
A Simplified Binary Artificial Fish Swarm
Algorithm for Uncapacitated Facility

Location Problems
Md. Abul Kalam Azad,Member, IAENG,Ana Maria A.C. Rocha and Edite M.G.P. Fernandes

Abstract—Uncapacitated facility location problem (UFLP)
is a combinatorial optimization problem, which has many
applications. The artificial fish swarm algorithm has recently
emerged in continuous optimization problem. In this paper, we
present a simplified binary version of the artificial fish swarm
algorithm (S-bAFSA) for solving the UFLP. In S-bAFSA, trial
points are created by using crossover and mutation. In order to
improve the quality of the solutions, a cyclic reinitialization of
the population is carried out. To enhance the accuracy of the
solution, a local search is applied on a predefined number of
points. The presented algorithm is tested on a set of benchmark
uncapacitated facility location problems.

Index Terms—Uncapacitated facility location, 0–1 program-
ming, artificial fish swarm algorithm, local search.

I. I NTRODUCTION

T HE artificial fish swarm algorithm (AFSA) is one of
the recent population-based stochastic methods that

has appeared for solving continuous and engineering design
optimization problems [1], [2], [3], [4]. When applying to an
optimization problem, a ‘fish’ represents an individual point
in a population. The algorithm simulates the behavior of a
fish swarm inside water. At each iteration, trial points are
generated from the current ones using either a chasing behav-
ior, a swarming behavior, a searching behavior or a random
behavior. Each trial point competes with the corresponding
current and the one with best fitness is passed to the next
iteration as current point. There are different versions and
hybridizations of AFSA available in [5], [6], [7].

The most widely studied location problems available in
the literature are combinatorial optimization problems and
NP-hard. We are interested about the uncapacitated facility
location problem (UFLP). The UFLP involves a set of
customers with known demands and a set of alternative
candidate facility locations. If a candidate location is to be
selected for open a facility, a known fixed setup cost will
be incurred. Moreover, there is also a fixed known delivery
cost from each candidate facility location to each customer.
The goal of UFLP is to connect each customer to exactly
one opened facility in the way that the sum of all associated
costs (setup and delivery) is minimized. It is assumed that
the facilities have sufficient capacities to meet all customer
demands connected to them. The UFLP is used to model

Manuscript received March 05, 2013; revised April 07, 2013.
M. A. K. Azad acknowledges Ciência 2007 of FCT (Foundation for Science
and Technology), Portugal for the fellowship grant: C2007-UMINHO-
ALGORITMI-04. Financial support from FEDER COMPETE (Operational
Programme Thematic Factors of Competitiveness) and FCT under project:
FCOMP-01-0124-FEDER-022674 is also acknowledged.

Algoritmi R&D Centre, School of Engineering, University of Minho,
4710-057 Braga, Portugal. e-mail:{akazad,arocha,emgpf}@dps.uminho.pt

many applications such as bank account allocation, clustering
analysis, location of offshore drilling platforms, economic lot
sizing, machine scheduling, portfolio management, design of
communication networks, etc.

Let in the UFLP, the number of alternative candidate
facility locations bem and the number of customers ben.
The mathematical formulation of the UFLP is given as
follows:

minimizez(x,y) ≡
m
∑

i=1

n
∑

j=1

cijxij +
m
∑

i=1

fiyi

subject to
m
∑

i=1

xij = 1, for all j

xij ≤ yi for all i, j
xij , yi ∈ {0, 1} for all i, j,

(1)

where

cij = the delivery cost of meeting customerj’s
demand from facility at locationi;

fi = the setup cost of facility at locationi;

xij =

{

1 if customerj is served from locationi,
0 otherwise;

yi =

{

1 if a facility is opened at locationi,
0 otherwise.

It is noted thatxij is a binary variable (0/1bit) since the
demand of customerj, j = 1, . . . , n, is fulfilled by exactly
one facility, (i.e. no partial fulfillment of demand is allowed)
sayk, in which casexkj = 1, xij = 0, i = 1, . . . ,m, i 6= k.
yi is also a binary variable since a facilityi is either opened
(yi = 1), in which case the fixed setup costfi is incurred, or
it is not opened (yi = 0) and no fixed setup cost is incurred.

For solving uncapacitated facility location problem (1),
several exact solution methods as well as stochastic solu-
tion methods exist. Some well-known exact methods are:
a dual approach [8], a branch and bound method [9], and
a primal-dual approach [10]. On the other hand, the avail-
able stochastic solution methods are: a tabu search [11],
[12], [13], a neighborhood search heuristic [14], a genetic
algorithm [15], a differential evolution algorithm [16], an
artificial bee colony algorithm [17], and a particle swarm
optimization algorithm [18]. In [16], Kashan et al. proposed
a novel differential evolution algorithm, the DisDE, and
in [17], the same authors presented the DisABC, a new
artificial bee colony algorithm with local search based on
the measurement of dissimilarity between binary vectors in
order to handle binary variables. Sevkli and Guner presented
a transformation technique in order to handle binary variables

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55625498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in a continuous particle swarm optimization algorithm, PSO
with local search [18].

This paper presents a binary version of AFSA for solving
the uncapacitated facility location problem (1). A previous
binary version of AFSA, denoted by bAFSA, is presented
in [19], where a set of small 0–1 multidimensional knapsack
problems were successfully solved. To create the trial points
from the current ones in a population, bAFSA chooses each
point/fish behavior according to the number of points inside
its ‘visual scope’, i.e., inside a closed neighborhood centered
at the point. To identify those points, the Hamming distance
between pairs of points is used.

For instance, the chasing behavior is chosen when the
‘visual scope’ is assumed to be not crowded. In terms of
fish behavior, this happens when a fish, or a group of fish
in the swarm, discover food and the others find the food
dangling quickly after it. The bAFSA creates the trial point
after a uniform crossover between the individual point and
the best point inside the ‘visual scope’ is performed.

Alternatively, when swimming, fish naturally assembles
in groups which is a living habit in order to guarantee the
existence of the swarm and avoid dangers. This is a swarming
behavior and the ‘visual scope’ is also assumed to be not
crowded. Here, a uniform crossover between the individual
point and the central point of the ‘visual scope’ is performed
to create the trial point.

The searching behavior occurs when fish discovers a
region with more food, by vision or sense, going directly
and quickly to that region. This behavior assumes that the
‘visual scope’ is crowded. The trial point is created by
performing a uniform crossover between the individual point
and a randomly chosen point from the ‘visual scope’.

Finally, in the random behavior, a fish with no other fish
in its neighborhood to follow, moves randomly looking for
food in another region. This happens when the ‘visual scope’
is empty and the trial point is created by randomly setting a
binary string of 0/1 bits.

Past experience has shown that the computational effort of
computing the ‘visual scope’ of each individual and checking
the points that are inside the ‘visual scope’, along all itera-
tions, increases enormously with the number of variables.

The purpose of the herein presented study is to reduce the
computational requirements, in terms of number of iterations
and execution time, to reach the optimal solution. The
procedures that are used to choose which behavior is to
be performed to each current point in order to create the
corresponding trial point are simplified. Thus, a simplified
binary version of AFSA, henceforth denoted by S-bAFSA, is
produced. Briefly, for all points of the population, except the
best, random, searching and chasing behavior are randomly
chosen using two target probability values0 < τ1 < τ2 < 1,
and uniform crossover is performed to create the trial points.
A simple 4-flip mutation is performed in the best point
of the population to generate the corresponding trial point.
To improve the accuracy of the solutions obtained by the
algorithm, a swap move local search adapted from [17] and
a cyclic reinitialization of the population are implemented.
A benchmark set of uncapacitated facility location problems
is used to test the performance of the S-bAFSA.

The organization of this paper is as follows. The proposed
simplified binary version of AFSA is described in Section II.

Section III describes the experimental results and finally we
draw the conclusion of this study in Section IV.

II. T HE PROPOSEDS-BAFSA

In bAFSA [19], each trial point is created from the current
one by using the original concept of ‘visual scope’ of a
point. To identify the points inside the ‘visual scope’ of
each individual point, the Hamming distance is used. For
points of equal bits length, this distance is the number of
positions at which the corresponding bits are different. The
computational requirement of this procedure grows rapidly
with problem’s dimension. Furthermore, in some cases the
population stagnates and the algorithm converges to a non-
optimal solution.

To overcome these drawbacks, the herein presented
S-bAFSA will not make use of the concept of ‘visual scope’
of an individual point, will select each fish/point behavior
on the basis of two user defined target probability values
and will not perform the swarming behavior ever, since the
central point may not depict the center of the distribution
of solutions. Furthermore, to be able to reach the solution
with high accuracy and avoid convergence to a non-optimal
solution, a simple local search and a random reinitialization
of the population are performed.

Details of the proposed S-bAFSA to solve the uncapac-
itated facility location problem (1) are described in the
following. The first step of S-bAFSA is to design a suitable
representation scheme of a current point in a population for
solving the UFLP. Since the facilities are to be opened or not
at candidate locations, a current pointy = (y1, y2, . . . , ym)
is represented by a binary string of 0/1 bits of lengthm.
At initial iteration/generationN individual points,yl, l =
1, . . . , N , in a population are randomly generated [19], [20].
We note that the maximum population sizeN of binary
strings of 0/1 bits of lengthm is 2m.

When the locations of facilities to be opened are deter-
mined, i.e., after initializing a current pointyl, the optimal
connection of customers will be obtained easily. Indeed,
each customerj is connected by the facility opened at
location k (with bit 1) whose delivery costckj is minimal
(k = arg min

i=1,...,m
{cij}). Then xl

kj = 1 and xl
ij = 0, i =

1, . . . ,m; i 6= k. Then, the objective functionz(xl,yl) is
evaluated and this is the facility location decision that should
be done optimally.

A. Generating Trial Points in S-bAFSA

After initializing current pointsyl, l = 1, . . . , N and
connecting customers to opened facilitiesx

l, crossover and
mutation are performed to create trial points,v

l based onyl

in successive iterations by using the fish behavior of random,
searching and chasing. We introduce the probabilities0 <
τ1 < τ2 < 1 in order to perform the movements of random,
searching and chasing. The fish behavior in S-bAFSA that
create the trial points are outlined as follows.

The random behavior is implemented when a uniformly
distributed random numberrand(0, 1) is less than or equal
to τ1. In this behavior the trial pointvl is created by
randomly setting 0/1 bits of lengthm.

The chasing behavior is implemented whenrand(0, 1) ≥
τ2 and it is related to the movement towards the best point

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

found so far in the population,ybest. Here, the trial pointvl

is created using a uniform crossover betweeny
l andy

best.
In uniform crossover, each bit of the trial point is created by
copying the corresponding bit from one or the other current
point with equal probability.

The searching behavior is related to the movement towards
a point yrand where ‘rand’ is an index randomly chosen
from the set{1, 2, . . . , N}. This behavior is implemented in
S-bAFSA whenτ1 < rand(0, 1) < τ2. A uniform crossover
betweenyl andyrand is performed to create the trial pointvl.

In S-bAFSA, the three fish behavior previously described
are implemented to createN − 1 trial points; the best point
y

best is treated separately. A mutation is performed in the
point ybest to create the corresponding trial pointv. In mu-
tation, a 4-flip bit operation is performed, i.e., four positions
are randomly selected and the bits of the corresponding
positions are changed from 0 to 1 or vice versa.

After creating the trial pointvl, the optimal connection
of customers corresponding to thisvl (opened facility),ul,
is done according to the procedure described above forl =
1, . . . , N and then the objective function is evaluated.

B. Selection of the New Population

At each iteration, each trial pointvl and corresponding
u
l competes with the current pointyl and correspondingxl,

in order to decide which one should become a member of
the population in the next iteration. Hence, ifz(ul,vl) ≤
z(xl,yl), then the trial point becomes a member of the
population in the next iteration, otherwise the current point
is preserved to the next iteration.

C. Local Search

A local search is often important to improve a current
solution. It searches for a better solution in the neighborhood
of the current solution. If such solution is found then it
replaces the current solution. In S-bAFSA, we implement
a simple local search based on swap move [17] after the
selection procedure. In this local search, the swap move
changes the value of a 0 bit of a current point to 1 and
simultaneously another 1 bit to 0, so that the total number
of opened facilities does not change. Here, the local search
method has two parameters:Nloc (= τ3N, τ3 ∈ (0, 1)), the
number of current points selected randomly from the popula-
tion to perform local search andmswap (= τ4Nbit 0 (number
of 0 bits in a current point,yl), τ4 ∈ (0, 1)), the number of
positions selected randomly in a point to perform the swap
move. After performing the local search, the new optimal
connection of customers to the new opened facilities is made.
Then the new points become members of the population if
they improve the objective function value with respect to the
corresponding current points.

The pseudocode of the local search used in S-bAFSA is
shown in Algorithm 1.

D. Reinitialization of the Population

While testing bAFSA [19], it was noticed that, in some
cases, the points in a population converged to a non-optimal
point. To diversify the search, we propose to reinitialize the
population randomly, everyR iterations keeping the best
solution found so far. In practical terms, this technique has
greatly improved the quality of the solutions.

Algorithm 1 Local search
Require: the values of parametersτ3 andτ4
1: ComputeNloc = int(τ3N)
2: Randomly selectNloc points i.e.yr, r = 1, . . . , Nloc from current

population
3: for r = 1 to Nloc do
4: Setsr := y

r , zr := z(xr,yr) and computeNbit 0
5: Computemswap= int(τ4Nbit 0)
6: if mswap> 0 then
7: for i = 1 to mswap do
8: Perform swap move onsr to createsr

β
9: Determine optimal connection ofsr

β
, x

r
β

, and setzβ :=
z(xr

β
, sr

β
)

10: if zβ < zr then
11: Set sr := s

r
β

and replace corresponding connection and
objective function value

12: end if
13: end for
14: end if
15: end for

E. The Algorithm

The proposed S-bAFSA terminates when the minimum
objective function value reaches the known optimal value
within a toleranceǫ > 0, or a maximum number of iterations
is exceeded, i.e., when

t > Tmax or |zbest− zopt| ≤ ǫ (2)

holds, whereTmax is the allowed maximum number of
iterations, zbest is the minimum objective function value
attained at iterationt and zopt is the known optimal value
available in the literature. However, when the optimal value
of the problem is not known, the algorithm may use other
termination conditions. The pseudocode of S-bAFSA for
solving the uncapacitated facility location problem (1) is
shown in Algorithm 2.

Algorithm 2 S-bAFSA
Require: Tmax andzopt and other values of parameters
1: Sett := 1. Initialize populationyl, l = 1, 2, . . . , N
2: Determine optimal connection, evaluate them and identify(xbest,ybest)

andzbest
3: while ‘termination conditions are not met’do
4: if MOD(t, R) = 0 then
5: Reinitialize populationyl, l = 1, 2, . . . , N − 1
6: Determine optimal connection, evaluate them and identify

(xbest,ybest) andzbest
7: end if
8: for l = 1 to N do
9: if l = bestthen

10: Perform 4-flip bit mutation to create trial pointvl

11: else
12: if rand(0, 1) ≤ τ1 then
13: Perform random behavior to create trial pointv

l

14: else if rand(0, 1) ≥ τ2 then
15: Perform chasing behavior to create trial pointv

l

16: else
17: Perform searching behavior to create trial pointv

l

18: end if
19: end if
20: end for
21: Determine optimal connectionul for v

l, l = 1, 2, . . . , N and
evaluate them

22: Select the population of next iteration(xl,yl), l = 1, 2, . . . , N
23: Perform local search
24: Identify (xbest,ybest) andzbest
25: Sett := t+ 1
26: end while

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

TABLE I
COMPARATIVE RESULTS OF MDE1, MDE2 AND S-BAFSA

mDE1 mDE2 S-bAFSA

Prob. m× n APD AT Nsr APD AT Nsr APD AT Nsr BT

Cap71 16× 50 0.00 0.017 30 0.00 0.030 30 0.00 0.007 30 0.00
Cap72 16× 50 0.00 0.024 30 0.00 0.029 30 0.00 0.006 30 0.00
Cap73 16× 50 0.00 0.035 30 0.00 0.026 30 0.00 0.005 30 0.00
Cap74 16× 50 0.00 0.029 30 0.00 0.026 30 0.00 0.007 30 0.00
Cap101 25× 50 0.00 0.117 30 0.00 0.177 30 0.00 0.060 30 0.00
Cap102 25× 50 0.00 0.166 30 0.00 0.179 30 0.00 0.019 30 0.01
Cap103 25× 50 0.00 0.218 30 0.00 0.189 30 0.00 0.029 30 0.00
Cap104 25× 50 0.00 0.175 30 0.00 0.109 30 0.00 0.013 30 0.00
Cap131 50× 50 0.27 1.921 1 0.27 1.885 1 0.00 0.144 30 0.03
Cap132 50× 50 0.25 1.875 1 0.19 1.833 1 0.00 0.098 30 0.04
Cap133 50× 50 0.23 1.793 0 0.10 1.687 5 0.00 0.101 30 0.03
Cap134 50× 50 0.38 1.664 6 0.05 1.365 21 0.00 0.044 30 0.03
Capa 100× 1000 67.30 31.453 0 32.81 27.317 0 0.00 2.436 30 1.87
Capb 100× 1000 27.65 32.302 0 13.22 27.819 0 0.06 7.797 27 2.32
Capc 100× 1000 20.29 32.175 0 11.03 27.883 0 0.08 28.601 10 5.02

III. E XPERIMENTAL RESULTS

We code S-bAFSA in C and compile with Microsoft
Visual Studio 10.0 compiler in a PC having 2.5 GHz Intel
Core 2 Duo processor and 4 GB RAM. We consider15
benchmark uncapacitated facility location problems available
in OR-Library [21]. Among them, Cap71–Cap74 are small
size problems, Cap101–Cap104 and Cap131–Cap134 are
medium size problems and the other three Capa–Capc are
large size problems. It is worth mentioning that the names
of the problems are the originally used in OR-Library. We
setN = 100, Tmax = 1000 and ǫ = 10−4. We setR = 100
for the reinitialization of the population andτ1 = 0.1,
τ2 = 0.9, τ3 = 0.1 and τ4 = 0.25 after performing several
experiments. Thirty independent runs were carried out with
each problem.

Firstly, we compare S-bAFSA with two binary versions
of the modified differential evolution algorithm (mDE) pre-
sented in [22]. The differential evolution algorithm was
originally presented in [23] to solve continuous global opti-
mization problems. In [22], a modified mutation is presented.
First a linear convex combination of two mutant points is
implemented: one comes from the usual DE/rand/1 strategy
and the other from a DE/rand/1 case where the base point is
the best of the three randomly chosen points. Second, the best
point found so far is cyclically used as the base point to create
the mutant point at those iterations. The two binary versions
of the mDE are herein denoted by mDE1 and mDE2. In
mDE1, current points in a population are initialized randomly
by setting 0/1 bits and mutation is performed according to
[22]. After performing mutation, the continuous components
of a point are transformed into 0/1 bits of a binary string
according to the procedure described in [24]. This procedure
determines the probabilities of components in a continuous
point. These probabilities are then taken into account to
transform a continuous point into a binary string. Suppose,
gi, i = 1, . . . ,m is a continuous point; then each component
gi is transformed intoyi in the following way

yi =

{

1 if rand(0, 1) < sig(gi)
0 otherwise,

wheresig(gi) is the sigmoid limiting function expressed by

sig(gi) =
1

1 + e−gi
.

On the other hand, in mDE2, current points are initialized
within the bounds(0, 10.0) and mutation is performed ac-
cordingly. Then the continuous current points and mutant
points are transformed into binary strings of 0/1 bits accord-
ing to the transformation procedure described in [18]. The
therein presented procedure transforms each componentgi of
a continuous point intoyi, for i = 1, . . . ,m in the following
way

yi = ⌊|gi mod 2|⌋ (3)

where⌊·⌋ represents the floor function. All the other steps
of the mDE algorithm are performed similarly to those
described in [22].

We also code variants mDE1 and mDE2 in C. We also
set N = 100, Tmax = 1000 and ǫ = 10−4. Other
values of the parameters are set according to [22]. Here,
30 independent runs were also carried out. The comparative
results are shown in Table I. The performance criteria among
30 runs are:

• the average percentage deviation to optimality, ‘APD’;
• the average computational time (in seconds), ‘AT’;
• the number of successful runs, ‘Nsr’.

In a run if the algorithm finds the optimal solution (or near
optimal according to an error tolerance) of a test problem,
then the run is considered to be a successful run. The ‘APD’
is defined by

APD =

30
∑

i=1

(

(zibest− zopt)× 100

zopt

)

/30, (4)

wherezibest is theith best solution among30 runs. From the
table it is observed that the S-bAFSA outperforms mDE1
and mDE2 with respect to all performance criteria. The last
column of the table shows the best time (in seconds), ‘BT’,
to find the optimal solution among30 runs of a given test
problem by using S-bAFSA.

Finally, we compare S-bAFSA with PSOLS (PSO with
local search), DisDE and DisABC described in [18], [16],
[17], respectively. The comparative results of PSOLS , DisDE

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

TABLE II
COMPARATIVE RESULTS OFPSOLS , DISDE AND DISABC

PSOLS DisDE DisABC

Prob. APD BT Nsr APD AT Nsr APD AT Nsr

Cap71 0.00 0.01 30 0.00 0.9 30 0.00 3.1 30
Cap72 0.00 0.01 30 0.00 0.9 30 0.00 1.8 30
Cap73 0.00 0.01 30 0.00 1.5 30 0.00 3.6 30
Cap74 0.00 0.01 30 0.00 1.2 30 0.00 1.3 30
Cap101 0.00 0.08 30 0.00 3.2 30 0.00 17.7 30
Cap102 0.00 0.02 30 0.00 3.3 30 0.00 9.7 30
Cap103 0.00 0.07 30 0.00 3.6 30 0.00 7.2 30
Cap104 0.00 0.02 30 0.00 2.5 30 0.00 4.0 30
Cap131 0.00 0.57 30 0.00 17.6 30 0.00 73.6 30
Cap132 0.00 0.18 30 0.00 10.3 30 0.00 42.3 30
Cap133 0.00 0.42 30 0.0026 20.1 29 0.00 30.5 30
Cap134 0.00 0.09 30 0.00 6.1 30 0.00 9.4 30
Capa 0.00 3.03 30 0.00 77.6 30 0.00 86.8 30
Capb 0.00 5.18 30 0.00 172.1 30 0.00 378.3 30
Capc 0.02 8.43 15 0.0085 332.1 24 0.0186 886.4 13

and DisABC are shown in Table II and are taken from respec-
tive literatures. The binary version PSOLS for solving the
UFLP (1) generates continuous initial positions and velocities
within the bounds (-10.0,+10.0) and (-4.0,+4.0), respectively.
Then the continuous position points are transformed into
binary position points according to (3). PSOLS also has
a local search embedded into PSO to be able to produce
more satisfactory solutions [18]. The algorithm performs a
maximum of 250 main iterations. However, at each iteration
the local search applies a flip operator as long as it gets better
solutions. The execution time reported in Table II (adopted
directly from [18]) corresponds to the time “... obtained when
the best value is got over 250 iterations for PSOLS” [18].

Both DisDE and DisABC rely on a measure of dissim-
ilarity between binary vectors to be able to use problem
structure-based heuristics to construct a new solution in
binary space. They are also hybridized with a local search
that uses a neighborhood structure based on swap moves.
The results of DisDE and DisABC, reported in Table II, cor-
respond to the scheme whereNlocal solutions are generated
and evaluated during the local search phase that is called
with a certain probabilityplocal. In DisDE, Nlocal = 50
and plocal = 0.01 and in DisABC Nlocal = 100 and
plocal = 0.02.

From Table I and Table II, we may conclude that, based on
‘APD’ and ‘Nsr’, S-bAfSA gives competitive performance
except with the problems Capb and Capc. Based on ‘AT’,
S-bAFSA gives better performance than those of DisDE and
DisABC; and based on ‘BT’, S-bAFSA also gives better
performance than that of PSOLS . However, we observe
that PSOLS and DisABC show better performances than
S-bAFSA and DisDE when comparing ‘APD’. We may con-
clude from these experiments and Table I that S-bAFSA gives
very good minimum computational time to find the optimal
solution (or near optimal according to an error tolerance)
among30 runs. It should be noted that the computational
time depends on the machine used.

IV. CONCLUSION

In this paper, a simplified binary version of the artificial
fish swarm algorithm, denoted by S-bAFSA, for solving the

uncapacitated facility location problems has been presented.
In S-bAFSA, random, searching and chasing behavior are
used for the movement of the points according to two target
probability values. To create the trial points, crossover and
mutation are implemented. To enhance the search for an
optimal solution, a swap move local search and a cyclic
reinitialization of the population are also implemented. After
determining the opened facilities at candidate locations the
optimal connection of customers to the opened facilities have
been presented. Numerical experiments with a set of well-
known benchmark UFLP show that the presented method
could be an alternative population-based solution method.

Here, a preliminary study of the presented S-bAFSA has
been shown. We did not show the effects of different values
of parameters setting. In future, we will address these issues
and will focus on techniques to accelerate the algorithm
and reduce computational time as well. Then other binary
problems will be considered for solving efficiently using
S-bAFSA.

ACKNOWLEDGMENT

The authors thank an anonymous referee for the valuable comments to
improve this paper.

REFERENCES

[1] M. Jiang, N. Mastorakis, D. Yuan and M. A. Lagunas, “Image segmen-
tation with improved artificial fish swarm algorithm”, in: N. Mastorakis
et al. (Eds.)ECC 2008, LNEE, vol. 28, Springer-Verlag, pp. 133–138.

[2] M. Jiang, Y. Wang, S. Pfletschinger, M. A. Lagunas and D. Yuan,
“Optimal multiuser detection with artificial fish swarm algorithm”, in:
D.-S. Huang et al. (Eds.),Advanced Intelligent Computing Theories
and Applications–ICIC 2007, Part 22, CCISvol. 2, Springer-Verlag,
pp. 1084–1093.

[3] C.-R. Wang, C.-L. Zhou and J.-W. Ma, “An improved artificial fish
swarm algorithm and its application in feed-forward neural networks”,
Proceedings of the fourth International Conference on Machine Learn-
ing and Cybernetics, pp. 2890–2894, 2005.

[4] X. Wang, N. Gao, S. Cai and M. Huang, “An artificial fish swarm
algorithm based and ABC supported QoS unicast routing scheme in
NGI”, in: G. Min et al. (eds.)ISPA 2006, LNCS, vol. 4331, Springer-
Verlag, pp. 205–214.

[5] M. Neshat, G. Sepidnam, M. Sargolzaei and A. N. Toosi, “Artificial
fish swarm algorithm: a survey of the state-of-the-art, hybridization,
combinatorial and indicative applications”,Artificial Intelligence Re-
view, 2012. DOI:10.1007/s10462-012-9342-2

[6] A. M. A. C. Rocha, T. F. M. C. Martins and E. M. G. P. Fernandes,
“An augmented Lagrangian fish swarm based method for global
optimization”, Journal of Computational and Applied Mathematics,
vol. 235, pp. 4611–4620, 2011.

[7] A. M. A. C. Rocha, E. M. G. P. Fernandes and T. F. M. C. Martins,
“Novel fish swarm heuristics for bound constrained global optimiza-
tion problems”, in: B. Murgante et al. (Eds.)Computational Science
and Its Applications–ICCSA 2011, Part III, LNCS, vol. 6784, Springer-
Verlag, pp. 185–199.

[8] D. Erlenkotter, “A dual-based procedure for uncapacitated facility
location”. Operations Research, vol. 26, pp. 992–1009, 1978.

[9] K. Holmberg, “Exact solution methods for uncapacitated location
problems with convex transportation costs”,European Journal of
Operational Research, vol. 114, no. 1, pp. 127–140, 1999.

[10] M. Körkel, “On the exact solution of large-scale simple plant location
problems”,European Journal of Operational Research, vol. 39, no. 1,
pp. 157–173, 1989.

[11] K. S. Al-Sultan and M. A. Al-Fawzan, “A tabu search approach to
the uncapacitated facility location problem”,Annals of Operations
Researchvol. 86, pp. 91–103, 1999.

[12] L. Michel and P. V. Hentenryck, “A simple tabu search for warehouse
location”, European Journal of Operational Research, vol. 157, pp.
576–591, 2004.

[13] M. Sun, “Solving the uncapacitated facility location problem using
tabu search”,Computers & Operations Research, vol. 33, no. 9, pp.
2563–2589, 2006.

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

[14] D. Ghosh, “Neighborhood search heuristics for the uncapacitated
facility location Problem”.European Journal of Operational Research,
vol. 150, pp. 150–162, 2003.

[15] J. H. Jaramillo, J. Bhadury and R. Batta, “On the use of genetic
algorithms to solve location problems”.Computers & Operations
Research, vol. 29, pp. 761–779, 2002.

[16] M. H. Kashan, A. H. Kashan and N. Nahavandi, “A novel dif-
ferential evolution algorithm for binary optimization”,Computa-
tional Optimization and Applications, published online, 2012. DOI:
10.1007/s10589-012-9521-8

[17] M. H. Kashan, N. Nahavandi and A. H. Kashan, “DisABC: A new
artificial bee colony algorithm for binary optimization”,Applied Soft
Computing, vol. 12, pp. 342–352, 2012.

[18] M. Sevkli and A. R. Guner, “A continuous particle swarm opti-
mization algorithm for uncapacitated facility location problem”, in:
M. Dorigo et al. (Eds.),ANTS 2006, LNCS, vol. 4150, Springer-Verlag,
pp. 316–323.

[19] M. A. K. Azad, A. M. A. C. Rocha and E. M. G. P Fernandes, “Solving
multidimensional 0–1 knapsack problem with an artificial fish swarm
algorithm”, in: B. Murgante et al. (Eds.),Computational Science and
Its Applications–ICCSA 2012, Part III, LNCS, vol. 7335, Springer-
Verlag, Heidelberg, pp. 72–86.

[20] Z. Michalewicz,Genetic Algorithms+Data Structures=Evolution Pro-
grams, Berlin, Germany: Springer, 1996.

[21] J. E. Beasley, OR-library: available at online
http://people.brunel.ac.uk/∼mastjjb/jeb/info.html

[22] M. A. K. Azad and E. M. G. P Fernandes, “A modified differential
evolution based solution technique for economic dispatch problems”,
Journal of Industrial and Management Optimization, vol. 8, no. 4, pp.
1017–1038, 2012.

[23] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces”,Journal of
Global Optimization, vol. 11, pp. 341–359, 1997.

[24] J. Kennedy and R. Eberhart, “A discrete binary version of the particle
swarm algorithm”, Proceedings of the World Multiconference on
Systemics, Cybernetics and Informatics, pp. 4104–4109, 1997.

Proceedings of the World Congress on Engineering 2013 Vol I,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

