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Abstract: Ischemic strokes (IS) and spinal cord injuries (SCI) are major causes of disability. RhoA
is a small GTPase protein that activates a downstream effector, ROCK. The up-regulation of the
RhoA/ROCK pathway contributes to neuronal apoptosis, neuroinflammation, blood-brain barrier
dysfunction, astrogliosis, and axon growth inhibition in IS and SCI. Noncoding RNAs (ncRNAs),
such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), were previously considered
to be non-functional. However, they have attracted much attention because they play an essential
role in regulating gene expression in physiological and pathological conditions. There is growing
evidence that ROCK inhibitors, such as fasudil and VX-210, can reduce injury in IS and SCI in animal
models and clinical trials. Recently, it has been reported that miRNAs are decreased in IS and SCI,
while lncRNAs are increased. Inhibiting the Rho/ROCK pathway with miRNAs alleviates apoptosis,
neuroinflammation, oxidative stress, and axon growth inhibition in IS and SCI. Further studies are
required to explore the significance of ncRNAs in IS and SCI and to establish new strategies for
preventing and treating these devastating diseases.

Keywords: stroke; spinal cord injury; Rho; Rho kinase; noncoding RNA; apoptosis; inflammation;
axon regrowth; neurogenesis; angiogenesis

1. Introduction

Ischemic strokes (IS) and spinal cord injuries (SCI) are major causes of disability world-
wide. Patients affected by these diseases require long-term care and lose social productivity.
More importantly, the emotional burden on patients and their families is immeasurable.
The sudden cessation of blood supply or mechanical insult triggers the secondary injury
cascade that induces further permanent damage. Although more than 200 neuroprotective
agents have been developed and evaluated in animal and clinical trials, few have been
applied clinically [1]. In IS and SCI, neuronal apoptosis, inflammation, oxidative stress, and
excitotoxicity have been identified as secondary injury mechanisms [2]. However, in recent
years, the involvement of non-neuronal cells, such as astrocytes, vascular endothelial cells,
and microglia, has been attracting attention and is being studied as a therapeutic target [3].

RhoA is a small GTPase protein that belongs to the Rho GTPase family, including Rho,
Rac, Cdc42, Rnd, RhoD, RhoBTB, and RhoH. Rho-associated coiled-coil protein kinase
(ROCK) is a downstream effector of RhoA. The Rho/ROCK pathway regulates a variety
of critical cellular functions such as gene transcription, cell-cell adhesion, cell cycle pro-
gression, dendritic arborization, spine morphogenesis, growth cone development, axon
guidance, neuronal survival, and neuronal death [4]. Since excessive Rho/ROCK activity
contributes to the pathophysiology of a wide range of disorders, such as subarachnoid
hemorrhage, retinal disease, epilepsy, Parkinson’s disease, Alzheimer’s disease, IS, and
SCI, many researchers have pursued the potential of this pathway as a therapeutic tar-
get [5]. Accumulating evidence suggests that inhibition of the Rho/ROCK pathway may
be effective in treating these diseases [6,7].
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Micro RNAs (miRNAs) and long noncoding RNAs (lncRNAs) are members of the
noncoding RNA (ncRNA) family and were previously considered to have no function.
MiRNAs and lncRNAs have gained much attention in recent years because they play essen-
tial roles in many biological functions and are also deeply involved in various pathological
conditions, including ischemia-reperfusion injuries [8].

This review outlines the significance of the Rho/ROCK pathway in IS and SCI and
the involvement of ncRNAs in the Rho/ROCK pathway in their pathophysiology, which
has been reported recently.

2. Rho/ROCK Pathway

Rho is inactive when bound to GDP while becoming active when bound to GTP via
guanine exchange factors (GEP). GTP-bound activated Rho activates its downstream effec-
tor, ROCK. ROCK is a serine/threonine kinases family and includes two isoforms: ROCK1
and ROCK2 [9]. ROCK 1 transcript is prominently expressed in non-neuronal tissues,
while ROCK 2 is present more abundantly in the brain and skeletal muscle [9]. Activated
ROCK then phosphorylates multiple downstream effectors, including myosin light chain
(MLC), myosin light chain phosphatase (MLCP), LIM kinase, ezrin/radixin/moesin (ERM),
collapsin response mediator protein 2 (CRMP2), adducin, and so on. As a result, ROCK
regulates smooth muscle contraction, cytoskeletal rearrangement via stress fiber formation,
focal adhesion, actin filament stabilization, growth cone collapse, and actin network assem-
bly (Figure 1) [10–12]. ROCK is also involved in apoptosis via the cleavage of caspase-3 or
granzyme B [12]. Furthermore, the inhibition of ROCK significantly reduced focal adhesion
and stress fiber formation induced by Thy-1 (CD90) in astrocytes, suggesting the impor-
tance of the Rho/ROCK pathway in the processes involved in neuron-glia communication
in the brain [13]. The Rho/ROCK pathway contributes to many pathological conditions
such as cardiovascular diseases, cancer, neurological diseases, Alzheimer’s disease, IS, and
SCI [14–16].
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3. Noncoding RNAs

MiRNAs are endogenously expressed small-noncoding RNAs consisting of
20–22 nucleotides that regulate gene expression at a posttranscriptional level through
their interaction with the 3′-untranslated region (UTR) of the target messenger RNAs
(mRNAs) [17]. MiRNAs are first transcribed from genomic DNA and then transcribed into
primary RNA (pri-RNA) by RNA polymerase II. The pri-RNA is several thousand base
pairs long and consists of at least one hairpin loop. This hairpin loop is recognized and
cleaved by the endonuclease Drosha to generate precursor miRNAs (pre-miRNAs) with
the help of the double-stranded RNA-binding protein DiGeorge syndrome critical region
8 (DGCR8) [18–20]. Pre-miRNAs are transported from the nucleus to the cytoplasm by the
intervention of exportin-5. Pre-miRNAs are cleaved by endoribonuclease Dicer to form a
duplex of biologically active mature miRNA strands in the cytoplasm [21–23]. MiRNAs reg-
ulate various cellular functions, including neuronal development, differentiation, synaptic
plasticity, proliferation, and metabolism [24]. Previous studies have shown that miRNAs
are deeply involved in stroke pathology through oxidative stress, neuroinflammation,
apoptosis, and vascular endothelial damage [25,26].

LncRNAs are a family of ncRNAs comprising more than 200 nucleotides that regulate
gene expression via various mechanisms [27]. Recent studies revealed that lncRNAs
act as competing endogenous RNAs (ceRNAs) that sponge specific miRNAs to regulate
gene expressions.

4. Pathophysiology of IS

Strokes are a significant cause of disability and mortality worldwide, resulting in
more than 6 million deaths each year [28]. It is estimated that 80% of strokes are ischemic
strokes, 15% are hemorrhagic strokes, and the remaining 5% have unknown causes [29]. IS
occurs by the cessation of the blood supply to the brain. In an IS, the oxygen and energy
supply to the neurons is deprived, causing them to stop functioning after a few seconds
and undergo structural changes after only 2 min [30]. Following ischemia, the depletion
of glucose and oxygen to the neurons causes the lack of adenosine triphosphate (ATP),
then ion pump failure occurs. The imbalance of ion concentrations inside and outside the
cells causes cytotoxic edema, releasing excitatory neurotransmitters such as glutamate and
aspartate [31,32]. Oxygen depletion leads to anaerobic metabolism, resulting in metabolic
acidosis. All these events contribute to necrosis. While severe ischemia occurs in the
ischemic core, causing neuronal cell necrosis, the surrounding penumbra region cells are
partially injured, with the potential to be salvaged [33]. However, cerebral ischemia induces
an ischemic cascade that also causes neuronal death in the penumbra region.

Ischemic insults also trigger stress signals and the upregulation of immediate early
genes, causing mitochondrial dysfunction and apoptosis [34]. Furthermore, reactive oxygen
species produced by reperfusion leads to vascular endothelial damage, disrupting the
blood-brain-barrier (BBB) via activating matrix metalloproteinases (MMPs) [35]. Ischemic
insult further triggers the upregulation of pro-inflammatory mediators, which induces
the expression of adhesion molecules, leading to neutrophil recruitment, attachment, and
transmigration from the blood into the brain parenchyma followed by macrophages and
monocytes. Toxic mediators produced by activated inflammatory cells and injured neurons,
such as cytokines, nitric oxide, superoxide anion, and prostanoids, deteriorate tissue
injuries [36].

On the other hand, ischemia triggers phosphate protein kinase B (AKT) activation and
the upregulation of trophic factors, leading to recovery and repair mechanisms, including
angiogenesis, neurogenesis, and synaptogenesis [37].

5. Rho/ROCK Pathway in IS

The up-regulation of the Rho/ROCK pathway in neurons and astrocytes after a stroke
has been reported. In rodent models of middle cerebral artery occlusion (MCAO), ROCK
activity in the ischemic area increased. The administration of Fasudil, a ROCK inhibitor,
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suppressed the ROCK activation, increased cerebral blood flow, reduced infarct size, and
improved neurologic outcomes [38,39]. Fasudil administration 6 and 24 h after ischemia
also inhibited neuronal cell death and reduced infarct size, indicating a broad therapeutic
time window [40,41]. As described below, the Rho/ROCK pathway plays a crucial role in
strokes, including apoptosis, excitotoxicity, platelet function, neuroinflammation, blood-
brain barrier (BBB), astrocytes, axon growth inhibition, and neurogenesis/angiogenesis.

5.1. Rho/ROCK Pathway and Neuroprotection in IS

RhoA induced cell death in the rodent stroke model by activating ROCK, which
phosphorylates phosphatase and tensin homolog deleted from chromosome 10 (PTEN) and
inactivates AKT [42]. Further, ROCK inhibition with fasudil prevented ischemia-induced
neuronal apoptosis by maintaining the AKT signaling pathway [42]. Recently, Wang et al.
found that non-muscle myosin heavy chain (NMMHC) IIA inhibition attenuated neuronal
apoptosis, and this effect was related to the caspase-3/ROCK/myosin light chains (MLC)
signaling pathway [43]. ROCK inhibitors, fasudil or Y-27632, also prevented cell death due
to excitotoxicity [44].

5.2. Rho/ROCK Pathway and Platelet Function in IS

ROCK2 deficient platelets were less responsive to thrombin stimulation, such as pseu-
dopodia formation, collagen adhesion, and heterotypic aggregation, leading to prolonged
bleeding time and an increase in time to vascular occlusion [45]. Therefore, ROCK2 is
essential for forming and stabilizing blood clots and may be an essential mediator of
thromboembolic strokes [45].

5.3. Rho/ROCK Pathway and Neuroinflammation in IS

Although inflammatory responses after ischemic insult help isolate the injured region,
excessive inflammation may deteriorate ischemic injury [46].

ROCK activation after a stroke contributes to the deterioration of cerebral injury in
the acute phase by stimulating neuroinflammation. ROCK mediates the overexpression
of adhesion molecules, such as P-selectin and intercellular adhesion molecule (ICAM)-1,
via endothelium-derived nitric oxide synthase (eNOS) reduction [47]. On the other hand,
ROCK inhibition reduced neutrophil accumulation in the ischemic region and reduced
the infarct volume [48,49]. ROCK activation in microglia, a resident macrophage in the
brain, leads to pro-inflammatory cytokine secretion [50]. ROCK inhibition with fasudil
reduced hippocampal injury by suppressing the microglial secretion of pro-inflammatory
cytokines [51].

5.4. Rho/ROCK Pathway and BBB in IS

BBB comprises endothelial cells, pericytes, perivascular antigen-presenting cells, as-
trocytic endfeet, and parenchymal basement membrane [52].

The neurovascular unit (NVU) is a conceptual model that emphasizes the dynamic
interactions between neurons and components of the BBB, such as astrocytes, smooth
muscle cells, endothelial cells, pericytes, and basement membranes, as well as supporting
cells, microglia, and oligodendroglia, which are necessary for normal brain function [53].
ROCK activation after a stroke promoted microvascular damage by upregulating MMP-
9 [54]. Monocyte chemoattractant protein-1 (MCP-1) altered actin and tight junction
structure reorganization and, thus, permeability through RhoA/ROCK activation [55].
A-kinase anchor protein 12 (AKAP12) alleviated the damage and dysfunction of the BBB
after ischemia through the suppression of ROCK [56]. Thus, ischemia-induced activation
of the Rho/ROCK pathway disrupts the BBB, leading to NVU dysfunction.

5.5. Rho/ROCK Pathway and Astrocytes in IS

Astrocytes play an essential role in energy storage and transfer to keep normal neu-
rotransmission, neurotransmitter reuptake and recycling, and the maintenance of ion
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homeostasis [52]. Specific interaction between endothelial cells and astrocytes of NVU is
essential to regulate BBB under normal and pathological conditions [57]. Under IS, several
pathological events, including fibrin accumulation, the transmigration of leukocytes, the
production of degrading enzymes, and basal laminae breakdown with loss of astrocytes
and endothelial cells, contribute to the breakdown of BBB, resulting in vasogenic edema
and hemorrhagic transformation [58].

The Rho/ROCK pathway becomes upregulated in astrocytes after the stroke [59,60].
Over-activated astrocytes, called reactive astrocytes, change their morphology and retract
their endfeet connections from the blood vessels and neurons via Rho/ROCK pathway
activation, leading to the breakdown of NVU coupling and scar formation, which is called
reactive astrogliosis [52,61].

5.6. Rho/ROCK Pathway and Axon Growth Inhibition in IS

Rho/ROCK pathways are involved in the pathophysiology of various diseases, in-
cluding IS, SCI, optic nerve injury, and inflammatory diseases. Although the axons in
the peripheral nervous system show the capacity to regenerate after injury, CNS axons
show limited regrowth capacity. When myelin, ensheathing axons and composed of
oligodendrocytes, is injured, the CNS axons are exposed to myelin debris that contains
myelin-associated inhibitors (MAI). MAI, such as Nogo, myelin-associated glycoprotein
(MAG), and oligodendrocyte-myelin glycoprotein (OMgp), are expressed in the oligoden-
drocytes and transduce signals to neurons through the Nogo receptor (NgR), leading to
the Rho/ROCK pathway activation and resulting in axon growth inhibition [62].

Repulsive guidance molecule (RGM) is a protein that induces growth cone collapse
and has three homologs, including RGMa, RGMb, and RGMc [63]. RGMa expression is
increased after SCI and inhibits axon regeneration [64]. Binding RGMa to its receptor
neogenin activates the RhoA/ROCK pathway, leading to neurite outgrowth inhibition [62].
Neutralizing anti-RGMa antibodies promoted axonal regeneration and functional recovery
after SCI in rats [65].

Reactive astrocytes, forming a glial scar, secrete inhibitory extracellular matrix molecules
at the lesion site, including chondroitin sulfate proteoglycans (CSPGs). CSPGs activate the
RhoA/ROCK pathway through protein tyrosine phosphatase (PTPσ), NgR, and leukocyte
common antigen-related phosphatase (LAR), resulting in axon growth inhibition [66].

5.7. Rho/ROCK Pathway and Neurogenesis/Angiogenesis in IS

Neurogenesis is defined as the production of new functional neurons from neural
stem cells (NSCs) and comprises the proliferation of NSCs, migration, and differentiation
into mature neurons. Although neurogenesis occurs in the normal brain, IS also triggers
enhanced neurogenesis [67]. Angiogenesis, the new microvessel formation through the
ramification from pre-existing blood vessels, comprises endothelial cell proliferation and
sprouting, forming tube-like structures, branching, and anastomosis. Angiogenesis occurs
in the penumbra region after IS [68]. Furthermore, recent studies revealed that the interac-
tion between angiogenesis and neurogenesis is crucial to enhance brain reparation after
IS [69]. For instance, endothelial cells activated by ischemia secrete the regulatory factors
to modulate NSCs, leading to neurogenesis [70], while NSCs also secrete several factors to
promote angiogenesis [71].

The ROCK inhibitor fasudil upregulated astrocytes to produce the granulocyte colony-
stimulating factor (G-CSF), leading to inducing neurogenesis and neuroprotection under
oxygen-glucose deprivation (OGD) [72]. Therefore, the Rho/ROCK pathway may block
the neurogenesis, resulting in worsening neuronal recovery.

Sonic hedgehog (Shh), a soluble protein that upregulates angiogenic growth factors, is
secreted from astrocytes under oxidative stress [73]. Because inhibiting the RhoA/ROCK
pathway diminished the angiogenesis induced by astrocyte-derived Shh after OGD [74],
the RhoA/ROCK pathway may be involved in astrocyte-mediated angiogenesis [75].
However, constraint-induced movement therapy and fasudil promoted angiogenesis and
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neurogenesis after cerebral ischemia by overcoming the Nogo-A/Rho/ROCK pathway [76].
Further studies are needed to elucidate whether inhibiting Rho/ROCK pathway promotes
angiogenesis or not.

6. Rho/ROCK Pathway in SCI

As in strokes, myelin-associated molecules, such as Nogo, MAG, OMgp, semaphorin
4D, ephrin B3, RGM, and netrin-I and glial scar-associated extracellular matrix molecules
known as CSPGs, converge on the Rho/ROCK pathway, resulting in the inhibition of axon
regeneration [62]. Indeed, Rho inhibition contributes to axon regrowth and neuroprotection
after a spinal cord injury [77–79]. VX-210 (cethrin, BA-210), which deactivates RhoA,
improved neurological outcomes in patients with SCI [80].

Fasudil was also neuroprotective after SCI and spinal cord ischemia in a rat model
in vivo [81–83]. However, upregulating the cyclooxygenase (COX)-2 pathway caused resis-
tance against ROCK inhibitors [84]. Kim et al. examined the effects of combined treatment
with fasudil and menthol, a natural compound, which reduces glutaminergic neurotoxicity,
decreases inflammation, and suppresses COX-2 expression [85]. They found that combined
treatment of fasudil and menthol improved the functional recovery after SCI by alleviating
apoptosis, inflammation, and glial scar formation and promoting neovascularization.

Microglia has a crucial role in the immune system of the central nervous system, which
responds in a few minutes and converges to the damaged site after injury [86]. Microglia
released pro-inflammatory cytokines, which exacerbate tissue damage while phagocy-
tosing tissue debris and pathogens to mitigate damage [87]. After SCI, RhoA activation
also occurs in microglia [88]. Because ROCK inhibitors, fasudil and Y27632, promoted
microglial migration and initiated cell morphological changes through the extracellular
signal-regulated kinase (ERK) signaling pathway [89], the Rho/ROCK pathway may be
involved in the microglial migration after SCI. In addition, the ERK pathway played a
crucial role in the Y27632- and fasudil-induced changes in microglial morphology. Rho
guanine nucleotide exchange factor 3 (Arhgef3) is part of the Rho guanine nucleotide ex-
change factors (RhoGEFs) family, with high selectivity to RhoA and RhoB [90]. Disrupting
Arfgef3 expression attenuated microglial inflammation and protected neuronal tissues
from secondary damage after SCI via the inhibition of RhoA activation [91].

In rodent models, RhoA-inhibitors, β-elemene, Leucine-rich repeats and Ig domain-
containing Nogo receptor interacting protein-1 (LINGO-1)-Fc, ibuprofen, small interfering
RhoA (siRhoA), RhoA+FK506, fasudil, p21Clip1/WAF1, Y27632, and VX-210 have neu-
roprotective properties after SCI, including axon sprouting, regenerating nerve fibers,
reducing the formation of syrinx-cavity, and protecting white matter, leading to the recov-
ery of locomotor function [92].

7. ncRNAs in IS

Several studies have demonstrated the relationship between miRNAs and the patho-
genesis of ischemic stroke, including excitotoxicity, neuroinflammation, and neuronal death.
Furthermore, there is growing evidence that miRNAs are associated with angiogenesis,
neurogenesis, and neuroprotection after IS [93]. Although the target genes of miRNAs
associated with IS are diverse, miRNAs related to the Rho/ROCK pathway have only been
reported in the last few years.

8. Rho/ROCK Pathway and ncRNAs in IS
8.1. Rho/ROCK Pathway and miRNAs for Apoptosis in IS

MiR-190 was downregulated after cerebral injury [94]. Using the MCAO-reperfusion
(MCAO/R) model, Jiang et al. showed that Rho was a direct target of miR-190 and that
the overexpression of miR-190 reduced brain damage and apoptosis via the Rho/ROCK
pathway [95] (Table 1 and Figure 2).
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inhibition of RhoA or ROCK upregulation in neurons. LncRNAs exacerbate ischemic injuries via the downregulation of
miRNAs. † miRNA/lncRNA involving oxidative stress. * miRNA/lncRNA involving cell apoptosis. # miRNA/lncRNA
involving inflammation. PAR-1: proteinase-activated receptor type I; ROR: regulator of reprogramming; XIST: X-inactive
specific transcript; SNHG14: small nucleolar RNA host gene 14; ROCK: Rho-kinase.

Han et al. investigated the neuroprotective effects of miR-431 using the rat MCAO/R
model [96]. In their model, the expression of miR-431 significantly reduced while that
of Rho significantly increased. Rho was the potential target gene of miR-431, and miR-
431 negatively regulated Rho expression in hippocampal neurons. They concluded that
miR-431 promoted proliferation and inhibited apoptosis by negatively regulating the
Rho/ROCK pathway (Table 1 and Figure 2).

The anti-apoptotic effect of miR-335 and the correlation between stress granules (SG)
formation and apoptosis in acute IS was investigated by Si et al. [97]. SGs are complex
and dynamic foci generated in the cytoplasm when eukaryotic cells suffer from different
types of stress, e.g., endoplasmic reticulum stress, heat shock, and acute energy starva-
tion [98]. In the eukaryotes under stress, multiple proteins called RNA binding proteins
(RBPs), including T-cell intracellular antigen-1 (TIA1), self-aggregate to form the SG. SG
formation protects mRNA and proteins against degradation and misfolding, enhancing
cellular resistance to apoptosis [99]. They found that SG formation promoted by miR-335
suppressed apoptosis by inhibiting the expression of ROCK2 (Table 1 and Figure 2).

Ding et al. explored the role of miR-582-5p and proteinase-activated receptors type-1
(PAR-1) after ischemia-reperfusion [100]. PAR-1 is a thrombin receptor, and its deficiency
protects against neuronal damage after ischemia-reperfusion [101,102]. They found that
miR-582-5p expression decreased, and PAR-1, RhoA, and ROCK2 increased, after ischemia-
reperfusion. The overexpression of miR-582 reduced neuronal apoptosis by inhibiting the
Rho/ROCK pathway through the downregulation of PAR-1 (Table 1 and Figure 2).

8.2. Rho/ROCK Pathway and lncRNAs/miRNAs for Apoptosis in IS

LncRNAs may be associated with cell apoptosis, inflammation, cell death, and an-
giogenesis in IS [103–106]. Therefore, lncRNAs have been emerging as a new therapeutic
target in IS [107]. One of these lncRNAs is the X-inactive specific transcript (XIST) RNA, a
17-kb lncRNA, which regulates X chromosome inactivation in mammals. There is a report
of the up-regulation of XIST enhanced cerebral ischemia-reperfusion injury in SH-SY5Y
cells [108]. Wang et al. investigated the relationship among XIST, miR-362, and ROCK2 in



Int. J. Mol. Sci. 2021, 22, 11573 8 of 16

an MCAO/R model [109]. They found that XIST negatively regulated miR-362, and the
depletion of XIST attenuated ischemia-reperfusion induced apoptosis and inflammatory
responses by regulating the miR-362/ROCK2 axis (Table 1 and Figure 2).

8.3. Rho/ROCK Pathway and lncRNAs/miRNAs for Oxidative Stress/Inflammation in IS

Zeng et al. investigated whether metformin, a commonly used drug for treating type
2 diabetes, prevents cerebral ischemic injury through its antioxidant effect via the modu-
lation of the lncRNA-H19/miRNA-148a-3p/ROCK2 pathway [110]. Elevated expression
of lncRNA-H19 related to the progression of cerebral ischemia [111]. They found that
metformin protected against cerebral damage via inhibiting oxidative stress and apoptosis.
In addition, the expression of lncRNA- H19 and ROCK2 increased, and the miR-148a-3p ex-
pression decreased after ischemia-reperfusion, while metformin inhibited these responses.
Thus, they concluded that metformin exerted neuroprotective effects against ischemia-
induced cerebral injury by inhibiting oxidative stress and apoptosis by regulating the
lncRNA-H19/miR148a-3p/ROCK2 axis (Table 1 and Figure 2).

Table 1. LncRNAs/miRNAs and the Rho/ROCK pathway in ischemic strokes.

Model lncRNA/miRNA Expression after
Insult Target Effects Reference

MCAO/R in rats
Hippocampal neuron
of rats under OGDR

miR-190 Decreased Rho The overexpression of miR-190 decreased
apoptosis. [95]

MCAO/R in rats miR-431 Decresed Rho The overexpression of miR-431 decreased
apoptosis and promoted proliferation. [96]

MCAO in rats
PC12 cells in
serum-free medium

miR-335 Decreased ROCK2

miR-335 treatment upregulated stress
granule formation, alleviated infarction,
decreased ROCK2 expression, and
apoptosis.

[97]

MCAO in mice
N2A cells under
OGD/R

miR-582-5p Decreased PAR-1

Overexpression of miR-582-5p inhibited
the activation of the Rho/ROCK pathway
by downregulating proteinase-activated
receptors type-1 (PAR-1), reducing
apoptosis.

[100]

MCAO/R in mice
PC12 cells under
OGD/R

XIST Elevated miR-362
XIST negatively regulated miR-362.
Depletion of XIST attenuated apoptosis
and inflammation via miR-362/ROCK2
axis.

[109]

miR-362 Decreased ROCK2

MCAO/R in mice
N2a cells under
OGB/R

lncRNA-H19 Elevated miR-148a-3p
lncRNA-H19 may act as a molecular
sponge of miR-148a-3p.
lncRNA-H19 altered OGD/R induced
apoptosis and oxidative stress via the
miR-148a-3p/ROCK2 axis.

[110]

miR-148a-3p Decreased ROCK2

MCAO/R in rats
PC12 cells under
OGD/R

lncRNA-SNHG14 Elevated miR-136-5p
lncRNA-SNHG14 negatively regulated
miR-136-5p as its ceRNA.
lncRNA-SNHG14 promoted neurological
impairment and inflammation via the
miR-136-5p/ROCK1 axis.

[112]

miR-136-5p Decreased ROCK1

PC12 cells under
OGD/R

lncRNA-ROR Elevated miR-135a-5p
lncRNA-ROR promoted oxidative damage
and apoptosis via the
miR-135a-5p/ROCK1/2 axis.
The overexpression of miR-135a-5p
decreased cell damage by inhibiting
ROCK1/2.

[113]

miR-135a-5p Decreased ROCK1/2

MCAO/R: middle cerebral artery occlusion-reperfusion; OGDR: oxygen-glucose deprivation-reperfusion; ROCK: Rho-kinase; XIST:
X-inactive specific transcript; SNHG14: small nucleolar RNA host gene 14; ceRNA: competing endogenous RNA; ROR: regulator
of reprogramming.

Using the MCAO/R model and OGD/R treated PC12 cells, Zhong et al. revealed
the upregulation of lncRNA small nucleolar RNA host gene 14 (SNHG14) [112]. LncRNA-
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SNHG14 negatively regulated miR-136-5p as its competing endogenous RNA (ceRNA).
Inhibiting SNHG14 decreased neuronal injury and inflammation, and SNHG14 positively
regulated the expression of ROCK1 by acting as a sponge of miR-136-5p. Therefore,
SNHG14 silencing improved neurological function and prevented inflammation dependent
on miRNA-136-5p overexpression and decreased ROCK1 level [112] (Table 1 and Figure 2).

Chen et al. investigated the expression of the lncRNA regulator of reprogramming
(ROR) in cerebral hypoxia-reoxygenation in PC12 cells and analyzed the effect of lncRNA-
ROR on the ROCK1/ROCK2 signaling pathway [113]. lncRNA-ROR promoted human-
induced pluripotent stem cells and participated in miRNA-mediated suppression in hu-
man embryonic stem cell self-renewal [114]. They found that miR135a-5p was a direct
target gene of lncRNA-ROR. The overexpression of lncRNA-ROR induced by hypoxia-
reoxygenation aggravated the oxidative damage and apoptosis of PC12 cells by inhibiting
the expression of miR135a-5p. Furthermore, miR135a-5p overexpression decreased the
damage by inhibiting the expression of ROCK1/2 (Table 1 and Figure 2).

9. Rho/ROCK Pathway and miRNAs for Apoptosis/Axon Regeneration in SCI

Recently, increasing studies have focused on regulating miRNAs in promoting axon
outgrowth and inhibiting neuronal apoptosis [115–117]. MiRNAs bind to the target mes-
senger RNAs (mRNAs) and negatively regulate gene expression at both the mRNA and
protein levels [118] (Table 2 and Figure 3).
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Figure 3. Schematic representation of the interaction between the Rho/ROCK pathway and miRNAs
in spinal cord injuries. Spinal cord injuries trigger multiple signaling pathways that upregulate
the Rho/ROCK pathways in neurons, leading to neuron cell apoptosis and axon growth inhibition.
MiRNAs inhibit these signaling pathways, resulting in reduced cell apoptosis and the promotion of
axon regeneration. † miRNA involving oxidative stress. * miRNA involving cell apoptosis. Sema3A:
Semaphorin-3A; NRP-1: neuropilin-1; BRD4: bromodomain-containing protein 4; WNT5A: Wnt
family member 5A; ROCK: Rho-kinase.

Semaphorin-3A (Sema3A) is a neuronal secreted repulsive guidance cue and induces
neuronal growth cone collapse during the development of the nervous system. Sema3A
binds to the receptor complex containing PlexinA1 and Neuropilin-1 (NRP-1) and mod-
ulates the Rho/ROCK pathway [119]. Wang et al. investigated whether miR-30b, which
targets sema3A to promote retinal ganglion cell neurite growth [120], could exert primary
sensory neuron neurite outgrowth after SCI [121]. They found that the up-regulation of miR-
30b inhibited sema3A expression and RhoA/ROCK activity through the PlexinA1/NRP-1
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co-receptor, promoting primary sensory neuron neurite outgrowth and spinal cord sensory
conductive function recovery (Table 2 and Figure 3). Interestingly, the reduced expression
of miR-30b has been proposed as one of the biomarkers for ischemic strokes [122], suggest-
ing that miRNAs are not only promising targets for the treatment of ischemic strokes but
are also valuable as biomarkers for diagnosis.

Extracellular vesicles (EVs) are candidates for the vehicles of bioactive molecules,
such as mRNA, miRNAs, and lncRNAs, and EVs derived from various cells are thus
expected to be a potential therapeutic method. Jia et al. investigated whether miR-381
encapsulated in the EVs derived from mesenchymal stem cells (MSCs) can promote the
recovery of SCI [123]. MiR-138 is essential for the proliferation of nerve cells during SCI.
Furthermore, it may be associated with bromodomain-containing protein-4 (BRD4), which
can bind to Wnt family member 5A (WNT5A). WNT5A reportedly inhibits axon growth
and stimulates cell apoptosis [124,125]. They found that miR-381 delivered by EVs derived
from MSCs inhibited neuron apoptosis and promoted the recovery of SCI by inhibiting the
BRD4/WNT5A axis (Table 2 and Figure 3).

MiR-135a-5p stimulated axon regrowth and inhibited apoptosis [126,127]. Therefore,
Wang chose specificity protein 1 (SP1) and Rho-associated kinase (ROCK) as target genes
of miR-135a-5p because these proteins were known to regulate neural apoptosis and axon
regeneration [128–130]. SP1 binds to genes associated with apoptosis, such as Bax, Bcl-2,
and caspase 3, and activates the apoptosis pathway [131–133]. Meanwhile, ROCK is
considered a direct target gene of miR-135a-5p [134,135]. The AKT/glycogen synthase
kinase 3β (GSK3β) pathway is one of the downstream signaling pathways of ROCK, and
the activation of this pathway regulates axonal growth [136,137]. They found that the
miR-135a-5p-SP1 axis regulated the Bax/Bcl-2/caspase-3 signaling pathway to modulate
neuronal apoptosis. The miR-135a-5p-ROCK axis regulated the AKT/GSK3β signaling
pathway to promote axon regeneration during the process of functional recovery following
SCI (Table 2 and Figure 3). They proposed that the genetic manipulation of cells according to
these two signaling axes may be candidates for the clinical translation of stem cell therapy.

Table 2. MiRNAs and the Rho/ROCK pathway in SCI.

Model miRNA Expression
after Insult Target Effects Reference

SDCL in rat
Primary sensory
neuron of rat

miR-30b Decreased Sema3A

miR-30b agomir promoted neurite
outgrowth, and antagomir inhibited it.
miR-30b agomir regulates
sema3A/PlexinA1-NRP-
1/RhoA/ROCK pathway, promoting
sensory conductive function recovery
after SDCL.

[121]

SCI in rat
DRG cells of rat miR-381 Decreased BRD4

BRD4 promoted WNT5A expression via
binding to the promotor of WNT5A.
WNT5A promoted apoptosis by
activating the RhoA/ROCK pathway.
miR-381 derived from EV in MSCs
inhibited neuron apoptosis and
promoted the recovery of SCI by
inhibiting the BRD4/WNT5A axis.

[123]

SCI in rat
PC12 cells under
H2O2 stimulation

miR-135a-5p Decreased SP1
ROCK1/2

miR-135a-5p-SP1-Bax/Bcl-2/caspase3
axis inhibited neuronal apoptosis.
miR-135a-5p-ROCK-AKT/GSK3β
pathway promoted axon regeneration
during functional recovery after SCI.

[130]

SCI: Spinal cord injury; Sema3A: Semaphorin-3A; SDCL: Spinal cord dorsal column lesion; DRG: Dorsal root ganglia; BRD4: Bromodomain-
containing protein 4; WNT5A: Wnt family member 5A; EV: extracellular vesicles; MSCs: mesenchymal stem cells; SP1: Specificity protein 1;
AKT: phosphate protein kinase B; GSK3: glycogen synthase kinase 3β.
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10. Conclusions

As we have discussed, the Rho/ROCK pathway is deeply involved in IS and SCI in
various ways, including apoptosis, neuroinflammation, BBB integrity, astrogliosis, axonal
regeneration, neurogenesis, and angiogenesis. Furthermore, there is growing evidence that
the inhibition of the Rho/ROCK pathway can effectively reduce IS and SCI-induced injury.
Here, we introduced the involvement of lncRNAs and miRNAs through the Rho/ROCK
pathway in IS and SCI and the potential therapeutic effects of the intervention with these
ncRNAs. The clinical utility of miRNAs will be very high if they can be delivered in the
form of extracellular vesicles, as shown by Jia et al. [123]. Because previous studies on
the relationship between the Rho/ROCK pathway and ncRNAs in IS and SCI were only
related to apoptosis, neuroinflammation, oxidative stress, and axonal regeneration, future
studies are expected to include BBB integrity, astrogliosis, neurogenesis, and angiogenesis.

In this review, we focused on the potential of the Rho/ROCK pathway and ncRNAs
as therapeutic targets in IS and SCI. However, it has been suggested that leukocyte ROCK
activity is an independent predictor of cardiovascular morbidity and mortality, including
strokes [138]. Furthermore, as mentioned earlier, circulating miRNAs, including miR-30b,
have been proposed as valuable biomarkers for diagnosing IS [122]. Therefore, ncRNAs
targeting the Rho/ROCK pathway may be worthy of further investigation not only as
therapeutic targets for IS and SCI but also as novel biomarkers.

In conclusion, the Rho/ROCK pathway is now one of the most attractive targets
for treating IS and SCI because of its deep involvement in a wide range of pathological
conditions. The inhibition of the Rho/ROCK pathway using ncRNAs is a promising
therapeutic approach that warrants further investigation.
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