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A B S T R A C T 

In recent years, bridge damage identification using a convolutional neural network (CNN) 

has become a hot research topic and received much attention in the field of civil 

engineering. Although CNN is capable of categorizing damaged and undamaged states 

from the measured data, the level of accuracy for damage diagnosis is still insufficient due 

to the tendency of CNN to ignore the temporal dependency between data points. To 

address this problem, this paper introduces a novel hybrid damage detection method based 

on the combination of CNN and Long Short-Term Memory (LSTM) to classify and 

quantify different levels of damage in the bridge structure. In this method, the CNN model 

will be used to extract the spatial damage features, which will be combined with the 

temporal features obtained from Long Short-Term Memory (LSTM) model to create the 

enhanced damage features. The combination successfully strengthened the damage 

detection capability of the neural network. Moreover, deep learning is also improved in 

this paper to process the acceleration-time data, which has a different amplitude at short 

intervals and the same amplitude at long intervals. The empirical result on the Vang bridge 

shows that our hybrid CNN-LSTM can detect structural damage with a high level of 

accuracy. 

F. ASMA & H. HAMMOUM (Eds.) special issue, 4th International Conference on Sustainability in 

Civil Engineering ICSCE 2022, Hanoi, Vietnam, J. Mater. Eng. Struct. 9(4) (2022) 

1 Introduction 

     Civil structures are subjected to damage because of long services, natural disasters, human impacts, and so on. 

Structural Health Monitoring (SHM) is a vital tool to predict structural behaviors, identify damages, and enhance the 
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operational efficiency of the structures.  In the early period, visual-based inspection methods were commonly employed. 

However, to obtain the damaged properties, some impacts on the structures such as cutting, and sewing were required. 

Furthermore, this method was impossible to detect damages located deeply in the structures. To remedy this shortcoming, 

vibration based SHM has been developed. With the recent development of deep learning techniques, vibration data of large 

structures might be analyzed in an inexpensive way using convolutional neural networks (CNNs). A convolutional neural 

network (CNN) utilizes local connections to extract spatial information effectively and shared weights to reduce the number 

of parameters significantly [1]. In 1990, Yann LeCun proposed the Backpropagation (BP) algorithm to train the first CNN 

which became mature in 1998 [2]. According to LeCun, there are two main layers in CNN's architecture: convolution and 

pooling. These two layers can be connected to other fully connected layers. From these layers, 2D (two-dimensional) featured 

maps can be extracted. One of the main edges of CNN is that it can learn relevant functions and share parameters from the 

data provided. This helps to reduce the computational cost of CNN significantly in comparison with other categories of neural 

networks. Krizhevsky is the first to propose a deep CNN model called AlexNet [3], which is the ancestor of the Deep Learning 

paradigm. AlexNet had eight layers which consist of 5 convolutional-pooling layers and 3 fully connected layers. It has been 

proven powerful, with an error rate of 16.4% in the ImageNet test set [4], about 10% less than the second method using the 

traditional ML approach. Commonly CNN takes as input a 2D matrix, but it can also use a one-dimensional (1D) matrix as 

input. The resulting model is called a 1D CNN, which still has all the existing advantages of CNN [5]. Many researchers 

have shown that 1D CNN can be useful when handling time-series data in SHM to reduce computing costs, as 1D CNN only 

uses table functions for forward and backward calculations. CNN's main advantage over its predecessors is that it 

automatically detects relevant functions without human supervision [6]. For example, Dang et al. [7] proposed using 1DCNN 

combined with Long Short-Term Memory (LSTM) to monitor the health of structures. Both numerical and measured models 

were employed to consider the effectiveness of the proposed approach. Results showed that the 1DCNN-LSTM model 

successfully provides high accuracy outcomes as two-dimensional CNN. Moreover, it also requires less computational time 

as well as CPU memory. A deep CNN was used to analyze the reduction in connection stiffness of truss members of a large-

scale truss bridge [8]. To consider the effect of the imperfection of data, 10 % of noise was considered. Nguyen et al. [9] 

monitored the prestress-loss of reinforced concrete girders using a proposed 1DCNN based on a regression method. A 

supervised Deep Neural Network (DNN) was successfully applied for damage identification of a full-scale bridge in the work 

of [10]. 

In recent years, the 1D-CNN has been proven to be highly effective in obtaining temporal information to solve damage 

identification problems using vibration measurement data. For example, 1D CNN is proposed by Abdeljaber [11] to deal 

with real-time vibration-based damage detection. The authors trained 1D-CNN on a database of vibration signals taken from 

a bundle called Qatar Grandstand that destroys individual joints and preserves other joints intact. The model was trained 

separately in each binding and had an outstandingly high classification accuracy. While the proposed method is effective in 

dealing with single class damage case, it was not tested for a multiclass damage scenario [7]. Zhang used the computing 

power of 1D CNN to identify structural parameters’ changes such as mass and stiffness. Data collections were conducted on 

three types of structures: a steel T-beam, a short and a long steel beam bridge. The proposed method was able to achieve a 

high level of accuracy, with an average slope accuracy of 98% [8]. In another study, Ni demonstrated the ability of 1D CNN 

with an automated encoder to detect data compression anomalies. The proposed algorithm was validated with 97.53% 

accuracy using a long-span suspension bridge [9]. Sharma and Sen further utilized 1D CNN for the detection of structural 

frame damage [12]. The model was validated on a two-dimensional steel frame for different damage scenarios. The method 

was found to be highly accurate in locating and identifying the level of damage in the generated damage scenarios. 

Furthermore, the resulting false-positive rate was deemed to be within acceptable ranges [10]. In addition, Liu proposed a 

novel method that integrates traditional TF methods with the ability of neural networks [13]. The author used the 1D CNN-

based transmissibility function to effectively detect damage to the ASCE SHM reference structure. The author compared the 

proposed method with time series and frequency field information based on the Fast Fourier Transform (FFT), in which TF 

signals showed more damage-sensitive features [11]. Recently, Bao introduced a hybrid method combining FE method and 

1D CNN to identify damage to a jacket-type offshore structure. However, the data were generated synthetically using a finite 

element model, which is not necessarily like real-time data from functional and environmental noises. Since the damage was 

generated by the FE model, it did not reflect correctly the real-life data [12]. In another work, Sarawgi applied 1D CNN to 

detect simulated hypothetical damage of an experimental pipeline structure by adjusting structural external reinforcement 

[14]. However, CNN's unique model for the damaged node could not be well adapted to actual multi-class damage structures 

due to the computational complexity. However, choosing the best network architecture and the requirement for a massive 

dataset continued to be difficult  [15]. 
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Recurrent neural network (RNN) is a subclass of ANN in which neurons from the previous level get feedback from the 

output neurons in the current layer. RNN is known to be able to process long input data. The size of the model does not 

increase with the number of inputs. During the computational process, data from previous points is used. The weights are 

shared during processing [5]. For processing temporal data, long short-term memory networks (LSTMs), a significant subset 

of RNNs, are frequently used. LSTM networks have emerged as one of the most cutting-edge approaches for addressing a 

variety of machine learning issues, including computer vision, time series prediction, and natural language processing. 

However, LSTM networks is still new in SHM [16]. Recently, Zhang proposed the Long Short-Term Memory (LSTM) model 

to predict dam displacement. The authors make use of the long-term dependency learning ability in LSTM model. Several 

modifications have also been brought about by external environmental factors such as water pressure, temperature, structural 

deterioration, and bedrock damage. The LSTM model was optimized during the investigation to demonstrate how the external 

environment affected the resulting displacement. The suggested technique was evaluated against different machine learning 

(ML) algorithms, including the support vector machine, multilayer perceptron, and multiple linear regression. The proposed 

algorithm was compared with various ML algorithms, such as the support vector machine, multilayer perceptron, multiple 

linear regression, and augmented regression tree. LSTM has been shown to outperform other methods in terms of accuracy, 

effectively reflecting delays and making variable selection more convenient [13]. In addition, Yang introduced CNN-LSTM 

model for computer vision-based modal frequency detection. Spatio-temporal information was extracted from images 

captured by a standard camera. The proposed technique achieved 96.6% accuracy and performed well with noisy data sets 

[17]. 

This paper proposes a novel hybrid damage detection method based on a combination of CNN and long-term memory 

(LSTM) to classify and quantify different levels of damage to bridge structures. In our method, the CNN model is used for a 

spatial damage characteristic which, in combination with the temporal characteristics obtained from the Long Short-Term 

Memory (LSTM) model, creates improved damage characteristics. The proposed method is field tested in the Vang Bridge 

to validate its effectiveness. Results show that our CNN-LSTM hybrid is capable of detecting structural damage with high 

accuracy. 

2 Methodology: Deep learning-based damage detection 

Recently, deep learning (DL) techniques have been widely developed and applied in damage detection [18-20]. 

Compared to traditional machine learning methods, DL has two excellent features: feature learning and scalability. The 

performance of the feature learning depends essentially on craft functions that require domain knowledge and preprocessing 

data, while the scalability can exigently extract significant functionality from raw data due to the multilevel architecture and 

lower levels that essentially define the functions and compile higher-level models [21]. 

In SHM, deep learning techniques have the potential to generate a complete system since they require no additional 

signal preprocessing procedures. In addition, the DL models can be used for a variety of activities, such as damage 

identification, localization, damage severity, etc., by optimizing some of the latest levels of architecture or using learning 

transfer techniques. As a result, many researchers have recently applied different neural networks to SHM, such as 

Convolution Neural Networks (CNN), Recurrent Neural Networks (RNN), and multi-layer perceptron (MLP). 

2.1 Convolution neural network 

A convolutional neural network is one kind of deep neural network model. An input layer, convolution layers, pooling 

layers, a fully linked layer, and an output layer make up the CNN structure. The convolution layer is one of the most important 

layers, which can be used to extract features from the previous layers. Convolutional kernels are learned in order to extract 

these features. The input will be convolved with the convolutional kernel for this task, and the output will go through an 

element-wise nonlinear activation function after that. Equation 1 illustrates the precise computation. 

 , , ,z  = w x  + b
Tl l l l

i j k k i j k  (1) 

where 
, ,i j kz  is the feature value at the location ( , )I j  in the  thk  feature map of thl  layer. 

,i jX  is the input patch with center

( , )I j  of the thl  layer. The 
kz  and 

kb  are the weight and bias vector of the thk   filter of the thl  layer.  The advantage of CNN 
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is the ability to extract important features from data without any human supervision. The activation function is then applied 

to the convolution feature. Here activation function can be sigmoid, tanh, and ReLU. The ReLU function is more commonly 

used and is empirically proven to be one of the standard choices. The ReLU function will assign negative values to zero and 

keep the value of the input when greater than 0. 

 
, , , , = a(z )l l

i j k i j ka  (2) 

CNN uses the pooling layer to decrease the feature map while preserving important information from the data, thus 

reducing the number of parameters as well as computational complexity. It works by summarizing the features while swiping 

a filter across the feature map. The pooling processes may involve average or maximum pooling. Equation (3) presents the 

pooling for the feature map: 

 
, , m,n, ij = pool(a ), (m,n) Rl l

i j k ky    (3) 

The abstract features are extracted following the convolution process and the pooling operation. If more layers are used, 

we can get higher-level feature representations. Before being sent to the fully connected layer, the feature map will be 

flattened to a vector with size as the product of the feature map dimensions. In the CNNs network model, fully connected 

layers (FC) are usually found at the end of the network and are used to optimize network goals such as prediction accuracy. 

The fully connected layer takes as input flattened data, each of which is connected to all neurons. The feature matrix from 

the preceding layer is transformed into a vector in this layer that contains the probability of the items that need to be predicted. 

Finally, a loss function will be utilized to determine the model's prediction error and the backpropagation technique will be 

used to update the weights during the training of a CNN model for the classification issue. Consider   the weight and bias 

of a CNN, also called as parameters. The optimization parameters for the classification problem can be calculated by 

minimizing the loss function of the task. Suppose N is the number of input-output pairs {(x(i),y(i)),  1i N }, where xi is 

the input data, yi is its corresponding label. Let oi is the output of CNN. The loss function of CNN can be calculated as: 

  ( ) ( )

1

1
L = , ,o

N
i i

i

l y
N




  (4) 

The stochastic gradient descent algorithm can be used to minimize the loss function. Optimizing the model's weights and 

bias to the trained dataset is the goal of model training. 

2.2 Long Short-Term Memory network 

Long Short-Term Memory networks were designed to capture the long-term relationship between data points. By using 

a feedback connection, LSTMs can process the entire data sequence without processing each time point in the sequence 

independently. Therefore, it can retain useful information about previous data points in the sequence. To regulate the data in 

the data sequence moving through the network, LSTMs employ three gates: the forget gate, the input gate, and the output 

gate. To control the cell state, these gates consist of a layer of sigmoid neural networks and a pointwise multiplication 

operation. The forget gate is the first step in information processing, and it determines what information about the cell state 

from the previous hidden state and new input data will be kept. Considering the previously hidden state 1th   and input tx , 

for each number in the cell state 1tC  , the network's sigmoid function will train and output a value between 0 and 1. Here the 

number closer to 1 means the information is relevant and the number closer to 0 means irrelevant. The output then multiplies 

pointwise with the previous cell state 1tC  , which leads to having less influence in the next step if the output is close to 0. 

  1f  = W .[h ,x ]+bt f t t f 
 (5) 

  1 = W .[h ,x ]+bt i t t ii  
 (6) 

To choose what fresh data will be kept in the cell state tC , the old cell state 1tC   will be multiplied with tf  and then add 
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up with */t ti C , where ti is the output of the sigmoid layer containing the values will update, / tC  is the output of tanh layer, 

which has learned how to combine the previous hidden state and the input data to produce a vector of new candidate values. 

   
~

1 = tanh W . h ,x +bt C t t CC   (7) 

This vector shows the way to update each component of the long-term memory of the network given a new data point. 

As the result of the input gate, the tC  here contains the updated state values. 

 
~

1 = f *C +i *t f t t tC C  (8) 

Finally, the output gate will select the new hidden state based on Ct, ht-1, and the input data. To obtain the filter vector, 

the hidden state ht-1 and input data are sent through the sigmoid activated neural network. Also, the cell state is gone through 

the tanh function to range the value between -1 and 1. Finally, this value is multiplied by the filtered vector to obtain the 

desired output. 

 

Fig. 1 – Hybrid CNN and LSTM for multiple damage detection 

(a) 

 

(b) 

 

Fig. 2 – Vang bridge: (a) The top view of the bridge; (b) Downstream side of the bridge 

2.3 Combine CNN+LSTM for damage detection 

The proposed method includes two main steps. The method takes the raw time series signals as input. As explained in 

the aforementioned section, in the case of a vibration time series, CNN is unable to capture the temporal relationships between 

the time series’s beginning and ending. This technique uses a CNN to extract the features, then an LSTM network to classify 

the data. The overall architecture of the method is shown in Figure 1. In our approach, the convolution neural network was 

fed the time series to automatically extract the features. Since our input is a 1D time series, we use a collection of 1D 

Convolutional layers, followed by Max Pooling layers. As in the figure, CNN uses the convolution layers to filter data and 

pooling layers to reduce the size of the feature map by replacing the sliding windows with a maximum value. The output of 

the pooling layer then goes through LSTM layers and multiple fully-connected layers. Finally, the output layer will be used 

for the classification task. To produce the multi-class classification results, we use the softmax function, which outputs the 
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(b) 
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probability distribution for all the classes. The dropout layer is used here to avoid overfitting. The label with the maximum 

probability will be the damaged state prediction. 

3 Experimental results 

3.1 Data 

To evaluate the effectiveness and accuracy of the proposed method, in this section, we conduct our experiments on a 

simply supported bridge. Vang bridge is situated in the middle of Vietnam at Km7+591, Yen Dinh district, Thanh Hoa 

Province. The bridge, which has 4 spans with a length of 15 m each, was erected and has been in use since 1995. Each span 

consists of four 1.15 m-long reinforced concrete T-shaped beams. The cross-section is one meter tall. Figure 2 shows some 

views of the bridge. 

 

Fig. 3 – Acceleration of DOF number 10 when damage occurs at element 6 with a level of 30%. 

 

Fig. 4 – Sample data (a) undamaged, (b) damage level 1, (c) damage level 2, (d) damage level 3 

To get the input data to train the network, a Finite Element Model (FEM) of the bridge is built first using MATLAB 

program. The model is divided into 30 beam elements, each element contains 6 degrees of freedom (DOF) at each node that 

consists of 3 translational displacements and rotational displacements around the x, y, and z-axis. 

From the built FEM, a wide range of scenarios of structural health situations is generated. Damages are generated by 

reducing the stiffness of elements of the structure. Both single and multiple damages are considered. For single damage, the 

stiffness of each element is reduced from 0 % to 50 %, meanwhile, other elements are intact. For multiple damages, we 

consider damages that occur at two elements at the same time with a reduction in the stiffness from 0% to 50%. After damage 
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scenarios are determined, data is collected. To train the network of CNN, image data of acceleration is employed. For 

instance, Figure 3 shows the acceleration of DOF number 10 when damage occurs at element 6 with a level of 30%. 

The data has four classes, such as undamaged, damage level 1, damage level 2, and damage level 3. The data is generated 

from the FE model. In the model, in addition to the undamaged data, there is also damaged data at a location with a degree 

of < 30% will be labelled as class 1, and data with a damage level from 40 to 60% will be assigned labelled class 2, and data 

with more than 70% of the damage level will be labelled as class 3. A sample data description for the classes is shown below. 

3.2 Results 

Data are randomly distributed into a training and a test set. The ratio is 70% for training and 30% for testing. The 

architecture used is exactly like the one in Figure 1. Each time series consists of 10570 points.  

We have evaluated our model with a set of configurations. Here we present the hyperparameters that has the best 

performance and can be used to reproduce our results. Our architecture has 4 convolutional layers. The number of filters for 

these layers are 512,256,256 and 128, respectively. The kernel size of the first layer is 5 and the kernel size of the other layers 

is 3. The three following dense layers have 512, 128 and 4 nodes, respectively. The optimizer used is RMSprop with a 

learning rate of 0.001. We train our model for a total of 500 iterations with batch size 32. Figure 5 shows the training and 

testing accuracy of the proposed architecture during training. 

 

Fig. 5 – Performance of the model 

As shown in figure 5, the model converges at around iteration 200. Here the training accuracy is linearly smooth while 

there is a higher variation for validation accuracy. 

We evaluate the best validation model against the test set. The accuracy of the methods is computed using the ground 

truth data consisting of positive and negative detection. The confusion matrix for three methods CNN, CNN with handcrafted 

features and CNN with LSTM is shown in Table 1. The percentage of correctly classified samples relative to the total number 

of samples will be used to determine the method's accuracy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑁 + 𝑇𝑃)

(𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝑇𝑃)
 (9) 

where TP is the number true positive samples, TN the number of true negative samples. FP is the false positive number and 

FN the false negative number. Results are reported using the F-measure metric, which, when applied to unbalanced data, 

considers both false positive and false negative results. 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 
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where: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 ;  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Figure 6 shows the performance of our approach when used as a simple damage detection model. For some simple use 

cases in real life, such binary classification model already provides sufficient prediction result. Our model shows great 

performance in this case, reporting an accuracy of 90.29% and an F-Measure of 0.93. 

 

Fig. 6 – Confusion matrix of the binary classification use case 

 

Fig. 7 – Confusion matrix of the multi-level damage detection use case 

When used as a multi-level damage detection model, the testing accuracy of our method is 79.6%. The complete 

confusion matrix is shown in Fig. 7. The total number of test samples is 103, in which 32 are undamaged samples, 10 are 

damage level 1 samples, 33 are damage level 2; 28 are damage level 3, respectively. in the test phase, all damaged level 1 

and level 2 samples were predicted accurately, and some undamaged and level 3 samples were misclassified. From the matrix, 

we get TP, TN, FP, FN which are 10, 72, 0, 21. Results are obtained for the accuracy, precision, recall, and F-measure scores, 

which are 0.79, 1.0, 0.32, 0.48, respectively. We observe that our model correctly identifies all Damage level 1 and Damage 

level 2 samples. However, Damage level 3 samples seem to be harder to identify. The overall accuracy still suggests that the 

transformed vibration data can be processed using CNN and LSTM in combination. 
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4 Conclusions 

In this paper, we have proposed a damage identification method combining CNN and LSTM model for multiple damage 

detection. In this model, time series with multi-class labels are used as inputs for our model. Afterward, the spatial damage 

features from the CNN model are combined with the temporal features from the LSTM model to create enhanced damage 

features. The combined features are used to classify different levels of damage in the bridge. The technique can be used to 

address issues with damage identification, according to experimental data from a case study of the Vang bridge. The case 

study's final results indicate that the suggested strategy has created a high level of accuracy in the structure's damage 

identification. Moreover, the deep learning approach is also improved in this paper to process the acceleration-time data, 

which has a different amplitude at short intervals and the same amplitude at long intervals. 
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