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Abstract For mean-zero and asymmetric zero-range processes on Zd , the fluctua-
tions of additive functionals starting from an invariant measure are considered. Un-
der certain assumptions, we establish when the fluctuations are diffusive and satisfy
functional central limit theorems. These results complement those for symmetric
zero-range systems and also those for simple exclusion models already in the liter-
ature.

1 Introduction and model assumptions

We consider zero-range processes which follow a collection of random walks in-
teracting on Zd in the following way: When there are k particles at a location x,
one of them displaces by y with rate [g(k)/k]p(y). Here, g : {0,1,2, . . .} → R+ is
a prescribed function such that g(0) = 0 and g(k) > 0 for k ≥ 1, and p is a jump
probability on Zd . Another way to think of the process is that each location x ∈ Zd

has a clock which rings at rate g(k) where k is the particle number at x. Once the
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clock rings at x, a particle selected at random displaces by y with probability p(y).
This well-studied model has been used in the modeling of traffic, queues, granular
media, fluids, etc. [2], and also includes the case of independent random walks when
g(k)≡ k.

In this note, we study the equilibrium fluctuations of additive functionals in a
class of zero-range processes, namely those which are ‘asymmetric’, ‘attractive’,
and for which a ‘spectral gap’ estimate holds. When the model is ‘symmetric’, the
fluctuation behaviors are found in [15] and [9]. Also, part of the motivation of this
note is to complement the much detailed work on fluctuations in simple exclusion
processes (cf. Chapter 5 of [6]), as much less is known for zero-range systems. The
arguments make use of a combination of techniques in the literature. We now define
more carefully the model and related terms.

1.1 Jump rates and construction.

We will assume that the function g allows motion: g(0) = 0 and g(k)> 0 for k ≥ 1
and the following two conditions.

(LIP) There is a constant K such that |g(k+1)−g(k)|< K for k ≥ 0
(INC) g is increasing: g(k+1)≥ g(k) for k ≥ 0.

Condition (LIP) is usually assumed in order to construct the process on an infinite
lattice. However, although also often assumed, (INC) is a more technical condition
which makes avaliable a certain ‘basic coupling’ that we will use later.

Assume also that p is such that the symmetrization s(x) = (p(x)+ p(−x))/2 is
irreducible and

(FR) p is finite-range: There is an R such that p(z) = 0 for |z|> R.

Here, |z| = max{|zi| : i = 1, . . . ,d}. The assumption (FR) might presumably be re-
laxed in favor of a p with rapidly diminishing tail behavior, although we do not con-
sider this case or when p might have heavy tails where certainly the results would
differ.

Under these conditions, more restrictive than necessary, the zero-range system
ηt = {ηt(x) : x ∈ Zd} can be constructed as a Markov process on the state space
Ω := NZd

0 with generator L whose action on local functions is given by

L f (η) = ∑
x,y∈Zd

g(η(x))p(y)
[

f (ηx,x+y)− f (η)
]
.

Here, ηt(x) is the occupation number at x at time t, ηx,x+y is the state obtained
from η by decreasing and increasing the occupation numbers at x and y by one
respectively, and a local function is one which depends only on a finite number of
coordinates {η(z)}. See [1] for the construction and weakening of the assumptions.
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We will say that the system is symmetric, mean-zero asymmetric or asymmetric
with drift if p satisfies p(z) = p(−z), ∑z∈Zd zp(z) = 0 but p is not symmetric, and
∑z∈Zd zp(z) ̸= 0 respectively.

1.2 Invariant measures.

Part of the appeal of zero-range processes is that they possess a family of invariant
measures which are fairly explicit product measures. For α ≥ 0, define

Z(α) := ∑
k≥0

αk

g(k)!

where g(k)! = g(1) · · ·g(k) for k ≥ 1 and g(0)! = 1. Let α∗ be the radius of conver-
gence of this power series and notice that Z increases on [0,α∗). Fix 0 ≤ α < α∗

and let ν̄α be the product measure on NZ whose marginal at the site x is given by

ν̄α{η : η(x) = k}=


1

Z(α)

αk

g(k)!
when k ≥ 1

1
Z(α)

when k = 0.

We may reparametrize these measures in terms of the ‘density’. Let ρ(α) :=
Eν̄α [η(0)] = αZ′(α)/Z(α). By computing the derivative, we obtain that ρ(α) is
strictly increasing on [0,α∗). Then, let α(·) denote its inverse. Now, we define

νρ(·) := ν̄α(ρ)(·),

so that {νρ : 0 ≤ ρ < ρ∗} is a family of invariant measures parameterized by the
density. Here, ρ∗ = limα↑α∗ ρ(α), which may be finite or infinite depending on
whether limα→α∗ Z(α) converges or diverges. In this notation, α(ρ) = Eνρ [g(η(0)]
is a ‘fugacity’ parameter.

One may check that the measures {νρ : 0 ≤ ρ < ρ∗} are invariant for the zero-
range process [1]. Moreover, we remark, by the construction in [14], which extends
the construction in [1] to an L2(νρ) process, we have that L is a Markov L2(νρ)
generator whose core can be taken as the space of all local L2(νρ) functions. Also,
one may compute that the adjoint L∗ is the zero-range process with jump probability
p∗(z) = p(−z) for z ∈ Zd . The operator

S = (L+L∗)/2

may be seen as the generator for the symmetrized process with jump law s. In partic-
ular, when p is symmetric, the process is reversible with respect to νρ with generator
L = L∗ = S = (L+L∗)/2.
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It is also known that the family {νρ : ρ < ρ∗} are all extremal invariant mea-
sures, and hence when the process is started from one of them, the system will be
ergodic with respect to time shifts. Let us now fix one of these invariant measures
νρ throughout the article.

1.3 Spectral gap.

To state results, we will need to detail the spectral gap properties of the system. For
ℓ≥ 1, let Λℓ = {x ∈ Zd : |x| ≤ ℓ}. Consider the ‘symmetrized’ process restricted to
Λℓ with generator

Sℓ f (η) = ∑
|x|≤ℓ,|y|=1
|x+y|≤ℓ

s(y)g(η(x))
[

f (ηx,x+y)− f (η)
]
.

Given the number particles in Λℓ, say ∑|x|≤ℓ η(x) = M, one can verify that the
process is a reversible finite-state Markov chain with unique invariant measure
νρ

(
· |∑|x|≤ℓ η(x) = M

)
(which does not depend on ρ). Hence, since the chain is

irreducible, there is a gap in the spectrum of Sℓ between the eigenvalue 0 and the
next one which is strictly negative. Let W (M, ℓ) be the reciprocal of the absolute
value of this ‘spectral gap’. Also, W (M, ℓ) can be captured as the smallest constant
c such that the Poincaré inequality, Eνρ [ f

2] ≤ cEνρ [ f (−Sℓ f )], holds for all local
mean-zero function f , Eνρ [ f ] = 0.

We will assume that the following estimate holds:

(G) There is a constant C =C(ρ) such that for all ℓ≥ 1, we have

Eνρ

[
W 2

(
∑
|x|≤ℓ

η(x), ℓ
)]

≤ C(ρ)ℓ4.

Such an estimate is a further condition on g and p and holds in a number of cases.
Usually, one tries to bound the spectral gap for the corresponding nearest-neighbor
process. Given assumption (FR), by comparing the associated Poincaré inequalities,
the order of W (M, ℓ), asymptotically in ℓ, with respect to Sℓ and the nearest-neighbor
version will be the same.

• If g is not too different from the independent case, that is g(x) ≡ x, for which
the gap is of order O(ℓ−2) uniform in x, one expects similar behavior as for a single
particle. This has been proved for d ≥ 1 in [7] under assumptions (LIP) and

(U) There exists x0 ≥ 1 and ε0 > 0 such that g(x+ x0)−g(x)≥ ε0 for all x ≥ 0.

• If g is sublinear, that is g(x) = xγ for 0 < γ < 1, then it has been shown that
the spectral gap depends on the number of particles k, namely the gap for d ≥ 1 is
O((1+β )−γℓ−2) where β = k/(2ℓ+1)d [11].
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• If g(x) = 1x≥1, then it has been shown in d ≥ 1 that the gap is O((1+β )−2ℓ−2)
where β = k/(2ℓ+ 1)d [10]. In d = 1, this is true because of the connection be-
tween the zero-range and simple exclusion processes for which the gap estimate
is well-known [12]: The number of spaces between consecutive particles in simple
exclusion correspond to the number of particles in the zero-range process.

In all these cases, (G) follows readily by straightforward moment calculations.

1.4 Attractivity.

A main technical tool we will use is the ‘basic coupling’ for interacting particle sys-
tems. Such a coupling is available for zero-range processes when g is an increasing
function.

Namely, consider two zero-range systems η0
t and η1

t started from initial config-
urations η0

0 = η0 and η1
0 = η1 such that η0(x) ≤ η1(x) for all x ∈ Zd . Then, one

can couple the two systems so that whenever a ‘0’ particle moves, a corresponding
‘1’ particle makes the same jump. That is, a particle at x in the ‘0’ and ‘1’ systems
displaces by y with rate g(η0(x))p(y), and also with rate [g(η1(x))−g(η0(x))]p(y)
one of the particles at x in the ‘1’ system displaces by y. In particular, one can write
η1

t = η0
t +ξt . Here, ξt counts the ‘second-class’ or ‘discrepancy’ particles: ξt(x) is

the number of second-class particles at x at time t . See [8] for more details.

2 Results

By an additive functional, we mean the time integral of a local function f with
respect to the zero-range process:

A f (t) =
∫ t

0
f (ηs)ds.

Since νρ is extremal, as alluded to earlier, the ergodic theorem captures the law of
large numbers behavior

lim
t→∞

1
t

A f (t) = Eνρ [ f ].

In this context, the results of this note are on the second-order terms, the fluctua-
tions of A f (t) about its mean. Let f̄ = f −Eνρ [ f ] and

σ2
t (ρ, f ) = Eνρ

[
A f̄ (t)

2
]

be the variance at time t. One can compute σ2
t (ρ, f ), using stationarity, as follows:
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σ2
t (ρ, f ) = 2

∫ t

0
(t − s)Eνρ [ f̄ (ηs) f̄ (η0)]ds

= 2
∫ t

0
(t − s)Eνρ [ f̄ (η0)(Ps f̄ )(η0)]ds

where Pt is the semigroup of the process.
One of the main questions is to understand the order of the variance σ2

t (ρ, f ) as
t ↑ ∞. Perhaps, surprisingly, this order may or may not be diffusive, that is of order
t, depending on the function f . When the limit exists, we denote

σ2(ρ, f ) := lim
t↑∞

1
t

σ2
t (ρ, f ).

To explore this point, consider the occupation function h(η) = 1(η(0) ≥ 1)
which indicates when the origin is occupied. Then, Ah̄(t) is the centered occupation
time of the origin up to time t. When the jump probability p is symmetric, particles
tend to stay put more and in d ≤ 2, when p is recurrent, Ah(t) is quite volatile and
the variance σ2

t (ρ,h) is super-diffusive. However, in the transient case, d ≥ 3, the
behavior is more regular and Ah(t) has a diffusive variance.

On the other hand, if a function b is somewhat ‘smooth’, say the difference
b(η) = η(0)−η(1) which casts Ab̄(t) as the difference of two additive functionals,
then one might suspect the variance to be less volatile than under h. This is indeed
the case, and in all dimensions d ≥ 1, σ2

t (ρ,b) is diffusive.
This phenomenon is summarized by the following result which is Theorem 1.2

of [15]. We say a local function f is admissible if

limsup
t↑∞

1
t

σ2
t (ρ, f ) < ∞

and not admissible otherwise.

Proposition 1 (Theorem 1.2 [15]).
Suppose assumptions (LIP), (FR), (G) hold, and in addition suppose p is symmet-

ric so that the zero-range process is reversible. Let f ∈ L4(νρ) be a local function
supported on coordinates in Λℓ. Then, starting from νρ , f is admissible if and only
if

Eνρ [ f ] = Eνρ

[
f (η) ∑

x∈Λℓ

η(x)
]
= Eνρ

[
f (η)

(
∑

x∈Λℓ

η(x)
)2
]
= 0 in dimension d = 1

Eνρ [ f ] = Eνρ

[
f (η) ∑

x∈Λℓ

η(x)
]
= 0 in dimension d = 2

Eνρ [ f ] = 0 in dimension d ≥ 3.

Motivated by the proposition, we will say a mean-zero function local f supported
on coordinates in Λℓ has degree n ≥ 0 if
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Eνρ

[
f (η)

(
∑

x∈Λℓ

η(x)
)n] ̸= 0

but
Eνρ

[
f (η)

(
∑

x∈Λℓ

η(x)
)r]

= 0 when r < n.

Let f̃ (y) = Eνy [ f ]. Since

Eνy [ f ] =
1

Eνρ [eλ (y)η(0)]|Λℓ|
Eνρ

[
f (η)eλ (y)∑x∈Λℓ η(x)

]
f is of degree n exactly when

dn/dyn f̃ (ρ) ̸= 0 but dr/dyr f̃ (ρ) = 0 when r < n.

We remark that when p is symmetric, the limiting variance can be computed from
monotone convergence since

Eνρ [ f̄ Ps f̄ ] = Eνρ [(Ps/2 f̄ )2]≥ 0

then

σ2(ρ, f ) = lim
t↑∞

2
∫ t

0
(1− s/t)Eνρ

[(
Ps/2 f̄

)2]ds

= 2
∫ ∞

0
Eνρ [ f̄ (η0) f̄ (ηs)]ds := σ2(ρ, f ).

One can see from the formula that σ2(ρ, f )> 0 in the symmetric case.
To relate the limiting variance to so-called H−1,λ ,L resolvent norms of f , define

∥ f∥2
−1,λ ,L := Eνρ

[
f̄ ,(λ −L)−1 f̄

]
=

∫ ∞

0
e−λ sEνρ

[
f̄ Ps f̄

]
ds.

Also, when the limit exists, define the H−1,L norm of f by

∥ f∥−1,L := lim
λ↓0

∥ f∥−1,λ ,L.

In the symmetric case, when L = S, we will call

∥ f∥−1,λ := ∥ f∥−1,λ ,S

and
∥ f∥−1 := ∥ f∥−1,S.

Then, for the general process,
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∥ f∥2
−1,λ ,L = λ 2

∫ ∞

0
e−λ t

∫ t

0

∫ s

0
Eνρ [ f̄ Pu f̄ ]dudsdt

=
λ 2

2

∫ ∞

0
e−λ tσ2

t (ρ, f )dt. (1)

In the symmetric case, as

Eνρ

[
f̄ Ps f̄

]
= Eνρ

[(
Ps/2 f̄

)2]≥ 0,

we observe the limiting variance is well-defined (although possibly infinite):

σ2(ρ, f ) = 2
∫ ∞

0
Eνρ [ f̄ (η0) f̄ (ηs)]ds

= 2lim
λ↓0

∥ f∥2
−1,λ = 2∥ f∥2

−1.

We remark, in the H−1 notation, the admissibility conditions for a function f in
Proposition 1 are equivalent to ∥ f∥−1 < ∞. Although we will not need it, but to
complete the discussion, we note ∥ f∥−1 is often represented (cf. Chapters 2,5 of
[6]) as

∥ f∥2
−1 = sup

ϕ local

{ Eνρ [ f̄ ϕ ]
Dνρ (ϕ)1/2

}
where the Dirichlet form

Dνρ (ϕ) = Eνρ [ϕ(−Sϕ)] =
1
4 ∑

x∈Zd
∑

y∈Zd

Eνρ

[
g(η(x))

(
ϕ(ηx,x+y)−ϕ(η)

)2]s(y).
On the other hand, when p is asymmetric, the limiting variance σ2(ρ, f ) can be

shown to exist for certain functions. We say that f is coordinatewise increasing if
η(x)≤ ζ (x) for all x ∈ Zd then f (η)≤ f (ζ ). For such a function,

Ps f (η) = E[ f (η(s))|η(0) = η ]

is itself a coordinatewise increasing function: When ξ ≤ ζ coordinatewise, let
β (x) = ζ (x)− ξ (x) for x ∈ Zd . Let η0

t and η1
t be processes starting in ξ and ζ

respectively. Then, by the basic coupling, η1
t = η0

t +βt where βt follows second-
class particles. In particular, as f̄ is increasing, with respect to the coupling measure
P̂,

Ps f̄ (ζ )−Ps f̄ (ξ ) = Ê[ f̄ (η1
s )− f̄ (η0

s +βs)] ≥ 0.

Then, for nontrivial coordinatewise increasing functions, Eνρ [ f̄ Ps f̄ ] > 0 as νρ ,
being a product measure, is a FKG measure. Therefore, the limit

σ2(ρ, f ) = 2
∫ t

0
Eνρ [ f̄ Ps f̄ ]ds > 0

for such functions.
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For the general process, when f is admissible, it is natural to ask if a functional
central limit theorem holds for the diffusively scaled additive functional. When p
is symmetric, by the Kipnis-Varadhan CLT for reversible Markov processes, this is
indeed the case [5, 15] and the limit in the uniform topology is a Brownian motion
with diffusion coefficient σ2(ρ, f ). Moreover, for nearest-neighbor systems and a
class of functions f in d ≤ 2 such that f̃ ′(ρ) ̸= 0, which are not admissible, the
super-diffusive orders of σ2

t (ρ, f ) and the limit laws of A f̄ (t) scaled by the standard
deviation have also been found [9]. To give an example, in dimension d = 1 when
Eνρ [ f ] = 0 and Eνρ [ f ∑x∈Λℓ

η(x)] ̸= 0, the limit law is a fractional Brownian motion
with Hurst parameter 3/4. See [9] for the full statements.

The purpose of this note is to understand the fluctuation behaviors under mean-
zero asymmetric and asymmetric with drift zero-range processes. When p is mean-
zero, we will show that the generator L satisfies a ‘sector inequality’. As a conse-
quence, by the method in [16], the variance behaviors in terms of orders are the
same as if the process were symmetric. When f is admissible, the limit

σ2(ρ, f ) = lim
t↑∞

1
t

Eνρ

[
A f̄ (t)

2]
converges, and the diffusively scaled additive functional still tends to a Brownian
motion.

Theorem 1. Suppose g and p satisfy assumptions (LIP), (FR), (G), and in addition
suppose p is mean-zero. Let f be a local function supported on coordinates in Λℓ.
Then, f is admissible if and only if the conditions in Proposition 1 are met.

In the case, f is admissible, the limiting variance σ2(ρ, f ) converges and we
have, in the uniform topology,

lim
λ↑∞

1√
λ

A f̄ (λ t) ⇒ σ(ρ, f )Bt

where Bt is the standard Browninan motion on R.

Remark 1. In the mean-zero case, for inadmissible f , it remains open to derive the
limit laws under the appropriate scalings.

When the system is asymmetric with drift, one might have the intuition that the
admissibility of a function should follow what happens in the ‘transient’ regime in
the symmetric case. With the additional assumption of attractivity, this is indeed the
case.

Theorem 2. Suppose assumptions (LIP), (INC) (FR), (G) hold, and in addition sup-
pose p is asymmetric with drift. Let f be a local function supported on coordinates
in Λℓ. Then, f is admissible if and only if Eνρ [ f ] = 0.

When, f is an increasing function, the limiting variance exists and is finite,
σ2(ρ, f )< ∞ and in the uniform topology

lim
λ↑∞

1√
λ

A f̄ (λ t) ⇒ σ(ρ, f )Bt .
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Remark 2. When f is the difference of two increasing functions, σ2(ρ, f ) exists and
the last statement of the theorem holds (see [13]). However, for more general f , in
the asymmetric with drift case, this is an open question.

3 Proof of Theorem 1: Mean-zero dynamics

The main step is the following sector inequality, whose proof is deferred to the end
of the section. Recall the definition of the Dirichlet form Dνρ (ϕ).

Proposition 2. Under the assumptions of Theorem 1, there is a constant C =
C(ρ, p,d) such that for local functions ϕ ,ψ : Ω → R we have

|Eνρ [ϕLψ]| ≤ CDνρ (ϕ)
1/2Dνρ (ψ)1/2.

When the process is symmetric, since S is a nonpositive operator, a sector inequality
trivially holds by Schwarz inequality and the constant C = 1.

Proof of Theorem 1. The main argument follows the argument in [13] for mean-
zero simple exclusion processes, which compares H−1 norms with respect to L and
the symmetrized generator S.

As in Lemma 4.4 of [13], we have for a constant C1 > 0 that

C−1
1 ∥ f∥−1,λ ≤ ∥ f∥−1,λ ,L ≤ C1∥ f∥−1,λ .

Next, when the sector inequality in Proposition 2 holds, as computed in [16], the
limit exists,

σ2(ρ, f ) = lim
t↑∞

t−1σ2
t (ρ, f ) = 2lim

λ↓0
∥ f∥−1,λ ,L = 2∥ f∥−1,L.

Moreover,

∥ f∥−1,L = lim
λ↓0

∥ f∥−1,λ ,L ≤ C1 lim
λ↓0

∥ f∥−1,λ = C1∥ f∥−1.

Then, given that f satisfies the admissibility conditions in Theorem 1, we have

∥ f∥−1,L ≤C1∥ f∥−1 < ∞.

Conversely, suppose f does not satisfy the admissibility conditions in Theorem
1, and supt>0 t−1σ2

t (ρ, f )≤C2. Then, (1) is bounded by C2
∫ ∞

0 e−uudu uniformly in
λ . Hence, ∥ f∥−1,λ is uniformly bounded in λ . But, a contradiction arises as then

lim
λ↓0

∥ f∥−1,λ = ∥ f∥−1 < ∞,

which means f is admissible. Therefore,
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limsup
t↑∞

t−1σ2
t (ρ, f ) = ∞.

Finally, the functional CLT follows exactly the same proof given in [16] for
mean-zero simple exclusion processes. ⊓⊔

Proof of Proposition 2. Since p is mean-zero and finite-range, it decomposes into
a finite number of ‘irreducible cycles’ by Lemma 5.3 of [16]. That is,

p =
r

∑
i=1

αiπi

where πi places weight 1/k on k points a1, . . . ,ak such that a1 + · · ·+ ak = 0 and
y0 = 0,

{yℓ =
ℓ

∑
j=1

a j : 1 ≤ ℓ≤ k}

have no double points. We call the Bi = {0,y1, . . . ,yk} as the ith cycle . For example
a1 =−1, a2 = 2 and a3 =−1 corresponding to y0 = 0, y1 =−1, y2 = 1 and y3 = 0
is an irreducible cycle.

Let AB be the zero-range process on the cycle {0,y1, . . . ,yk} with jump probabil-
ity πB where πB(ai) = 1/k for 1 ≤ i ≤ k. Then,

LB = ∑
x∈Zd

AB+x

and

L =
r

∑
i=1

αiLBi

(cf. [16][Lemma 5.4]).
It is enough to show the sector inequality with respect to LB for a specific cycle

B. Indeed, if such a sector inequality holds, by a Schwarz inequality, we can write

Eνρ

[
ϕ

r

∑
i=1

αiLBi ψ
]
=

r

∑
i=1

αiEνρ

[
ϕLBi ψ

]
≤

r

∑
i=1

αiCiDi
νρ (ϕ)

1/2Di
νρ (ψ)1/2

≤ C
r

∑
i=1

αi

(ε
2

Di
νρ (ϕ)+

1
2ε

Di
νρ (ψ)

)
= C

(ε
2

r

∑
i=1

αiDi
νρ (ϕ)+

1
2ε

r

∑
i=1

αiDi
νρ (ψ)

)
where Di

νρ is the Dirichlet form with respect to SBi , the symmetrization of LBi , C =

maxi=1,··· ,r{Ci} and ε > 0. Taking the infimum over ε > 0, allows to bound the
left-hand side by



12 Cédric Bernardin, Patrı́cia Gonçalves and Sunder Sethuraman

CDνρ (ϕ)
1/2Dνρ (ψ)1/2.

Moreover, it will be enough to show the sector inequality with respect to AB.
Indeed, if so, by the same Schwarz inequality as above, we can write

Eνρ

[
ϕ ∑

x∈Zd

AB+xψ
]
≤ CB

(ε
2 ∑

x∈Zd

Dx
νρ (ϕ)+

1
2ε ∑

x∈Zd

Dx
νρ (ψ)

)
where Dx

νρ is the Dirichlet form with respect to symmetrization of AB+x. Since no
bond (z,w) is double counted,

∑
x∈Zd

Dx
νρ (ϕ) = DB

νρ (ϕ)

where DB
νρ is the Dirichlet form with respect to LB.

Following the scheme in [16], we now write, with yk+1 = 0, that

Eνρ

[
ϕABψ

]
=

1
k

k

∑
i=0

Eνρ

[
ϕ(η) ·g(η(yi))

(
ψ(ηyi,yi+1)−ψ(η)

)]
= α(ρ)

k

∑
i=0

Eνρ

[
ϕ(η +δ (yi))

(
ψ(η +δ (yi+1))−ψ(η +δ (yi))

)]
.

Here, δ (a) is the configuration which puts exactly one particle at location a. We
have used the identity

Eνρ [g(η(a))h(η)] = α(ρ)Eνρ [h(η +δ (a))]

where α(ρ) is the fugacity mentioned in the introduction.
Now, since the sum

k

∑
i=0

ψ(η +δ (yi))−ψ(η +δ (yi+1)) = 0,

the right-hand side equals

α(ρ)
k

∑
i=0

Eνρ

[(
ϕ(η +δ (yi))−ϕ(η +δ (0))

)(
ψ(η +δ (yi+1))−ψ(η +δ (yi))

)]
.

Note that

α(ρ)Eνρ

[(
ϕ(η +δ (yi))−ϕ(η +δ (0))

)2]
≤ k

k

∑
i=1

Eνρ

[
g(η(yi)

(
ϕ(ηyi,yi+1)−ϕ(η)

)2]
.
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Then, the sector inequality for AB follows from Schwarz inequality with a constant
depending on the length of the cycle k. ⊓⊔

4 Proof of Theorem 2: Asymmetric with drift dynamics

We will make use of the following results to prove Theorem 2.

Proposition 3. Suppose that assumption (LIP) holds and f is a local function which
is mean-zero, Eνρ [ f ] = 0. Then,

σ2
t (ρ, f ) ≤ 2t∥ f∥2

−1.

A proof of the proposition can be found in Appendix 1.6 of [4].

Proposition 4. Under the assumptions of Theorem 2, we have that

f1(η) = g(η(x))−α(ρ)

and
f2(η) =

(
g(η(x))−α(ρ)

)(
g(η(y))−α(ρ)

)
for x ̸= y,

are admissible functions.

The proof of Proposition 4 is deferred to the end of the section.

Proof of Theorem 2. We consider cases depending on the degree of the function f
and dimension d. When f is admissible for the symmetrized dynamics, that is when
∥ f∥−1 < ∞, by Proposition 3, σ2

t (ρ, f ) = O(t), and hence f is admissible for the
asymmetric model.

We now argue in the exceptional cases when ∥ f∥−1 = ∞ that f is however
still admissible for the asymmetric with drift model. It will be helpful to note that
f̃ ′1(ρ) = α ′(ρ) and f̃ ′′2 (ρ) = 2α ′(ρ).

Case 1. In d = 2, if f is a mean-zero degree n = 1 function, let

h = f −
f̃ ′(ρ)
α ′(ρ)

f1.

Then, as h̃(ρ) = h̃′(ρ) = 0, h is a degree n ≥ 2 function. Hence, ∥h∥−1 < ∞ and h
is admissible by Proposition 3 for the asymmetric with drift model. But, since f1 is
admissible by Proposition 4, we have

σ2
t (ρ, f )≤ 2σ2

t (ρ,h)+2σ2
t ( f1,ρ) = O(t)

and therefore f is admissible also.

Case 2. In d = 1, if f is a mean-zero degree n = 2 function, consider
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h = f −
f̃ ′′(ρ)

2(α ′(ρ))2 f2.

Since h̃(ρ) = h̃′(ρ) = h̃′′(ρ) = 0, h is at degree n≥ 3 function and hence admissible.
Since f2 is also admissible (Proposition 4), f is admissible by the reasoning at the
end of Case 1.

On the other hand, if f is a mean-zero degree n = 1 function, consider

k = f −
f̃ ′(ρ)
α ′(ρ)

f1.

Again, as k̃(ρ) = k̃′(ρ) = 0, k is a degree n ≥ 2 function. By the conclusion just
above, if k is a degree n = 2 function, it is admissible. If k is a degree n ≥ 3 function,
it is already admissible. Since f1 is also admissible (Proposition 4), we conclude
then that f is admissible.

Finally, when f is an increasing coordinatewise function, the same argument as
given for Theorem 1.1 of [13], making use of a Newman-Wright CLT yields the
weak convergence in the theorem. ⊓⊔

Proof of Proposition 4. We follow a technique given in [3]. We prove that f2 is
admissible. The argument for admissibility of f1 is simpler and omitted.

Recall that h̄ = h−Eνρ [h]. Since f2 is increasing, Eνρ [ f2Ps f2] ≥ 0 and the vari-
ance of the additive functional is bounded

σ2
t (ρ, f2) ≤ 2t

∫ t

0
Eνρ [ḡ(ηs(x)ḡ(ηs(y) · ḡ(η0(x))ḡ(η0(y))]ds.

The integrand, using stationarity and the basic coupling, can be written as

Eνρ [ḡ(ηs(x)ḡ(ηs(y)) · ḡ(η0(x))ḡ(η0(y))] (2)

= α2(ρ)
{

Eνρ [Ps f2(η +δ (x)+δ (y))]−Eνρ [Ps f2(η)]
}

= α2(ρ)Ê
[
g(ηs(x)+ξs(x)+χs(x))g(ηs(y)+ξs(y)+χs(y))−g(ηs(x))g(ηs(y))

]
where ξs and χs are the processes following second-class particles starting at x and
y respectively.

Note by (LIP) and explicit computation,

Eνρ [g
2(η(x)+2)] = 2Eνρ

[(
g(η(x)+2)−g(η(x))

)2]
+2Eνρ [g

2(η(x))]

≤ 2K2 +2α(ρ)Eνρ [g(η(x)+1)]

≤ 2K2 +2α(ρ)[K +α(ρ)] < ∞.

Then, by adding and subtracting terms and Schwarz inequality, one can bound the
integrand (2) by C ∑z=x,y[P̂(χs(z) = 1)+ P̂(ξs(z) = 1)]. For instance,
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Ê [g(ηs(z)+ξs(z)+χs(z))−g(ηs(z)+ξs(z))]

2
)1/2

≤ KP̂(χs(z) = 1).

To finish the proof, we now bound the integral∫ ∞

0
P̂(χs(x) = 1)ds < ∞

as the integrals of P̂(χs(y) = 1) and P̂(ξs(z) = 1) for z = x,y are similar.
Construct, following Kipnis’s paper, the motion of the second-class particles. We

follow the two particles individually (ξs,χs). From the basic coupling, the rate of
the jumps from a site x is given by g(ηs(x) + ξs(x) + χs(x))− g(ηs(x)). We will
suppose, if both particles are at x, then one of them is chosen at random to make the
jump.

Let X0 = y and {Xi : i ≥ 1} be the position of a random walk on Zd according
to the transient jump probability p. Let also {Ti : i ≥ 1} be independent random
variables with exponential distribution with mean 1. Then, we define jump times
{τi : i ≥ 1} and process values as follows:

τ1 = inf
{

u > 0 :
∫ u

0

χs(X0)

ξs(X0)+χs(X0)

·
(

g(ηs(X0)+ξs(X0)+χs(X0))−g(ηs(X0)+ξs(X0))
)

ds ≥ T1

}
.

Set χs(x) = 1X0(x) for 0 ≤ s < τ1. Also, for r ≥ 1,

τr+1 = inf
{

u > τu
r−1 :

∫ u

τr−1

χs(Xr)

ξs(Xr)+χs(Xr)

·
(

g(ηs(Xr)+ξs(Xr)+χs(Xr))−g(ηs(Xr)+ξs(Xr))
)

ds ≥ Tr+1

}
and χs(x) = 1Xr(x) for τr ≤ s < τr+1.

The dynamics for ξs is similarly defined. Note that with respect to νρ , since g is
increasing,∫ ∞

0

χs(Xr)

ξs(Xr)+χs(Xr)
(g(ηs(Xr)+ξs(Xr)+χs(Xr))−g(ηs(Xr)+ξs(Xr)))ds

≥ 1
2

∫ ∞

0
min

{
g(ηs(Xr)+2)−g(ηs(Xr)+1),g(ηs(Xr)+1)−g(ηs(Xr))

}
ds

≥ 1
2

inf
x∈Zd

∫ ∞

0
min

{
g(ηs(x)+2)−g(ηs(x)+1),g(ηs(x)+1)−g(ηs(x))

}
ds.

By the ergodic theorem, for each x ∈ Zd in the countable space Zd ,∫ ∞

0
min

{
g(ηs(x)+2)−g(ηs(x)+1),g(ηs(x)+1)−g(ηs(x))

}
ds = ∞ a.s.

Therefore, all the times τr are finite a.s.



16 Cédric Bernardin, Patrı́cia Gonçalves and Sunder Sethuraman

Then, ∫ ∞

0
χs(x)ds =

∞

∑
j=0

Tj1x(X j).

Take expectation on both sides to obtain∫ ∞

0
P̂(χs(x) = 1)ds =

∞

∑
j=0

P(X j = x) < ∞

since {X j} is transient. ⊓⊔
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