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A B S T R A C T 

Steel concrete beams have a reasonable structure in terms of using material and high load 

carrying capacity. This paper deals with an approximate solution based on a trigonometric 

series for the static of steel concrete beams. The displacement field is based on the higher-

order theory using Reddy’s hypothesis. The governing equations are derived from 

variation principles. An approximate solution based on the representation of displacement 

fields by trigonometric series is developed to solve the static problem of steel concrete 

beams. In order to verify the accuracy of the present approximate solution, numerical 

results are compared with those of exact solutions using classical beam theory. The 

displacements and nominal stress distributions in the depth direction are obtained with 

various high of beams. The present approximate approach can accurately predict the 

displacements and stresses of steel concrete beams. 

F. ASMA & H. HAMMOUM (Eds.) special issue, 4th International Conference on Sustainability in 

Civil Engineering ICSCE 2022, Hanoi, Vietnam, J. Mater. Eng. Struct. 9(4) (2022) 

1 Introduction 

The steel-concrete beam is commonly used in civil engineering, which is composed of steel beams cast in situ with 

reinforced concrete slabs. This configuration utilizes sufficiently high capacities in the compression of concrete and steel 
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tension. Thus, the steel-concrete beam has improved the stiffness and load capacity of the structure compared to those of the 

individual ones. 

The literature reviews showed several works concerned with experimental and computational research on steel-concrete 

composite structures in civil and bridge engineering. P.V Phe and N.X. Huy [1] analysed the interfacial shear and peeling 

stresses of FRP-strengthened beams subjected to load and thermal effects by the finite difference method. Wang [2] studied 

the deflection of steel-concrete beams when there is a partial adhesion between steel and concrete. Chen Tao et al. [3] focused 

on the behaviour of steel-concrete beams with web openings under a negative moment. Jorge Luis Palomino et al. [4] studied 

the short-term performance of steel-concrete beams by developing a finite element model using plate elements. Pham Van 

Phe et al. [5] presented the computing of steel beams strengthened with composite panels by the finite element method based 

on the principle of stationary complementary energy. Sliseris and Korjakins [6] conducted an experimental study on high-

performance concrete containing steel fibre beams by numerical method. Sugar Bükülmez Pınar and Celik Oguz [7] presented 

an experimental work on the fire resistance capacity of steel-concrete beams with a large openings ratio. Mahmoud Ashraf 

Mohamed [8] used finite element software to simulate steel-concrete beams with a nonlinear material. 

There are many different computation beam theories depending on the members' dimensions, materials, and behavior 

that can be used when computing beams or plates. Classical beam theory can be used as presented on the issues of the strength 

of materials or structural mechanics[9], Timoshenko beam theory [10], and beam theory considering higher-order shear 

deformation [11]. L.T Ha and N.T.K Khue calculated the free oscillation of porous nanobeams using classical beam theory 

[12]. N.T Nhung et al. [13] investigated the stochastic free vibration of non-uniform beams using stochastic finite element 

method.  Gianluca Ranzia and Alessandro Zona [14] presented a study on computing steel-concrete beams using both 

classical beam theory and Timoshenko beam theory. Due to the neglect of shear strain in classical beam theory, many 

researchers have used higher-order beam theory. In which, the higher-order shear deformation term has been considered. 

Thus, increasing the accuracy of the observations. Atilla Ozutoka and Emrah Madenci [15] calculated multilayer composite 

beams using the finite element method by considering the higher-order shear deformation. T.D Hien et al. [16] developed the 

stochastic finite element method for higher-order beams involving the random field of elastic modulus. P.B Thang and 

L.L.Anh [17] analyzed the steel-concrete beam by using classical beam theory and Timoshenko beam theory considering the 

interaction between connectors and reinforced concrete slab. Fabrizio Gara et al. [18] proposed the finite element model 

steel–concrete beams considering the partial shear interaction between concrete and steel. 

Although numerous types of research on steel-concrete beams have been presented in the literature, there are still a few 

works that consider the higher-order shear deformation of beams. Thus, it is necessary to research the computing method for 

steel-concrete beams, in which, the higher-order shear deformation is taken into account. Finally, the observations on internal 

forces and displacements are predicted close to the actual behaviour of the beams. 

2  Governing equation of steel-concrete beam using Reddy's beam theory    

Considering a schematic of the steel-concrete beam as shown in Fig. 1, a popular structure used in bridge construction.  

 

Fig. 1 – Cross-section of steel-concrete beam   

Following the classical beam theory, the reference coordinate is usually chosen at the centroid of the section. Then, the 

axial displacement will be neglected. In this study, when the theory of higher-order beams is applied, determining the neutral 
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axis is complex following the above. Hence, the reference axis is determined at the middle of the cross-section's height. 

Therefore, axial displacement exists. The displacement field of the steel-concrete beam under Reddy's theory [11] is 

determined with the origin located in the middle of the beam's height as follows:    
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where 
0 0, ,u w  are the displacement components at the mid-axis in the x, z directions, and the displacement parameter, 

respectively. 

From the displacement field in Eq.(1), deformation can be calculated as follows: 
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The deformation potential of the beam: 
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The beam's equilibrium position is determined according to the minimum potential energy principle: 

   0U    (4) 

The Eq. (4) can write as variations formulation:  
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Transforming and isolating the differential variables in Eq. (5) we have a system of differential equations of the beam: 
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In which the internal force components are defined as follows: 
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Substituting the expression of displacement in Eq. (2) into Eq. (8), we have: 
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Computing the integrals in Eq. (9) we obtain the internal force expressions under the displacement parameters as follows: 
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In which the constants of the properties of a plane area of the cross-section are defined as follows: 
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3 Analytical solution    

Considering a beam with simple hinges at both ends, from the boundary conditions, we use the approximate solution based 

on a trigonometric series of Navier [11]: 
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Substituting the internal force expressions from Eq. (12) into Eq. (6) and using the orthogonal property of the sine and cosine 

functions, Eq. (6) is altered as follows: 

 

 1 2 3

3 3 2 2 4 2 2

1 2 1 1 3 2 22 2 2 2 2

2 2 3 3

2 2 3 32 2

2 2

1 12

1 1 2 22 2

0

4 4 4 4 4
0

3 3 3

4 4

3 34
0

4 43

i

i

i

i

i

i

i

i

i

U

A A A

W

U

D D F H D F H
h h h h h

W

B D B D U
h h

B D
h

F H F H W
h h



      

   

 

   

 
 
  
 
 

 
   

       
   

 

 
      

      
         
 

 (13) 

or abbreviation form: 

 

11 12 13

21 22 23

31 32 33

0

0

0

i

i i

i

S S S U

S S S q

S S S W

     
    
      
         

 (14) 



 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 9 (2022) 599–605  603 

 

where load parameter: 
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By solving the system of equations (14) to obtain the displacement constants , ,i i iU W . So, the displacement is determined 

following Eq. (11). Based on those results, the deformation and stress of the beam can be calculated. 

4 Numerical examples 

To estimate the accuracy of the approximate solution based on a trigonometric series, we consider a simple span of steel-

concrete beam, length L=15m, and cross-sectional dimensions are defined in Fig. 1. 

Dimensions of the cross-section: 

1 3 4

1 2 3 4

1,2 ;  0,02 ;    0,02 ;   0,2 ;   

0,3 ;   0,014 ;  0,3 ;  2,5 ;

h m h m h m h m

b m b m b m b m

   

   
  

Applied uniform load: q=10kN/m. 

We use the classical beam theory to estimate the simulation results as presented in the same material. Then, the beam 

deflection is observed of 3.025 mm (w=3,025(mm)). In addition to using the theoretical formula, the displacements can be 

checked by the finite element method. Specifically, in this present work, Sap2000 software is utilized, a beam element 

simulate the steel beam, and the concrete slab is simulated by a plate element. The simulation result shows the displacement 

in the middle of the beam is w=3.205(mm).  

Using the trigonometric series in Eq. (11), the displacement observation in the middle of the beam is w=3.131(mm) when 

computing with the first 15 terms of the series. Thus, it shows that the displacement result computed according to the theory 

of higher-order beams is 3.3 % higher than that computed according to classical beam theory but lower than that calculated 

by finite element simulation by 2.36%. When computing the beam using classical theory, because of the neglection of the 

shear deformation, the observed displacement is lower. However, when simulating finite elements using a plate model for 

concrete slab, the result will be close to the actual behavior of the beam, the displacement results are larger than the two 

theoretical ones using the classical beam theory and higher-order beam theory. 

For analyzing the influence of shear deformation on the internal force and displacement of the beam, we investigate the 

internal force and displacement of the beam, which the height varies from 0.8m to 1.5m, and the observations are compared 

with the observations according to the classical beam theory without considering the shear deformation. Table 1 presents the 

observations of the maximum deflection and normal stress at the mid-span and lower boundary fiber. The observations clearly 

show that when the height increases, the influence of the shear deformation increases, leading to an increase significantly of 

the deflection computed according to the higher-order shear deformation theory compared that computed according to the 

classical beam theory. As shown in Table 1, when the beam height reaches a ratio of 1/10 of the span length, the deflection 

computed according to the higher-order beam theory is higher than that computed according to the classical beam theory by 

6.1%. In the case of the normal stress at the lower boundary fiber of the beam, it remained unchanged when computing the 
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normal stress according to the classical beam theory and the higher-order shear theory, although the difference increases as 

the height increases.  

Table 1 – Comparison the displacement and normal stress at of mid-span. 

h(m) 

Displacement (mm) Normal stress (MPa) 

Higher-order 

beam theory 

Classical beam 

theory 

Error 

(%) 

Higher-order 

beam theory 

Classical beam 

theory 
Error (%) 

0,8 8,46 8,379 0,96% 43,822 43,813 0,02% 

0,9 6,341 6,252 1,40% 37,171 37,157 0,04% 

1,0 4,895 4,799 1,96% 31,93 31,911 0,06% 

1,1 3,874 3,772 2,63% 27,739 27,716 0,08% 

1,2 3,131 3,025 3,39% 24,313 24,342 0,12% 

1,3 2,576 2,467 4,23% 21,548 21,514 0,16% 

1,4 2,152 2,042 5,11% 19,225 19,186 0,20% 

1,5 1,822 1,711 6,09% 17,271 17,227 0,25% 

5 Conclusions   

The work presents an approach to compute the internal forces and displacements of steel-concrete beams by using the 

approximate solution based on a trigonometric series, in which, the higher-order shear deformation is considered. The 

comparison of the results based on the present approach and the results based on classical beam theory and finite element 

simulation shows the reliability of the approximate solution based on a trigonometric series. The observations from a steel-

concrete beam with a height to span length ratio of 1/20 - 1/10 show higher displacement and stress based on the higher-order 

beam theory compared to those based on classical beam theory. As the beam height increases, the displacement increases 

significantly while the normal stress increases slightly. As a result, the effect of the shear deformation on computing the 

beam, which is height relatively higher than the span length, is clarified.  
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