–36. In the present study, the finding that exogenous administration of 1 μ M 24(S)-HC 
prevents pressure-induced axonal injury and apoptotic RGC death indicates that 24(S)-HC has neuroprotec-
tive actions rather than pathological effects. This finding also suggests that facilitated expression of cholesterol 
24-hydroxylase triggered by AACA is not a pathological sequela but perhaps a physiological and/or homeostatic 
mechanism. At this point, however, we do not know whether the preservation of retinal morphology translates 
into improvement in retinal physiology.

Our results are consistent with a model proposed by Sodero and colleagues37,38 in which activation of gluta-
mate receptors during stress and aging in the hippocampus promotes translocation of CYP46A1 to the plasma 
membrane, resulting in cholesterol loss and subsequent stimulation of neuronal survival pathways. Enhanced 
CYP46A1 expression has also been found to be neuroprotective in in vivo models of neurodegenerative illnesses39. 
Together, these findings suggest that decreases in cholesterol via CYP46A1, coupled with increases in levels of 
24(S)-HC and perhaps other cholesterol-derived modulators, help to promote neuronal survival under stressful 
conditions.

To determine whether 24(S)-HC is important for preserving retinal integrity, we also examined the effects 
of voriconazole. This drug is used clinically as an antifungal agent and inhibits CYP46A1 with relatively high 
potency40. Although the safety of intravitreous injection of voriconazole on retinal function has been described 
in rabbits41, voriconazole transiently impairs bipolar cell function in monkeys42 and is associated with retinal dys-
function in rats following repeated systemic administration43. Recently, the effects of repeated doses of voricona-
zole on the vision of healthy human subjects was investigated in a double-blind, placebo-controlled study44. This 
latter study showed that voriconazole reduced scotopic maximal a- and b-wave amplitudes, oscillatory poten-
tial amplitude and the 30-Hz photopic flicker response amplitude compared with placebo, while also impairing 
color vision discrimination. In the present study (Fig. 3G), to our surprise, voriconazole proved to be severely 
retinotoxic with edematous changes in the IPL and bull’s eye formation in the INL, well-known characteristics of 
excitotoxic retinal damage45,46 Indeed, this severe retinal damage was prevented by a combination of antagonists 
blocking non-NMDA and NMDA ionotropic receptors (Fig. 4F), supporting the idea that the damage involves 
activation of both types of glutamate receptor. We previously reported that ischemic degeneration of isolated rat 
retinas is mediated by activation of both types of ionotropic glutamate receptor47. Thus, the neurodegeneration 

Condition 
NFLT vs. RT (%)  

[p value vs. 10 mmHg] NDS [P] Damaged cells in GCL [P]

10 mmHg +  10 μ M Voriconazole +  1 μ M 24(S)-HC 1.57 ±  0.60 [0.397] 3.7 ±  0.5 [p <  0.0001]* 60.5 ±  15.2 [p <  0.0001]*

10 mmHg +  10 μ M Voriconazole +  10 μ M 24(S)-HC 1.02 ±  0.58 [0.191] 1.4 ±  0.5 [p <  0.0001]* 23.3 ±  6.4 [p <  0.0001]*

10 mmHg +  10 μ M Voriconazole +  30 μ M 24(S)-HC 1.62 ±  1.05 [0.460] 0.3 ±  0.5 [0.500] 4.9 ±  2.6 [0.106]

10 mmHg +  10 μ M Voriconazole +  1 μ M MK801 1.52 ±  1.36 [0.917] 3.7 ±  0.5 [p <  0.001]* 49.6 ±  13.0 [p <  0.0001]*

10 mmHg +  10 μ M Voriconazole +  1 μ M GYKI 0.75 ±  0.68 [0.079] 3.7 ±  0.5 [p <  0.001]* 39.4 ±  16.0 [p <  0.0001]*

10 mmHg +  10 μ M Voriconazole +  1 μ M MK801 +  1 μ M GYKI 1.32 ±  0.82 [1.000] 0.5 ±  0.5 [0.175] 2.7 ±  2.0 [0.335]

Table 2.  Effects of 10 μM voriconazole and 24(S)-HC (1 μM, 10 μM, 30 μM,) or glutamate receptor 
antagonists (MK801, GYKI, MK801 + GYKI) on the NFLT, NDS, and density of damaged cells in the GCL. 
Data are mean ±  SD. NFLT vs. RT (%) refers to the NFLT percentage of total RT. The density of damaged cells 
in the GCL was counted per 250 μ m of retina. P values in NFLT vs. RT (%) and damaged cells in the GCL were 
calculated by Student’s unpaired t-test (*p <  0.0001), and those in NDS were by Wilcoxon-Mann-Whitney non-
parametric test (*p <  0.0001).
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Figure 5. RGC survival test using RGC marker (NeuN) in the whole mount retina. (A,A′) Confocal images 
of NeuN-labeled RGCs in a control eye incubated at 10 mmHg. (B,B′) Density of NeuN-positive RGCs was 
reduced at 75 mmHg compared to control pressure (10 mmHg). (C,C′) Administration of 24(S)-HC (1 μ M) 
enhanced RGC survival under hyperbaric conditions. (D,D′) RGC numbers significantly decreased compared 
to the control images. (E,E′) Administration of 30 μ M 24(S)-HC increased the density of NeuN-positive RGCs 
in the retina treated with 10 μ M voriconazole. (F,G) The graphs present the number of NeuN-positive cells in 
the whole mount retina under each experimental condition. **p <  0.01.
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induced by voriconazole has histological features that are similar to the damage induced by retinal ischemia. Our 
findings indicate that voriconazole has significant retinotoxic potential and suggest the need for caution when 
using the drug under conditions that impair the integrity of the blood-retinal barrier.

Amelioration of voriconazole-induced damage by 24(S)-HC supports the hypothesis that voriconazole 
induces retinal degeneration via inhibition of CYP46A1. However, contrary to our expectation, full protection 
against voriconazole required 30 μ M 24(S)-HC, a concentration higher than needed to block the effects of high 
pressure. Importantly, 24(S)-HC is the major brain metabolite of cholesterol and is present at endogenous levels 
in the tens of micromolar concentration range. Thus, even 30 μ M 24(S)-HC is considered to be within the physio-
logical range in human brain homogenates48. It may seem odd that 10 μ M 24(S)-HC offers only partial protection 
against voriconazole (Fig. 4A and Table 2), taking into account that 1 μ M 24(S)-HC fully prevents axonal swelling 
at 75 mmHg (Fig. 3F). This finding could reflect the possibility that a reservoir of the oxysterol is depleted by 
voriconazole because even at 10 mmHg, 24(S)-HC levels are reduced below basal levels by voriconazole (Fig. 2C). 
Substantial amounts of exogenous 24(S)-HC could thus be needed to replenish basal levels in the presence of 
voriconazole and diminished endogenous oxysterol production.

The ability of 24(S)-HC to protect retinas against the effects of high pressure and voriconazole is also paradox-
ical in light of recent studies showing that this oxysterol is a positive allosteric modulator of NMDA receptors in 
hippocampus, and thus might be expected to worsen excitotoxicity49,50. Nonetheless, as noted above, prior stud-
ies have found that 24(S)-HC can play complex roles under pathological conditions51, and another endogenous 
oxysterol, 25-hydroxycholesterol, is a silent modulator of 24(S)-HC, dampening 24(S)-HC effects on NMDA 
receptors while having little intrinsic effect on its own52. Additionally, cholestane-3β ,5α ,6β -triol, also an endog-
enous oxysterol, is a negative allosteric modulator of NMDA receptors, further complicating interpretation of 
the role of oxysterols under various physiological and pathological conditions53. These observations make it 

Figure 6. Visualization of apoptotic cells by fluorescence microscopy. (A–C) Merge of differential 
interference contrast images and fluorescence images using DAPI and TUNEL-fluorescent staining of retinas 
incubated at 10 mmHg (A), and 75 mmHg (C). (A) At 10 mmHg, few TUNEL-positive cells (fine arrows) can be 
observed within the ONL. (B) At 75 mmHg, there was a marked increase of TUNEL-positive cells in the GCL as 
well as in the INL. (C) Administration of 1 μ M 24(S)-HC significantly decreased a number of TUNEL-positive 
cells at 75 mmHg. Scale bars, 50 μm. (D) The graph presents the number of TUNEL-positive RGCs per 200 μ m 
of retinal sections. **p <  0.01.
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important for future studies to determine the various oxysterols that are generated in the retina under different 
conditions and how these oxysterols interact.

Interestingly, the retinal damage induced by voriconazole was more prominent at 10 mmHg than at 35 or 
75 mmHg. This observation cannot be explained by facilitated synthesis of 24(S)-HC at 75 mmHg, because 
voriconazole inhibits the production of 24(S)-HC at all pressures studied. However, this phenomenon could 
be explained by the robust rise in AlloP, a GABA-enhancing neurosteroid, at elevated pressures (Fig. 2E,F). We 
previously reported that exogenously administered AlloP attenuates the development of axonal swelling at high 
pressures, while blockade of AlloP synthesis at 75 mm Hg results in excitotoxic retinal damage with features 
akin to voriconazole at low pressure30. Based on these findings, it is likely that both 24(S)-HC and AlloP are 
cholesterol-derived modulators that help to protect the retina endogenously and can potentially be exploited for 
therapeutic purposes. However, 24(S)-HC appears to be more important for maintaining retinal integrity under 
normobaric conditions, because at a normobaric pressure blockade of AlloP production does not induce retinal 
damage30, while inhibiting 24(S)-HC synthesis results in severe excitotoxicity (Fig. 3G).

Taken together, our findings indicate that enhanced synthesis of 24(S)-HC has important roles in maintaining 
retinal integrity under hyperbaric conditions, helping to protect the retina from pressure-induced damage. Thus, 
24(S)-HC and related compounds may serve as potential therapeutic targets to protect glaucomatous eyes from 
pressure-induced injuries.

Materials and Methods
Protocols for animal use were approved by the Akita Graduate University Animal Studies Committee in accord-
ance with the guidelines of the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research.

Rat ex vivo Eyecup Preparation. Rat ex vivo eyecups were prepared from 28–32 day-old male 
Sprague-Dawley rats (Charles River Laboratories International Inc., Wilmington, MA) as previously 
described13,14. The cornea was excised circumferentially with microscissors and the lens and vitreous were 
removed. The empty eyecup was placed on a flat cutting surface and immersed in ice-cold aCSF. The retina 
was not detached from the sclera. During experiments, several eyecups (3–8) were placed at the bottom of a 
100 ml glass beaker filled with aCSF containing (in mM): 124 NaCl, 5 KCl, 2 MgSO4, 2 CaCl2, 1.25 NaH2PO4,  
22 NaHCO3, and 10 glucose, and incubated at 30 °C for 24 hours using a closed pressure-loading system (Fig. 1A). 
In this model, the glass beaker was carefully placed at the bottom of an acrylic pressure chamber (2,000 ml) with 
pH maintained at 7.35 to 7.40. A 95% O2-5% CO2 gas mixture was delivered via plastic tubing and an air filter 
(Cat#SLGP033RS, Merck Millipore, Billerica, MA), with the tubing terminating 1 cm above the bottom of the 
beaker. Gas flow was regulated with an infusion valve and a control dial on the lid of the pressure chamber. The 
95% O2-5% CO2 gas mixture was infused until the pressure reading given by a manometer reached the desired 
level. The pressure was then locked in place by adjusting the control dial of an effusion valve, and monitored con-
tinuously for 24 h. After maintaining the chamber at the set pressure (10, 35, 75 mmHg) for the indicated time, 
the pressure inside the chamber was carefully decreased by opening the effusion valve. In some experiments, 
24(S)-HC (1, 10, 30 μ M), voriconazole (1, 10 μ M), MK801 (1 μ M), and GYKI (1 μ M) were added into the aCSF. 
All chemicals were obtained from Sigma-Aldrich (St. Louis, MO).

Quantitative real-time RT–PCR. We quantified cyp46a1 mRNA expression in pressure-loaded eyecup 
specimens incubated at 10, 35, and 75 mmHg for 24 h based on previously reported methods14. At the end of 
each experiment, the retina of the empty eyecup was detached from sclera and immersed in RNAlater solution 
(Qiagen, Hilden, Germany). In the present study, six independent experiments were performed for each condi-
tion. All PCR reactions were repeated in duplicate, and the average values were used for statistical analysis. The 
RNA expression levels were normalized to S16 ribosomal protein mRNA (rps16) expression (see Supporting data 
of Fig. 1B. Validation of internal control).

The list of primers used in the present study is summarized as followings;

Gene cyp46A1. GenBank accession number NM_001108723.1
Forward (F) and reverse (R) primer sequences
F: GTGCCACCATCGACATCCTG
R: GGTGTTACGGGACGCACTGATAC
Product size (bp) 128

Gene rps16. GenBank accession number NM_001169146.1
Forward (F) and reverse (R) primer sequences
F: GAAATGGGCTCATCAAGGTGAA
R: ACGGACCCGGATATCCACA
Product size (bp) 131
The primers were designed using the Perfect Real Time®  Support System (Takara). Quantification of the rel-

ative expression levels of cyp46a1 gene was achieved by normalizing to rps16 using the Δ Δ Ct method. All data 
are presented as mean ±  SD. Comparisons were performed with Wilcoxon-Mann-Whitney non-parametric test.

ELISA. After pressure loading, the retina was detached from sclera. Four independent experiments using two 
retinal samples were performed at each pressure. The retinal samples were rapidly homogenized in phosphate 
buffered saline (PBS) followed by centrifugation at 4 °C for 15 min at 3,000 g. The supernatants were used to 
measure the concentrations of cholesterol 24-hydroxylase, using a corresponding ELISA kit (#ABIN2073643 
Cytochrome P450, Family 46, Subfamily A, Polypeptide 1 (CYP46A1) ELISA Kit, Antibodies-online.com, 
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Atlanta, GA). According to the manufacturer’s instructions, the absorbance was detected at 450 nm and a stand-
ard curve was delineated based on the absorbance of standards. The protein concentration of retinal samples 
was determined by the Bradford method (Bio-Rad Laboratories, Hercules, CA) using the assay solution and 
serum-globulin as the standard.

Immunocytochemistry. For immunocytochemistry, eyecup preparations were fixed with 4% 
paraformaldehyde-0.1 M phosphate buffer for 2 hours at 4 °C (5 animals per experimental group) at the end of 
each experiment. Eyecups were washed with ice cold PBS and incubated in blocking solution (1% donkey serum/
PBS) for 2 h at 25 °C. Eyecup samples were then embedded in OCT compound (Sakura Global Holdings, Tokyo, 
Japan), and frozen with liquid nitrogen. Ten μ m cryosections were incubated with rabbit anti-CYP46A1 poly-
clonal antibody (Cat#12486-1-AP, AB_2090661, Proteintech, Rosemont, IL) diluted 1:100 in blocking solution 
or rabbit anti-NeuN polyclonal antibody (Cat#ab104225, Abcam, Cambridge, MA) (1:200) for 24 h at 4 °C. After 
incubation with primary antibody, slices were rinsed with PBS and incubated with a secondary antibody, bioti-
nylated goat anti-rabbit immunoglobulin G (IgG) (H +  L) (diluted 1:500) (Cat#62-6140, Zymed Laboratories 
INC, San Francisco, CA). After incubation with secondary antibodies, the slices were incubated with streptavidin 
conjugated with Alexa Fluor 488 (diluted 1:1000) (Cat#S32354, AB_2315383, Molecular Probes, Carlsbad, CA) 
for 2 h at 25 °C. IgG binding sites were detected by confocal laser scanning microscopy (LSM510 Axiovert200M; 
Carl Zeiss Meditec, Göttingen, Germany). 4′ ,6-Diamidino-2-phenylindole (DAPI) was used for nuclear staining.

For double immunofluorescence, cryosections of fixed specimens were incubated at room temperature with 
a mixture of two primary antibodies: rabbit anti-CYP46A1 polyclonal antibody (Cat#12486-1-AP, AB_2090661, 
Proteintech, Rosemont, IL) (1:100) and mouse anti-NeuN monoclonal antibody (Cat#ab104224, Abcam, 
Cambridge, MA) (1:200). Subsequent antibody detection was performed with a mixture of two secondary anti-
bodies, FITC-conjugated goat anti-rabbit IgG (H +  L) (Cat#Zymed81-6111, Zymed Laboratories Inc, South San 
Francisco, CA) (1:200) and Alexa Fluor594-conjugated goat anti-mouse IgG (Cat#A-11005, Thermo Fischer 
Scientific, Waltham, MA) (1:200). After several washes with PBS, colocalization of CYP46A1 and NeuN was 
observed under a confocal microscope.

For quantification of immunohistochemical data, images of each section (5 sections per animal) were cap-
tured. Digital images were analyzed, and the average intensity of immunofluorescence was measured using 
Image-Pro Plus software (Media Cybernetics, Rockville, MD).

Cholesterol measurements. After pressure loading, the retina was detached from sclera. Total lipids 
were extracted from the retina according to Folch’s method with chloroform/methanol54, and quantified using 
Cholestest®  (Sekisui Medical Corp. Tokyo, Japan).

LC-MS/MS. 24(S)-HS. The measurement of 24(S)-HC was based on previously reported methods, 
with some modification55. Briefly, the retina of the empty eyecup was detached from sclera at the end of each 
experiment. After a rat retina was homogenized in distilled water, 24-hydroxy-cholesterol-d7 was added to 
the suspension as an internal standard. Butylated hydroxytoluene and 1 N potassium hydroxide were added 
to the suspension, and then saponified at 37 °C for 1 h. After saponification, distilled water was added, and 
24S-hydroxycholesterol was extracted with hexane. The extract was evaporated to dryness, and the residue was 
picolynoyl-esterified and subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). For 
measurement of 24(S)-HC in retina, an API-4000 triple stage quadrupole mass spectrometer equipped with pos-
itive electrospray ionization (ESI) (AB Sciex, Mass, USA) connected to Nexera ultra high performance liquid 
chromatography systems (Shimadzu, Kyoto, Japan) was employed. The column was a Hypersil GOLD column 
(150 ×  2.1 mm, 3 μ m, Thermo Fisher Scientific, MA, USA) used at 40 °C. The mobile phase consisting of 0.1% 
acetic acid (solvent A) and acetonitrile-methanol (50:50, v/v) (solvent B) was used with a gradient elution. For 
quantification of 24S-hydroxycholesterol, transition of m/z 635.4/512.0 and m/z 642.4/519.5 were selected for 
24S-hydroxycholesterol and 24S-hydroxycholesterol-d7, respectively. Results were expressed as 24(S)-HC levels 
(ng) per total retinal weight (g).

AlloP. Three eyes were examined by LC-MS/MS in each condition. The measurement of AlloP was based on 
previously reported methods30.

Light Microscopy. At the end of each experiment, eyecup preparations were fixed in 2.5% glutaraldehyde 
in 0.1 M phosphate buffer overnight at 4 °C. The fixed eyecups were rinsed in 0.1 M phosphate buffer and placed 
in 1% buffered osmium tetroxide for 60 minutes. The eyecups were dehydrated with an ethanol dilution series, 
embedded in epoxy resin (Epon 812, TAAB Laboratories, Aldermaston, UK) and cut into 1 μ m thick semi-thin 
sections. The tissue was then stained with toluidine blue and evaluated by light microscopy.

Data Analysis. In histological studies, we examined the middle portion of the retina, greater than 1,200 μ m  
away from the center of the optic disc along the inner limiting membrane (ILM) according to previously described 
methods13,14. The nerve fiber layer thickness (NFLT) was measured by light microscopy along 5–6 lines perpen-
dicular to the pigment epithelium at a distance of 15 μ m from each other around 1,200 μ m away from the center 
of the optic disc (Fig. S3-2). The average NFLT was determined in 10 different light micrographs taken from 3 to 
5 eyecup samples in each condition, divided by total retinal thickness, and mean ±  standard deviation (SD) was 
analyzed and compared with control.

The severity of neuronal damage was assessed by light microscopy in ten fields from each experiment using 
a neuronal damage score (NDS) as previously described13. The NDS was determined in 10 different light micro-
graphs taken from 3 to 5 eyecup samples in each condition.
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The density of degenerated cells in the GCL was determined by counting 10 fields of 250 μ m length at 10 dif-
ferent locations in light micrographs taken from the block of the middle retinal part 950 to 1450 μ m away from 
the center of the optic disc.

These morphometrical parameters were assessed by three raters, who remained unaware of the experimental 
condition. Upon completion of data assessment, significance of individual differences among raters was evaluated 
using five randomly selected samples in each morphometric parameter by one-way analysis of variance (one-way 
ANOVA) followed by a post-hoc test. There were no significant differences among the raters in any of the mor-
phometric measurements.

Preparation of whole mounted retinas. The anterior part of the eye was removed by making an inci-
sion along the entire limbus. After incubation in the closed pressure system, retinas from five eyes in each group 
were processed for immunostaining as “whole mounted” retinas. The retina was carefully detached from the eye 
by making cuts along the ora serrata and optic nerve. Whole retinas were then flat-mounted, pinned out in an 
acrylic plate with the RGC layer facing upward using stainless steel pins, and fixed in 4% paraformaldehyde-0.1 M 
phosphate buffer overnight at 4 °C. After the samples were fixed, the tissue was rinsed with PBS three times. 
To block nonspecific binding, the tissue was incubated in 2% BSA in PBS containing 0.5% Triton X-100. The 
whole mounted retinas were incubated in the rabbit anti-NeuN polyclonal antibody solution (Cat#ab104225, 
Abcam) (1:100) by gently shaking at 4 °C, overnight. After rinsing 3 times using PBS, the retina was incubated 
in FITC-conjugated secondary antibody (goat anti-rabbit IgG (H +  L)) (Cat#81-6111, Zymed Laboratories Inc) 
(1:300). The retina tissue was then rinsed 3 times with PBS and mounted on glass slides using 50% PBS and 50% 
glycerol.

The retinal flat-mounts were imaged throughout the GCL in each of the four defined retinal quadrants 4 mm 
from the optic nerve head using a confocal microscope. Each quadrant was analyzed using a 1 mm2 frame, and 
counted using Image-Pro Plus software. The density of NeuN positive RGCs per square millimeter was averaged 
and compared in experimental and control retinas56. RGC counts were analyzed using Image-Pro Plus software.

Apoptosis. To visualize apoptotic cells, we used the DeadEndTM Colorimetric TUNEL System (Promega, 
Madison, WI) to determine the apoptotic cells according to the manufacturer’s instructions. The nuclei were 
counterstained with DAPI. Five retinal sections were randomly selected per each condition. After the length 
of each section was measured (Image-Pro Plus software), the TUNEL-positive cells were counted in the whole 
section length (between ora serrata to ora serrata). The number of apoptotic cells was expressed per 200 μm of 
retinal section57.

Statistics. Data were double-checked and analyzed using the Statistical Package for Bioscience V9.53 (SPBS) 
(Nankodo Publisher, Tokyo, Japan) on a personal computer. Descriptive statistical results were presented using 
the mean values (mean) ±  standard deviation (SD). If the data were normally distributed, p values were calculated 
by Student’s unpaired t-test. If the data were not consistent with normal distribution, p values were calculated by 
Wilcoxon-Mann-Whitney non-parametric test. For all analyses, p values were considered statistically significant, 
when the values were less than 0.05 (two-tailed).
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