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A B S T R A C T 

 The present paper successfully develops a closed form solution based on a shear 

deformation theory for elastic lateral-torsional buckling analyses of simply supported 

thin-walled steel beams. The theory captures the shear effects caused by transverse 

bending, lateral bending and warping deformations. The closed form solution is 

successfully validated against 3 dimensional finite element analyses conducted in 

commercial software. Through various comparisons between the buckling resistances 

based on a non-shear deformation theory and the buckling resistances based on the present 

shear deformation theory, the present study finds that (i) the effect of shear deformations 

on the buckling resistances decreases when the beam span increases, (ii) the effect of shear 

deformations on the buckling resistance is sensitive with the change of the flange width, 

and (iii) the effect of shear deformations in general is also influenced by the change of the 

section depth, and the flange and web thicknesses. 

F. ASMA & H. HAMMOUM (Eds.) special issue, 4th International Conference on Sustainability in 

Civil Engineering ICSCE 2022, Hanoi, Vietnam, J. Mater. Eng. Struct. 9(4) (2022) 

1 Introduction 

Steel structures possess high strengths under the conditions of tensioning, shearing, bending, and twisting. Thus, they are 

favorite materials for people to build their civil structures such as bridges, buildings, pipelines. However, steel members are 

often made in thin-walled forms (such as HP, W beams) those often have complicated buckling responses when subjected to 

compression or bending loads. In such buckling problems, shear deformations are found to have a considerable influence on 

the buckling resistances of steel members. In combining with the weak-axis bending stiffnesses (often denoted as yyEI ) and 

warping stiffnesses (often denoted as EI ), the St. Venant shear stiffnesses due to twisting (often denoted as GJ ) are an 

indispensable component to evaluate the critical buckling resistances of steel members, as clearly shown in most design 

standards for steel structures (e.g., [1-6]). However, code equations in standards [1-6] neglect the contributions of shear 

deformations due to weak-axis bending and warping. Although the contributions may be negligible for beams with long spans 

http://creativecommons.org/licenses/by-sa/4.0/
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in static response analyses, they may have a considerable effect of the buckling resistances of beams, even with long, 

intermediate and short spans [7-9]. The neglection many lead to an over prediction for the buckling resistances.  

There have been several studies on the effect of shear deformations on the bucking responses of steel structures. Pham 

and Mohareb [7] developed finite element formulations based on shear and non shear deformation theories for the prediction 

of the static analyses of steel beams bonded with composite plates under twisting loads. The study showed that the shear 

deformations of bending and warping significantly influence on the twisting angles of the beams with long spans. However, 

this study did not investigate the buckling responses of steel beams. Wu and Mohareb [8, 9] developed an variational principle 

and a finite element formulation for the prediction of buckling resistances of thin walled members based on a shear 

deformable theory. However, these studies neglected the contributions of local warping deformations. Also, they assumed 

displacement fields based on Euler-Rodriguez equations for rotations and developed relatively complicated solutions for 

buckling resistances, which may be difficult in application for practical design tasks. Phe et al. [10] developed two finite 

element formulations for the prediction of lateral torsional buckling resistances of composite systems. Erkmen and Mohareb 

[11] also developed a finite element formulation for the buckling analysis of thin-walled open structures. Sahraei et al [12] 

developed a finite element formulation for lateral torsional buckling analyses of mono-symmetric thin-walled members based 

on shear deformable theory. However, simple solutions were not proposed in their study. It is observed that there may not 

have a simple study to investigate the effect of shear deformations of bending and warping on the buckling resistances of 

steel members. And thus, the present study is going to fill in the gap by developing a simple closed form solution for the 

buckling resistance based on a shear-deformable theory and that based on a non shear deformation theory. A comparison 

between the buckling resistances based on the two theories will be discussed in the present study to investigate the effect of 

shear deformations of bending and warping on the buckling resistances of steel structures.    

2 Description of the problem 

A simply supported beam with a double symmetric cross-section is considered (Figs. 1a,b). Uniform bending M is 

applied at two ends of the beam. When moment M equals to 0, the beam is not deformed as described in configuration 1 of 

Fig 1c. When the moment reaches a value at the onset of the bucking (denoted as crM ), the transverse deflection of the beam 

is assumed as pV  in configuration 2. At buckling, the beam is subjected to lateral-torsional displacements. The lateral 

displacement is denoted as bU  and the twisting angle is denoted as zb . It is required to develop a closed form solution for 

crM  based on an innovated theory accounting for the shear deformations of the transverse bending, lateral bending, and 

warping deformations and to investigate the shear effects on the system buckling resistance crM .  

 

 

(a) Side view of the composite segment 

 

(c) Cross-section configurations from 

initial condition to a buckling state 

 

(b) Cross-sectional dimensions 

Fig. 1 – (a) Beam under a uniform bending moment M, (b) cross-sectional dimensions, (c) Cross-section configurations 

from initial condition to a buckling state. 
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3 Develop a closed form solution for the bucking resistance based on an innovated shear 

deformation theory 

3.1 Assumption of governing displacements 

  A global coordinate system for the steel beam is symbolled as OXYZ  (Fig. 2a). Local coordinates s sCs n z  are created 

on the thickness contours (Fig. 2a) in order to describe local warping deformations. In which origins C  lie on the sectional 

contours, s  is the tangent contour coordinate measured from Origin O , n  is the axis that is normal to the section contour, 

and z  is the axial axis. Figure 2b describes local displacement fields in the local coordinate systems, in which su  is the 

tangential displacement field, sv  is the normal displacement field, and sw  is the longitudinal displacement field. Pre-buckling 

displacement fields  pW z and  pV z along the global coordinate system is presented in Figure 2c. 

  

 

 

(a) (b)                     (c) 

Fig. 2 – (a) Coordinate systems, (b) local displacement fields, (c) Pre-buckling displacement fields. 

The displacement fields , ,s s su v w at a point with coordinate  , ,s ss n z are obtained from a shear deformation beam theory 

e.g., [13] as follows  
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   (1) 

in which  xp z is the shear deformation caused by transverse bending,  yb z is the shear deformation caused by lateral 

bending, and  b z is the shear deformation caused by warping.          = cos sins s s sq s x s s y s s  ,

         sin coss s s sr s x s s y s s   , where  ss is an angle measured in the clock wise direction from the positive 

direction of s -axis to that of X -axis.    
0

ss

s s ss r s ds   is the sectorial coordinate of the point with coordinate  , ,s ss n z . 

Further definitions can be found in [13]. 

3.2 Evaluations of buckling strains 

The axial normal strains and the shear strains are assumed as [13]: 
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   (2) 

From Eq. (1), by substituting into Eq. (2) and by eliminating high-order terms, one obtains 
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3.3  Expression of total buckling energy in terms of governing displacements  

The total energy of system at bucking state may be assumed as [10, 13] 

 2 2

0 0

1 1

2 2

L L

sz
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dAdz dAdz          (4) 

From Eq. (3), by substituting into Eq. (4) and performing an integral over the section area, one obtains 
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In which the mechanical properties of the cross-section are defined as 
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3.4 Pre-bucking displacement fields and assumed buckling governing displacement fields  

Based on study [13], pre-buckling displacements can be related to bending moment M as 

    ; ;p sp ssf xp xp xx sp xpV z M EI z M EI M M M          (7) 

Also, the buckling mode shapes of the steel beam can be postulated as  
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3.5 Development of a closed form solution for the buckling prediction  

From Eqs. (7), (8), by substituting into Eq. (5) and by following the first variational principle regarding to displacement 

amplitudes , , ,o o yo ou    , one obtains 
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in which 
2 2; 4o bL h h   . From Eq. (9), by applying the condition of a non-trivial solution, we can obtain a closed 

form solution for M as 
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where 
yy yyw yyfEI EI EI   and 3 32 3 3o w wJ bt h t   
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4 Development of a closed form solution for the bucking resistance based on a non-shear 

deformation theory 

From Eqs. (1), by setting ; ;xp p y b b zbV U           and applying a similar procedure as presented in Section 3, 

one obtains the buckling moment based on a non-shear deformation theory as (this equation is exactly the standard equations 

[1-6] recommended for the design of steel structures) 

 2

cr yy yyM GJEI EI EI      (11) 

5 Validation of the shear deformable theory -based solution 

To validate the closed form solution for the buckling resistances based on the present shear deformation theory in Eq. 

(10), a numerical solution conducted in ABAQUS industrial software is proposed. Two unbraced 3m-span and 5m-span steel 

beams with a cross-section of HP360x108 ( 370 , 346 , 12.8 , 12.8wb mm h mm t mm t mm    ) are considered. The steel 

beam model is created in very similar way as done in [14], i.e., the beam is meshed by using C3D8R elements through 5 

independent numbers of elements  to (Fig. 3). A mesh sensitivity is conducted and a mesh, with it the convergence of 

the moment resistances are obtained, are 1 20n  , 2 3 4n n  , 4 40n  , 5 400n   elements. 

 
 

5n  

Fig. 3 – Independent numbers of elements controling the mesh of the beam 

Boudary conditions of simply supports are modelled as presented in Figs. 4a,b in the following. And the beam at the 

state of no-deformation and at the state of buckling are shown in Figs. 5a,b. 

 

Fig. 4 – Boundary conditions of simply supports of the beam 

 

  
(a) (b) 

Fig. 5 – Beam deformations at (a) configuration 1 and (b) at configuration 3 (buckling) 

1n 5n

 

    

 
 

 

(a) At the pin support (b) At the roller support 

 

zoomed in 

zoomed in 
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Result of validations: Table 1 presents a comparison of the buckling resistances as predicted by the present study (Eq. 

(10)) based on the shear deformable theory and that predicted by the 3D FEA solutions conducted in ABAQUS. It is found 

that for span L=3.0m, the buckling resistance predicted by the present study is 3994.8 kN.m, while the resistance based on 

the 3D FEA solution is 3990.1 kN.m, corresponding to a difference of only 0.1%. A very small difference of 0.2% is found 

for span of L=5.0m. This indicates that the present closed form solution developed in Eq. (10) can excellently capture the 

buckling resistance of the 3D FEA solution. 

Table 1–Comparisons of buckling resistances between the present study and the 3D FEA solutions 

L (m) Present study (shear theory) (kN.m) 3D FEA (kN.m) % difference 

3.0 3994.8 3990.1 0.1 

5.0 1568.0 1565.4 0.2 

6 Investigation and discussions of the effect of cross-sections and span lengths on the shear 

deformations in the buckling analyses 

This investigation is conducted to make clear of the effect of shear deformations on the buckling resistances of simply 

supported beams with different cross-sections and with different unbraced span lengths. Two sections considered are 

HP360x108 and HP250x62. For each section, the beam span is varied from 1.5 to 5.0m. The buckling resistance based on 

the non-shear deformable theory is based on Eq. (11) and it is denoted as “Mcr-nonshear”. Also, the buckling resistance 

based on the shear deformable theory is based on on Eq. (10) and it is denoted as “Mcr-shear”.  

Table 2a,b present the results of the buckling moment resistances for beams with sections HP360x108 and HP250x62 

and with spans from 1.5 to 5.0m. Also, comparisons in term of percentage differences are also presented for the buckling 

moments predicted by the shear deformable theory and those predicted by the non-shear deformable theory.  For the beam 

with section HP360x108 and with a span of 1.5m, it is found that the difference of buckling moments based on the two 

theories is 12.9%, a relatively high difference. When span is increased from 1.5 to 5.0m, the difference is reduced from 12.9 

to 1.1%. A very similar observation is concluded for the beam with section HP250x62. This indicates that the effect of shear 

deformations on the buckling resistances decreases when the beam span increases. It is noticed that the shear deformations 

in this study are only caused by transverse bending, lateral bending, and warping deformations. 

Table 2 – Comparisons of buckling moments (kN.m) between shear and non-shear solutions for different span 

lengths for beams with (a) HP360x108 section, (b) HP250x62 section 

L 

(m) 

Mcr - 

shear 

Mcr -

nonshear 

% 

difference 

1.5 14158.0 15977.3 12.9 

2.0 8454.7 9061.0 7.2 

2.5 5604.5 5859.2 4.5 

3.0 3994.8 4119.3 3.1 

3.5 3001.9 3069.7 2.3 

4.0 2347.8 2387.9 1.7 

4.0 1894.7 1919.9 1.3 

5.0 1568.0 1584.5 1.1 
 

L 

(m) 

Mcr - 

shear 

Mcr -

nonshear 

% 

difference 

1.5 4404.9 4673.0 6.1 

2.0 2638.4 2725.8 3.3 

2.5 1785.0 1821.4 2.0 

3.0 1309.3 1327.2 1.4 

3.5 1016.8 1026.5 1.0 

4.0 823.3 829.1 0.7 

4.0 688.0 691.7 0.5 

5.0 589.2 591.7 0.4 
 

(a) HP360x108 (b) HP250x62 

7 Investigations and discussions of the effect of cross-sectional dimensions on the shear 

deformations in buckling problems 

The present part investigates the effect of shear deformations on the buckling resistances of simply supported beams with 

different sectional dimensions. A 3-m span beam with section HP360x108 ( 370 , 346 ,ref refb mm h mm 
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,12.8 , 12.8ref w reft mm t mm  ) is taken as a reference case. In this investigation, width b and effective depth hb are varied 

from 100 to 700mm, flange thickness tf and web thickness tw are varied from 2.0 to 22.0mm. When one sectional parameter 

is varied, other ones are kept unchanged (as those of the reference case).  The buckling resistance based on the non-shear 

deformable theory is based on Eq. (11) and it is denoted as “Mcr-nonshear”. Also, the buckling resistance based on the shear 

deformable theory is based on on Eq. (10) and it is denoted as “Mcr-shear”.  

Figure 6 presents the relationship of the percentage difference between Mcr-nonshear and Mcr-shear results against 

different ratios of b/b_ref; hb/hb_ref; tf/tf_ref; or tw/tw_ref. It is interesting to observe that (1) the effect of shear deformations 

on the buckling resistance is only sensitive with the change of the flange width b, and (2) the effect of shear deformations in 

general is also influenced by the change of the section depth, and the flange and web thicknesses. Figure 4 shows that the 

effect of shear deformation is considerable for the given 3-m span beam that is not a short beam.  

 

Fig. 6 – Effects of b, hb, tf, and tw of the % differences between buckling solutions based on the shear and non-shear 

deformation theories   

8 Conclusions 

The present study has successfully developed a closed form solution based on a variational principle of total potential 

buckling energy for the elastic lateral-torsional buckling analyses of simply supported steel beams subjected to transverse 

uniform bending. The theory captured the shear deformation effects caused by transverse bending, lateral bending and 

warping deformations. The closed form solution was successfully validated against 3D FEA analyses conducted in ABAQUS. 

Through various comparisons between the buckling resistances based on a non-shear deformable theory and those based on 

the present shear deformable theory, the present research has found that (i) the effect of shear deformations on the buckling 

resistances decreases when the beam span increases, (ii) the effect of shear deformations on the buckling resistance is sensitive 

with the change of the flange width, and (iii) the effect of shear deformations in general is also influenced by the change of 

the section depth, and the flange and web thicknesses. 

Acknowledgements 

This research is funded by University of Transport and Communications (UTC) under grant number T2022-CT-007TD 

REFERENCES 

[1]-  ANSI/AISC 360-10, Specification for Structural Steel Buildings, in Chicago AISC, American Institute of Steel 

Construction. (2010). 

[2]-  AS, S-4100 Steel Structures. Sydney, Australia: Standards Australia, 1998. 

[3]-  CAN/CSA, S16-14, Limit states design of steel structures, in Canadian Standards Association Mississauga. Ontario. 

(2014). 

[4]-  EN, 1993-1-1:2005 (E): Eurocode 3: design of steel structures—part 1–1: general rules and rules for buildings, 

CEN. (2005). 

0

2

4

6

8

10

12

14

0.2 0.5 0.8 1.1 1.4 1.7 2.0

%
 d

if
fe

re
n

ce

b/b_ref; hb/hb_ref; tf/tf_ref; or tw/tw_ref

Effect of b

Effect of hb

Effect of tf

Effect of tw



578 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 9 (2022) 571–578 

 

[5]-  JSCE, Standard specifications for steel and composite structures, Japan Society of Civil Engineers. (2009). 

[6]-  TCVN, 5575-2012, Steel structures – Design standard, Ministry of Science and Technology Vietnam. (2012). 

[7]-  P.V. Pham, M. Mohareb, Nonshear Deformable Theory for Analysis of Steel Beams Reinforced with GFRP Plate 

Closed-Form Solution. J. Struct. Eng., 141(12) (2015) 04015063. doi:10.1061/(ASCE)ST.1943-541X.0001312. 

[8]-  L. Wu, M. Mohareb, Buckling of shear deformable thin-walled members—I. Variational principle and 

analyticalsolutions. Thin-Walled Structures, 49(1) (2011) 197-207. doi:10.1016/j.tws.2010.09.025. 

[9]-  L. Wu, M. Mohareb, Buckling formulation for shear deformable thin-walled members—II. Finite element 

formulation. Thin-Walled Structures, 49(1) (2011) 208-222. doi:10.1016/j.tws.2010.09.026. 

[10]-  P. Van Pham, M. Mohareb, A. Fam, Lateral torsional buckling of STEEL beams strengthened with GFRP plate. 

Thin-Walled Structures, 131 (2018) 55-75. doi:10.1016/j.tws.2018.06.025. 

[11]-  R.E. Erkmen, M. Mohareb, Buckling analysis of thin-walled open members—A finite element formulation. Thin-

Walled Structures, 46(6) (2008) 618-636. doi:10.1016/j.tws.2007.12.002. 

[12]-  A. Sahraei, L. Wu, M. Mohareb, Finite element formulation for lateral torsional buckling analysis of shear 

deformable mono-symmetric thin-walled members. Thin-Walled Structures, 89 (2015) 212-226. 

doi:10.1016/j.tws.2014.11.023. 

[13]-  P.V. Phe. Analysis of steel beams strengthened with adhesively-bonded GFRP plates. Master’s Science Thesis. 

Université d'Ottawa/University of Ottawa, 2018. doi:10.20381/ruor-22013. 

[14]-  H.C.T. Mai, T.N. Duy, P.P. Van, T.B. Tien, B.N. Duc, Comparison of inelastic moment resistances of rolled steel 

beams based on different specifications and a numerical study. Transp. Commun. Sci. J., 73(1) (2022) 16-30. 

doi:10.47869/tcsj.73.1.2. 

 


