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We report Monte Carlo simulations of phase behavior of colloidal suspensions with

near-critical binary solvents using effective pair potentials from experiments. At

off-critical solvent composition, the calculated phase diagram agrees well with mea-

surements of the experimental system, indicating that many-body effects are limited.

Close to the critical composition, however, agreement between experiment and sim-

ulation becomes poorer, signaling the increased importance of many-body effects.

Both at and off the critical solvent concentration, the colloidal phase diagram is

qualitatively similar to those of molecular systems and obeys the principle of cor-

responding states with one striking difference: it occurs in a narrow temperature

interval of < 1◦C below the solvent phase separation temperature.
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I. INTRODUCTION

Colloidal suspensions have great potential for the assembly of nano and micron-scale

structures, offering the opportunity for creating new functional materials (e.g. photonic

crystals) by controlled aggregation. Successful assembly of such structures requires a high

degree of control over the colloidal phase behavior and the kinetics of the growth process.

Temperature, a crucial parameter in the control of atomic and molecular phase transitions,

however, is usually a poor control parameter for colloidal interactions because most colloidal

interaction potentials are fixed (set e.g. by the charge, the solvent refractive index, the con-

centration of salt or polymer used to induce depletion interaction between the particles).

While specific systems such as microgels1, DNA2 and polymer-coated colloids3 allow tem-

perature control over colloidal interactions, a more generic route to temperature control of

colloidal phase behavior is to suspend colloids in a near-critical binary liquid4,5. Close to

the critical point of the binary solvent, concentration fluctuations become long-range, and

their confinement between the surfaces of the particles leads to Casimir-type interactions

known as critical Casimir forces5–7. Because the solvent fluctuations depend strongly on

temperature, temperature provides a unique control parameter to tune these interactions.

The advantage of this effect is its universality: as other critical phenomena, the scaling

functions depend only on the internal symmetries, and are rather insensitive to the specific

materials used8,9. This allows similar temperature control of phase behavior for many dif-

ferent colloids10. The question is then how to predict the phase behavior: because of the

complexity of the critical Casimir interactions, the possible importance of many-body effects

and the potential coupling between ions and solvent concentration fluctuations11,12, there

has been much discussion recently about the nature of the interactions and the relevant

terms to be included13–16. Effective pair interactions have been discussed to provide a good

description of colloidal phase behavior in reasonably dilute suspensions13, and such effective

interactions have been computed recently based on scaling functions calculated using the

Ising model and combined with the Derjaguin approximation13, and using simple solvent

models with short-range interactions17. However, how close such effective potentials and the

simulated phase behavior are to the experimental situation remains unclear. Therefore, the

computation of a reliable phase diagram and the prediction of the real experimental phase

behavior for the design of colloidal phases, remains desirable.
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In this article, we use Monte Carlo (MC) simulations together with experimentally mea-

sured colloidal pair potentials to investigate the phase behavior of colloids in binary liquid

solvents. This combination allows us to closely connect experimental observations and the-

oretical expectations of colloidal phase behavior in binary solvents. By using solvents with

compositions both at and off the critical composition, we compare phase equilibria as a func-

tion of distance to the critical composition. We locate colloidal gas, liquid and solid phases

as a function of temperature and colloid volume fraction. In contrast to standard MC sim-

ulations where the temperature T only enters via the thermal energy, β−1 = kBT , with kB

Boltzmann’s constant, our simulations account explicitly for the temperature-dependent po-

tential. We find that at off-critical composition, the resulting colloidal phase diagram agrees

quantitatively with experimental observations indicating that many-body interactions play

a secondary role and that pair potentials are sufficient to describe the experimental system.

In contrast, at the solvent critical concentration the calculated phase diagram shows larger

deviation from the experimental one suggesting that many-body effects become more impor-

tant. In both cases the calculated phase diagram has the characteristic topology associated

with molecular potentials like the Lennard-Jones but occurs over a very narrow temperature

range due to the strong temperature dependence of the solvent-mediated interactions. We

finally show that the two systems exhibit similar gas-liquid coexistence curves when rescaled

by the critical temperature and density, suggesting that, similarly to molecular gases, the

principle of corresponding states is obeyed in systems with Critical Casimir forces.

II. METHODS

Simulating the phase behavior of the critical Casimir colloidal system requires a compu-

tationally efficient model. While in principle it is possible to compute the phase behavior

from the ternary system of colloids in the liquid mixture, in practice this is prohibited by the

large differences in length scales between the solvent molecules and the colloidal particles13.

We therefore model the colloidal system as particles interacting with effective potentials

which implicitly account for solvent effects. We thereby assume that many-body effects are

negligible and that interactions are well-described by pair potentials. Our results below

show that this choice yields very good agreement between the simulated phase diagram and

our experimental observations for a binary solvent with off-critical composition, but suggest
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that inclusion of many-body effects is desirable for solvent compositions close to the critical

one.

We determine effective pair potentials from experimental measurement of the temperature-

dependent pair distribution function g(r;T ) in dilute solutions; this distribution indicates

the probability of finding two particles at a distance r relative to the ideal gas distribution.

For dilute suspensions, the effective interaction potential follows directly from the rela-

tion βU(r;T ) ≈ − ln g(r;T ). Because β always appears in combination with the potential

U(r;T ) in the Boltzmann factor as βU(r;T ), it is this combination that is used in the

simulations, rather than the potential U itself.

A. Colloidal system and potential measurement

We investigate two well-characterized systems10,18 of poly-n-isopropyl acrylamide (PNI-

PAM) particles with a diameter of σ = 500 nm suspended in a near-critical quasi binary

solvent composed of 3-methyl pyridine (3MP), water and heavy water19,20. The two systems

differ only in the relative mass fractions wx of the solvent components x (x=3MP, H2O,

D2O), as shown in Table I. Solvent 1 is prepared at the critical composition of the 3MP

- heavy water system, with a 3MP mass fraction of wc,1 = 0.28; solvent 2 is close to, but

slightly off the critical composition of the 3MP - water - heavy water system21, with a 3MP

mass fraction of wc,2 = 0.31. The composition of solvent 2 is still sufficiently close to the

critical one that critical density fluctuations occur6,10,18.

TABLE I. Solvent mass fraction (w) and phase separation temperature (Tcx) of the two quasi-

binary solvents used in the experiments. Solvent 1 is at its critical composition wc,1 = 0.28; solvent

2 is close to, but slightly off the critical composition wc,2 = 0.31.

Solvent 1 Solvent 2

w3MP 0.28 0.25

wD2O/(wH2O + wD2O) 1 0.5

Tcx (◦C) 39.5 52.2

The chosen experimental systems have the advantage that the particle refractive index
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matches that of the solvent, allowing direct imaging of particles and determination of g(r)

deep in the bulk of the suspension. The particles are dyed, allowing us to image them under

fluorescent illumination. The index match also minimizes van der Waals forces so that the

only relevant particle interactions are the repulsive screened electrostatic, and the attrac-

tive critical Casimir interactions.22 To measure the critical Casimir particle pair potential,

a dilute suspension with a ∼ 2% effective colloidal volume fraction was heated to tempera-

tures just below Tcx, the solvent phase separation temperature. At each temperature, 3000

images of particle configurations were recorded to determine the average pair correlation

function. The resulting experimental pair potentials are shown in Fig. 1. All temperatures

are expressed in terms of ∆T = T − Tcx, the temperature difference to the solvent phase

separation. As expected, the attractive minimum of the potential deepens as the tempera-

ture approaches Tcx. This increasing minimum reflects the increasing critical Casimir force

on approach to Tcx.

B. Potential model

To obtain closely spaced potentials that serve as input to the simulations, we use a simple

potential model. We consider the effective colloid-colloid potential to consist of a screened

electrostatic repulsion Urep(r) and a critical Casimir attraction Uattr(r;T ). This Ansats has

been recently shown to provide a good description of the effective interparticle potential

in systems similar to ours5,11,23, although some discussion on this issue is ongoing24. For

two particles of diameter σ at close center-center interparticle separation r, the repulsive

electrostatic potential is25

Urep(r) = Arep exp(−r/ld) (1)

where Arep is the amplitude and ld the Debye screening length. We note that in binary

liquid mixtures, electrostatic interactions may have a more complex form than the simple

exponential decay because of ion-solvent coupling arising from the different solubility of the

ions in the two solvents26–31. Recent theoretical and experimental work has shown, however,

that exponentially decaying electrostatic interactions are an excellent approximation for

systems with symmetric boundary conditions11 such as ours. The critical Casimir potential

5



FIG. 1. Experimental (points) and fitted (lines) pair-potentials between colloids in system 1 (a)

and system 2 (b), at ∆T = −0.3◦C (dark blue), ∆T = −0.35◦C (red), ∆T = −0.4◦C (black),

∆T = −0.5◦C (green) and ∆T = −0.6◦C (magenta). Distinct temperature sets were investigated

for each system.

between two spherical particles can be approximated by

Uattr(r) =
Aattr
ξ

exp(−r/ξ) (2)

with ξ the correlation length of the solvent5,6. Prior theoretical work has shown that, for

off-critical solvent compositions such as that of system 2, the universal scaling function

for Casimir forces should also depend on a scaling variable that reflects the variation of

the solvent correlation length with changes in the solvent composition13,32. As the solvent

compositions investigated here are rather close to the critical composition, we neglect this

additional dependence on solvent composition. We thus assume that near the critical point
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of the binary solvent, the correlation length obeys the usual scaling relation

ξ = ξ0

(
1 − T

Tcx

)−0.63

(3)

where ξ0 is the solvent correlation length far from the solvent phase separation temperature33.

Thus, the Casimir potential range, set by the correlation length ξ, as well as the amplitude,

Aattr/ξ ∼ kBT , depend on experimental temperature5,6. To obtain values of ξ0, Arep and ld,

we fit the analytical expression

U(r;T ) = Urep(r) + Uattr(r;T ) (4)

to the experimentally measured U(r;T ) as shown in Fig. 1. Using the best set of values, we

are able to fit the entire set of potentials U(r;T ) with one single set of parameters reasonably

well. However, deviations between the measurements and the fits are clearly visible; these

occur due to possible effects of ion-concentration coupling and particle softness that are not

accounted for in the model. The largest deviations occur at short interparticle distances;

these deviations arise from the fact that the PNIPAM particles are soft and thus easily

compressed below their diameter at infinite dilution (note that the potentials shown in Fig. 1

are still finite at r < σ), and the chosen potential form does not account for this effect. To

estimate whether this deviation has a significant effect on the computed phase behavior, we

calculate the normalized second virial coefficients B∗
2 for both fitted and measured potentials

for system 2. According to Noro and Frenkel’s extended principle of corresponding states, the

TABLE II. B∗
2 coefficients for the experimental and fitted potentials for system 2 at three different

temperatures.

∆T (◦C)

-0.40 -0.35 -0.30

experiment 0.3 -1.0 -2.5

fitted -0.02 -1.2 -3.3

second virial coefficient is a rough estimator of the phase behavior that should arise from a

given potential34,35: a B∗
2 that is positive correlates with net repulsion between the particles,

indicating that a phase transition should not occur; a B∗
2 that is close to zero indicates
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little net attraction or repulsion between the particles, so a phase transition is not expected.

Phase transitions are expected to occur when B∗
2 becomes smaller than −1.5. It follows

that if the experimental and fitted potentials at the same temperature lead to second virial

coefficients of the same sign and comparable magnitude, the phase diagrams resulting from

those potentials are expected to have the same topology and show only small quantitative

differences. We compare the normalized second virial coefficients for system 2 in Table II:

At the lowest temperature (∆T = −0.40◦C), the calculated B∗
2 coefficients for the fitted

and experimental potentials are close to zero, indicating that phase transitions should not

yet occur. This is in agreement with both experiment and simulation: at this temperature,

phase transitions do not occur in either case. At the two highest temperatures for which

the potentials were measured experimentally (∆T = −0.35;−0.30◦C) the B∗
2 coefficients for

both fitted and experimental potentials are negative and of comparable magnitude, so we

expect that the fitted potentials will lead to the qualitatively correct phase behavior and that

phase separation will occur when ∆T < −0.3◦C. These findings suggest that approximating

the experimental potentials with the fitted ones will result in a calculated phase diagram

with the correct topology. The results shown below demonstrate that this is indeed the

case. We list the values of the fitting parameters in Table III. The potentials for system 1

are significantly longer-range than for system 2, a consequence of the solvent composition

of system 1 being nearer to the critical one.

TABLE III. Model parameters.

Parameter System 1 System 2

Arep (kBT ) 0.1046 × 104 0.1994 × 104

ld (σ) 0.2206 0.153

Aattr (kBTσ) 0.1188 × 102 0.170 × 102

ξ0 (σ) 0.908999 × 10−2 0.418 × 10−2

C. Simulation details

To obtain a complete phase diagram, we use the analytic expression of the potential

(eqs. 1, 2 and 3) together with the fit parameters shown in Table III to produce a set of
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closely-spaced potentials in a wide temperature range. We investigate gas-liquid coexistence

using Gibbs Ensemble MC36,37 and liquid-crystal coexistence using Kofke’s Gibbs-Duhem

integration technique38. For the simulations, we cut off the potentials at 4.5σ (system 1)

and 3.5σ (system 2); we found that due to the rather long range of the potentials, this

unusually large cut-off radius was required to obtain meaningful results. Further details of

the simulations are given in the Supplementary Information.

III. RESULTS AND DISCUSSION

A. Phase diagram

The computed phase diagrams are shown in Fig. 2. For both systems, the critical Casimir

potential induces a separation into a dilute gas and a dense liquid phase at temperatures close

to Tcx. As the temperature decreases, the critical Casimir potential becomes weaker, and

the gas-liquid coexistence region shrinks, until the binodal curves end in a critical point. At

even lower temperatures, the particles stay homogeneously suspended. Very similar behavior

is observed in the experiments10,18 for system 2: at ∆T = −0.35◦C the colloidal particles

remained uniformly suspended, while at ∆T = −0.30 and −0.25◦C, phase separation in gas

and liquid was observed. As an example, we show confocal microscope images of the observed

gas-liquid and gas-crystal phase coexistence in Fig. 2c and d. The three-dimensional imaging

by confocal microscopy allowed us to measure the gas and liquid volume fractions directly by

particle counting; these volume fractions together with their error margins are indicated in

the simulated phase diagram. The data shows reasonable agreement with the phase diagram

of system 2 given the large uncertainty in the determination of φ and ∆T . This agreement

suggests that many-body effects are limited, even at high colloid volume fractions.

For system 1, the agreement between experiment and simulation is less good, as reflected

e.g. in the shift of the calculated gas-liquid curve towards lower values of ∆T compared

to the experimental points. This shift indicates that the fitted potentials overestimate the

colloidal interactions, likely because the fitted potentials do not include many-body terms

which often decrease the net attractive force between particles39. We conclude that the

longer range of the interaction at similar interaction magnitude makes many-body effects

more pronounced at the critical solvent composition, in agreement with recent mean field
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estimates of many-body Critical Casimir forces in a system of two colloids near a wall40. We

note, however, that for the few colloid-colloid-wall configurations investigated in that study,

many-body forces often increased rather than decreased the colloid-colloid attraction. The

downward shift of the calculated gas-liquid curve relative to the experimental data observed

here suggests that many-body forces in systems of many colloids decrease the net attractive

force between the colloids. Our results thus highlight the need for a more detailed study of

many-body contributions in critical Casimir interactions.

We further investigate the occurrence of crystal-liquid equilibria. As the Gibbs ensem-

ble is not easily applied to solid-liquid coexistence, we instead employ Kofke’s Gibbs-Duhem

integration technique38. Here, the full coexistence curve is computed by numerically integrat-

ing the Gibbs-Duhem equation (or equivalently, the Clausius-Clapeyron equation) starting

from a known reference coexistence point as described elsewhere41. The resulting fluid-solid

coexistence curve, shown in Fig. 2, connects well with the gas-liquid phase boundary: the

two curves intersect at ∆T = −0.312◦C (system 1) and ∆T = −0.248◦C (system 2), the

triple points, where the liquid-crystal coexistence pressure almost vanishes42. These obser-

vations are again consistent with our experiments: at temperatures ∆T between −0.25 and

−0.20◦C, face-centered cubic (fcc) crystals formed inside the liquid drops; at ∆T = −0.20◦C,

the aggregates consisted entirely of fcc crystals (Fig. 2c), with a volume fraction of φ ∼ 0.5,

in agreement with the simulations (see Fig. 2). Our results indicate that the attractive

range of the potential significantly affects the crystal-liquid coexistence, with longer range

potentials bending the curves towards lower density and narrowing the coexistence region.

Finally, we use Gibbs-Duhem integration to investigate the region of gas-crystal coexis-

tence. Starting from the crystal configurations obtained for the crystal-liquid equilibria, we

continue the integration up to ∆T = −0.1◦C while imposing the additional condition that

the coexistence-pressure is zero. Similarly to what we observe for crystal-liquid equilibria,

we find that longer range potentials shift gas-crystal coexistence towards lower density.

The phase diagrams shown in Fig. 2 mirror the well-known gas-liquid-solid phase diagram

of Lennard-Jones systems43,44, lattice-based Ising models45, and systems with square-well

potentials46,47. The diagrams are inverted with respect to the known phase diagram of

Lennard-Jones systems, because βU becomes stronger as we approach the solvent phase

separation from below, instead of βU becoming weaker with increasing temperature, as is

the case in Lennard-Jones systems. The small temperature range over which the gas-liquid
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FIG. 2. Colloidal phase diagram induced by the critical Casimir forces for system 1 (a) and

system 2 (b), and snapshots of confocal microscope observations of system 2 at ∆T = −0.2◦C

(c) and ∆T = −0.3◦C (d). The circles denote the gas-liquid coexistence curve; the empty circles

indicate the sections of the gas-liquid coexistence curve where finite size effects are larger. The star

indicates the gas-liquid critical point calculated as described in the main text. For the estimated

critical temperatures, the normalized second virial coefficients are B∗
2 = −14.2 and B∗

2 = −2.3

for system 1 and 2, respectively. The blue and red squares denote the fluid-crystal (F-C) and the

green diamonds the gas-crystal (G+C) coexistence curves. The black squares and error bars are

coexistence points of gas-liquid (system 1: ∆T = −0.3,−0.4◦C; system 2: ∆T = −0.3,−0.25◦C)

and gas-crystal (system 2: ∆T = −0.20◦C) from experiment.

curves extend reflects the explicit strong temperature dependence of the potential. This

temperature range is larger for system 1 (0.2 ◦C) than for system 2 (0.1 ◦C) because, since

the potentials are longer-range in system 1, the net interaction of each particle with the rest

of the system is significant while the potential magnitude is still small. Further consequences

of the longer potential range are the shift of the apparent critical point and the liquid-crystal
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coexistence to lower volume fractions, i.e. larger interparticle separations.

B. Scaling at the colloidal gas-liquid critical point

It is interesting to characterize the critical scaling near the gas-liquid critical point. For

short-range potentials and a scalar order parameter such as the density considered here,

three-dimensional Ising scaling is expected in the absence of finite size effects; however,

mean field scaling is observed otherwise33,46. The scaling behavior thus gives us another

indication of the potential range and finite size effects. To investigate it, we calculate the

difference between gas and liquid volume fractions, M(T ) = φl−φg, to test a scaling relation

of the form

M(T ) = B(T − TC)βc (5)

where βc is the critical exponent and B is an unknown fitting parameter48. We plot the

normalized order parameter, M1/βc/M1/βc
max , as a function of ∆T in Fig. 3 using the two

relevant values of βc
45,49: the classical or mean field βc = 1/2, and the non-classical βc =

0.325 for the 3D Ising model. The curves are normalized by their maximum value, M1/βc
max , to

bring them in the same numerical range for more convenient display. We find that system 2

shows indeed the expected 3D Ising scaling, as indicated by the consistent linear relation of

the gray squares shown on the right hand side. In contrast, for system 1, a crossover from 3D

Ising scaling to mean-field scaling is observed: the linear dependence for βc = 0.325 crosses

over to a linear dependence for βc = 0.5 at temperatures ∆T ∼ 0.35◦C, indicating that far

from the critical temperature the system follows the expected 3D Ising scaling, but as the

temperature approaches the critical one, a crossover to mean-field scaling occurs. Similar

crossover behavior has been observed for 2D square-well46 or Lennard-Jones44 systems; it

indicates that, despite the large box size used in the simulations, the correlation lengths

are already comparable to the simulation box size. The crossover behavior signals that

the calculated gas-liquid curve for ∆ < −0.4◦C, indicated by the empty symbols in Fig. 2

(a), reflects marked finite size effects. This again highlights the longer-range nature of the

interactions in system 1 at the solvent critical point.

The observed Ising scaling can be used to estimate the gas-liquid critical point. To

determine the critical temperature, we extrapolate the linear fits for βc = 0.325 to M(T ) = 0.

Furthermore, to determine the critical volume fraction, φC , we fit φl and φg to the law of
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FIG. 3. Volume fraction differences scaled with 1/βc against experimental temperatures, for dif-

ferent critical exponents: βc = 1/2 (black points), and βc = 0.325 (grey points). Empty symbols

correspond to system 1, filled ones to system 2. The lines are linear fits to the points in the same

x- and y-range as the lines.

rectilinear diameters50

φl + φg
2

= φC + A(T − TC) (6)

using TC as input and A as a fitting parameter. We obtain ∆TC,1 = −0.38◦C and φC,1 = 0.12

for system 1, and ∆TC,2 = −0.32◦C and φC,2 = 0.13 for system 2. The resultant critical

point, indicated by the star in each phase diagram in Fig. 2, agrees well with the calculated

gas-liquid curve for system 2. The calculated critical temperature also agrees well with that

estimated from Noro and Frenkel’s principle of corresponding states35, as discussed above.

However, larger deviations between the estimated critical point and the calculated gas-liquid

curve occur for system 1 as a consequence of the finite size effects associated with the longer

range of the potential. The stronger finite size effects present in system 1 imply that the

uncertainty associated with the critical point estimated from Eqs. 5 and 6 is larger for this

system than for system 2. This larger uncertainty explains why the normalized second virial

coefficient at the critical temperature for system 1, B∗
2 = −14.2, is much further from the

expected value35, B∗
2 = −1.5 than that for system 2 (B∗

2 = −2.3).

The universality of the scaling behavior is reflected in the principle of corresponding

states: all molecular gases obey the same behavior if their thermodynamic variables are

scaled by the critical values. To highlight the principle of corresponding states for our

systems, in Fig. 4 we plot the reduced temperature as a function of reduced density and
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FIG. 4. Scaled gas-liquid coexistence curves for system 1 (black) and system 2 (red). Only the

points following 3D-Ising scaling are shown. The grey curve is the fit resulting from the scaling

relation and the law of rectilinear diameters using parameters for system 2.

compare the two colloidal systems. Far from the critical point, where finite size effects are

minimum, the scaled gas-liquid coexistence curves for both systems coincide, indicating that

the principle of corresponding states applies also to Critical Casimir systems, in qualitative

agreement with recent experiments18. To highlight this correspondence, we have added a fit

obtained41 by combining the scaling relation and the law of rectilinear diameters as discussed

above with the constants A = 1.3125, B = 1.067 and βc = 0.325.

IV. CONCLUDING REMARKS

By computing the phase behavior of colloids in critical binary solvents, we have demon-

strated the colloidal assembly control arising from critical Casimir forces with temperature

as the control parameter. The phase diagram that we obtain is similar to that of molecular

systems, but occurs over a small temperature interval ∆T < 1◦C below the solvent phase

separation temperature. We identified an interesting dependence on the solvent composition:

further from the critical concentration of the binary solvent, the good agreement between the

simulation phase diagram and experimental data suggests that the critical Casimir interac-

tions between colloids are sufficiently well-described by two-body potentials. As the critical

concentration of the binary solvent is approached, however, many-body effects become sig-

nificant and should be included for better agreement between experiment and simulation.

Significant improvement may be obtained already with the inclusion of a three-body term.
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In principle, this term could be obtained from experiment, e.g., by calculating the 3-particle

correlation function from confocal images of the system. The technical difficulties involved

in obtaining the necessary large numbers of high quality confocal images precluded us from

doing so here. The crossover from 3D Ising to mean field scaling despite the large simula-

tion boxes indicates that correlation lengths are large. Practically, this observation implies

that accurate determination of critical properties will require unusually large simulation

boxes. In contrast to other temperature-dependent colloid-colloid potentials, the critical

Casimir effect allows temperature control of colloidal phases in a new, reversible and uni-

versal fashion. The temperature range within which the colloidal phase transitions occur

can be tuned by changing the composition of the binary solvent, but will typically be no

larger than a few degrees. The narrowness of the relevant temperature range implies that

colloidal interactions with lower sensitivity to temperature, such as those occurring, e.g., in

polymer coated colloids, remain approximately constant, which facilitates control over the

experimental systems. The combined experimental and simulation study presented here lays

the ground to a more quantitative comparison of the phase behavior of colloids in binary

solvents. Future directions of this fascinating system include the use of patterned particles

to obtain anisotropic critical Casimir interactions for more complex structures and phase

behavior. Furthermore, the reversible temperature control opens opportunities to use tem-

perature gradient and zone melting techniques to grow perfect equilibrium structures, as

e.g. required for photonics, in analogy to the growth of high-quality atomic crystals.
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