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Abstract

The production of safety critical software is bound to a number of safety and
certification standards in which estimating the risk of failure plays a central role. Yet
risk estimation seems to live outside most programmers’ core practice, involving
simulation techniques and worst case analysis performed a posteriori.

In this paper we propose that risk be constructively handled in functional
programming by writing programs which choose between expected and faulty be-
haviour and by reasoning about them in a linear algebra extension to the standard
algebra of programming.

In particular, the paper calculates propagation of faults across standard pro-
gram transformation techniques known as tupling and fusion, enabling the fault of
the whole to be expressed in terms of the faults of its parts.
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The production of safety critical software is bound to a number
of safety and certification standards in which estimating the risk of
failure plays a central role. Yet risk estimation seems to live outside
most programmers’ core practice, involving simulation techniques
and worst case analysis performed a posteriori.

In this paper we propose that risk be constructively handled
in functional programming by writing programs which choose be-
tween expected and faulty behaviour and by reasoning about them
in a linear algebra extension to the standard algebra of program-
ming.

In particular, the paper calculates propagation of faults across
standard program transformation techniques known as tupling and
fusion, enabling the fault of the whole to be expressed in terms of
the faults of its parts.
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1. Introduction
With software so invasive in every-day’s life as it is today, you don’t
need to be staff of a space agency to place the question: what risks
do we run day-to-day by relying on so much software? Jackson [12]
writes:

(...) a dependable system is one (..) in which you can place
your reliance or trust. A rational person or organization
only does this with evidence that the system’s benefits out-
weigh its risks.

Over the years, NASA has defined a probabilistic risk assessment
(PRA) methodology to enhance the safety decision process. Quot-
ing NASA’s procedure guide for PRA [21]:

[Copyright notice will appear here once ’preprint’ option is removed.]

PRA characterizes risk in terms of three basic questions: (1)
What can go wrong? (2) How likely is it? and (3) What are
the consequences? The PRA process answers these ques-
tions by systematically (...) identifying, modeling, and quan-
tifying scenarios that can lead to undesired consequences.

Reading this quotation one is left with the feeling that PRA takes
place a posteriori, that is, once the system is built. Even if the
wrong interpretation of the pragmatics of PRA, limitations of cur-
rent programming practice are apparent concerning timely assess-
ment of the risks involved in the future use of the program one is
writing at the moment. Things that can go wrong can be guessed;
but, how is the likelihood of such bad behaviour expressed? and
how does one quantify its consequences (fault propagation)?

This paper addresses these questions and issues in the context
of functional programming (FP). We will show that FP is well
prepared for incorporating risk analysis smoothly in the design of
programs. This is because the standard qualitative semantics of
FPs can evolve towards a quantitative one simply by upgrading its
underlying (relational) algebra of programs [4] into a linear algebra
of programming (LAoP) [18].

The basic idea is simple: suppose one writes function good for
the intended behaviour of a program and that there is evidence that,
with probability p, such behaviour can turn into a bad function.
Using the probabilistic choice combinator (· ·� ·) of [15, 18], one
may write term

bad p� good

to express the complete (ie. with risk incorporated) behaviour of
what one is programming.

What is needed, then, is a method for evaluating the propagation
of risk, for instance across recursion schemes. This is what LAoP
[18] is intended for. This paper investigates, in particular, a quan-
titative extension of the so-called mutual recursion law [4] which
underpins the refinement of primitive recursive functions into linear
implementations and checks under what conditions are such imple-
mentations as good as their original definitions with respect to fault
propagation.

We will illustrate our results in two ways: either by running our
programs as probabilistic (monadic) functions written in Haskell
using the PFP library of [7], or running finite approximations of
them directly as matrices in MATLAB 1.

Paper outline The following section presents two motivating ex-
amples of programs which will be subject to fault-injection as an
illustration of risk simulation and calculation. Section 3 addresses
the derivation of such programs via mutual-recursion transforma-
tion, an exercise which is then (section 4) extended to the prob-
abilistic setting in which risk is to be evaluated. A basis for this

1 MATLAB TM is a trademark of The MathWorks R©.
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is given in section 5, where LAoP [18] is introduced in context
leading to the approach to probabilistic mutual recursion given in
section 6. This in turn leads to an asymmetry (section 7) which
explains the different fault propagation patterns found in the two
motivating examples (section 8). The topic of fault propagation in
functional programming is further delved in section 9 by moving
to more elaborate data types and showing how the risk of the whole
can be calculated combining the risk of the parts. The two last sec-
tions conclude and give prospects for future work. Proofs of auxil-
iary results are deferred to appendix A.

2. Motivation
Let us start from two programs written in C, one which supposedly
computes the square of a non-negative integer n ,

int sq(int n) {
int s=0; int o=1;
int i;
for (i=1;i<n+1;i++) {s+=o; o+=2;}
return s;

};

and the other
int fib(int n) {

int x=0; int y=1; int i;
for (i=1;i<=n;i++) {int a=y; y=y+x; x=a;}
return x;

};

which supposedly computes the n-th entry in the Fibonacci series,
for n positive.

Both programs are for-loops whose bodies rely on the same
operation: addition of natural numbers. Suppose one knows that,
in the machine where such programs will run, there is the risk
of addition misbehaving in some known way: with probability p,
x + y may evaluate to y , in which case (x+) = id , the identity
function. Or one might know that, in some unfriendly environment,
the processor’s arithmetic-logic unit may reset addition output to 0,
with probability q .

The question is: what is the impact of such faults in the overall
behaviour of each for-loop? Can we measure such an impact? Can
we predict it? Are there versions of the same programs which
mitigate the faults better than the ones given?

The standard approach to these questions relies on simulation:
one performs a large number of experiments in which the pro-
grams run with the given faults injected according to the given
probabilities and then performs statistic analysis of the outcome of
such simulations. Software fault injection [22] is a more and more
widespread technique for quality software assurance which mea-
sures the propagation of faults through paths that might otherwise
rarely be followed in testing. The G-SWFIT technique, for instance,
emulates the software fault classes most frequently observed in the
field through a library of fault emulation operators, and injects such
faults directly in the target executable code [6].

In this paper we adopt a different strategy: instead of simulat-
ing risky behaviour a posteriori, this is taken into account a priori
by moving from imperative to functional code whereby faulty be-
haviour is encoded in terms of probabilistic functions [7]. Take the
two versions of faulty addition given above as examples: the first
can be expressed by turning (+) into the probabilistic function

fadd x = id p� (x+)

(fadd for “faulty addition”) which misbehaves as the identity func-
tion id with probability p and exhibits the correct behaviour with
probability 1−p; similarly, the second is expressed by probabilistic
choice

fadd x = 0 q� (x+)

where 0 = 0 is the everywhere-0 constant function. Of course,
we might think of more elaborate fault patterns, for instance

fadd x = (0 q� id) p� (x+)

in which the probability of fadd resetting to 0 is qp and (1− q) p
is that of degenerating into the identity; or even thinking of normal
distributions centered upon the expected output x + y , and so on.

Probabilistic functions are distribution-valued functions which
can be written in the monadic style over the distribution monad,
which is termed Dist in the PFP library [7] we shall be using in
the sequel. Moreover, probabilistic functions can be reasoned about
using the laws of monads, explicitly as in [9] or implicitly as in the
probabilistic notation proposed by Morgan [17] as extension to the
standard Eindhoven quantifier calculus [1].

There is yet another alternative: every probabilistic function
f : a → Dist b is in one-to-one correspondence with a matrix
whose columns are indexed by a , whose rows are indexed by b
and whose multiplication corresponds to composition in the Kleisli
category induced by Dist [18, 19]. This offers the possibility of
using the rich field of linear algebra to calculate with probabilistic
functions, in the same way relation algebra has been used [4] to
reason about standard (sharp) functions.

One of the advantages of such a linear algebra of programming
(LAoP) is the way recursive probabilistic functions are handled —
simply by using the same combinators (eg. maps, folds) — of the
standard algebra of programming [4]. The shift from a qualitative
to a quantitative semantics is therefore rather smooth — the game is
the same, the move ensured by the change of underlying category 2.
Reference [18] includes an example of what might be refereed to
as fault-fusion: the risk of the whole misbehaving can be expressed
in terms of the risk of the parts misbehaving wherever such fusion
law is applicable.

Note, however, that not every law of the algebra of program-
ming extends quantitatively. In this paper we address the linear al-
gebra extension of one such law which is particularly relevant to
program calculation: the mutual recursion (or Fokkinga) law en-
abling systems of mutually recursive functions to be merged into
a single, more efficient function [4]. Both C programs given above
can be derived from their specifications using such a law. Below we
show how they can be turned into probabilistic functions express-
ing safe and risky behaviour in a natural and calculational way.

3. Mutual recursion
Let us take the standard definition of the Fibonacci function, written
in Haskell syntax:

fib 0 = 0
fib 1 = 1
fib (n + 2) = fib n + fib (n + 1)

The linear version encoded in the C program given above is ob-
tained by pairing fib with its derivative, f n = fib (n + 1): 3

fib 0 = 0
fib (n + 1) = f n

f 0 = 1
f (n + 1) = fib n + f n

The pairing of the two functions,

(fib, f ) n = (fib n, f n)

2 This can also be observed in other areas, for instance weighted versus
standard finite-state automata [19].
3 Since f 0 = fib 1 = 1 and f (n +1) = fib (n +2) = fib n +fib (n +
1) = fib n + f n .
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can be expressed primitive recursively by

(fib, f ) 0 = (fib 0, f 0) = (0, 1)
(fib, f ) (n + 1) = (f n,fib n + f n)

or by the equivalent

(fib, f ) 0 = (0, 1)
(fib, f ) (n + 1) = (y , x + y) where (x , y) = (fib, f ) n

itself the same as

(fib, f ) = for loop (0, 1)
where loop (x , y) = (y , x + y)

by introduction of the for loop combinator,

for b i 0 = i
for b i (n + 1) = b (for b i n)

where b is the loop body and i provides for initialization. This is the
natural-number equivalent to combinator foldr over finite lists in
Haskell (ie. the catamorphism [4] of natural numbers). Therefore,
we can define

fibl n =
let (x , y) = for loop (0, 1) n

loop (x , y) = (y , x + y)
in x

as the linear version of fib obtained by pairing fib with its derivative
— compare with the C program given above.

The other program computing squares can be derived in the
same way from the specification sq n = n2: the two mutually
recursive functions

sq 0 = 0
sq (n + 1) = sq n + odd n

odd 0 = 1
odd (n + 1) = 2 + odd n

arise from (n + 1)2 = n2 + 2n + 1 and introduction of function
odd n = 2 n + 1, thus named because 2 n + 1 is the n-th
odd number.4 Pairing them up into (sq , odd) x = (sq x , odd x )
and proceeding in the same way as above we obtain (sq , odd) =
for loop (0, 1) where loop (s, o) = (s+o, o+2) and thereupon
the following functional version of the given C program: 5

sql n =
let (s, o) = for loop (0, 1) n

loop (s, o) = (s + o, o + 2)
in s

Clearly, each recursive function above and its linear version are,
extensionally, the same function. Let us now see what happens
when we start injecting risky (faulty) behaviour in each of them.

4. Going probabilistic
Probabilistic extensions of any of the functions above can be ob-
tained by writing them monadically and then instantiating them
with the distribution monad [7]. Take the recursive version of fib
given in the beginning of section 3 and “monadify it” into:

mfib 0 = return 0
mfib 1 = return 1
mfib (n + 2) =

do {x ← mfib n; y ← mfib (n + 1); return (x + y)}

4 That is, the square of a natural number always is a sum of odd numbers.
5 Notice how the syntax s+=o; o+=2; in C nicely tallies with our (s +
o, o + 2) in Haskell.

Running mfib n inside the Dist monad one gets fib n with 100%
probability, since return yields the one-point, Dirac distribution
of its argument. Now let us inject one of the faults mentioned in
section 2, say fadd p x = id p� (x+) with p = 0.1, for instance.
We just replace return (x + y) (perfect addition) by fadd 0.1 x y
and run test cases, eg. 6

Main> mfib 4
3 81.0%
2 18.0%
1 1.0%

We see that the correct behaviour (100% chances of getting fib 4 =
3) is no longer ensured — with chance 18% one may get 2 as result
and even 1 is a possible output, with probability 1%.

Similar experiments can be carried out with the linear version
by defining its monadic evolution

mfibl n =
do {(x , y)← mfor loop (0, 1) n; return x }
where loop (x , y) = return (y , x + y)

relying on the monadic extension of the for combinator:

mfor b i 0 = return i
mfor b i (n + 1) = do {x ← mfor b i n; b x }

To inject into mfibl the same fault injected before into mfib
amounts to replacing good addition by the bad one:

loop (x , y) = do {z ← fadd 0.1 x y ; return (y , z )}
Running the same experiment as above we still get mfibl 4 =
mfib 4. However, behavioural equality between the two (one re-
cursive, the other linear) fault-injected versions of fib is no longer
true for arguments n > 4, see for instance

n mfib n mfibl n

5

5 65.6%
4 21.9%
3 10.5%
2 1.9%
1 0.1%

5 72.9%
3 16.2%
4 8.1%
2 2.7%
1 0.1%

6

8 47.8%
7 26.6%
6 11.8%
5 9.8%
4 2.7%
3 1.1%
2 0.2%
1 0.0%

8 65.6%
6 14.6%
5 14.6%
3 2.4%
4 2.4%
2 0.4%
1 0.0%

the linear version performing better than the recursive one in the
sense of hitting the correct answer with higher probability.

Let us now carry out the same experiments concerning the
injection of the same fault (in the addition function) in suitably
extended (monadic) versions of the square function, the recursive
one

msq 0 = return 0
msq (n + 1) = do {m ← msq n; fadd 0.1 m (2 ∗ n + 1)}

and the linear one:

msql n =
do {(s, o)← mfor loop (0, 1) n; return s }

where loop (s, o) =
do {z ← fadd 0.1 s o; return (z , o + 2)}

6 The probabilities in this example and others to follow are chosen with no
criterion at all apart from leading to distributions visible to the naked eye.
By all means, 0.1 would be extremely high risk in a realistic PRA [21],
where figures such as small as 1.0E-7 are “acceptable” risks.
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In this case — as much as we can test — both versions exhibit the
same behaviour, that is, they are probabilistically indistinguishable,
see for instance:

n msq n msql n
0 0 100.0% 0 100.0%
1 1 100.0% 1 100.0%

2 4 90.0%
3 10.0%

4 90.0%
3 10.0%

3
9 81.0%
5 10.0%
8 9.0%

9 81.0%
5 10.0%
8 9.0%

...
...

...

6

36 59.0%
11 10.0%
20 9.0%
27 8.1%
32 7.3%
35 6.6%

36 59.0%
11 10.0%
20 9.0%
27 8.1%
32 7.3%
35 6.6%

...
...

...

Summing up, we are in presence of two examples in which the
risk of bad behaviour propagates differently across the mutual re-
cursion functional program transformation. In the remainder of this
paper we will resort to linear algebra to explain this discrepancy.

We will show that, even if the transformation does not hold in
general for probabilistic functions, there are side conditions suffi-
cient for it to hold, explaining the different behaviour witnessed in
the examples above.

5. Probabilistic for-loops in the LAoP
Consider the probabilistic Boolean function f = False 0.05� (¬)
which is such that f True = False (100%) and f False is either
True (95%) or False (5%) — an instance of faulty negation. It is
easy to represent f in the form of a matrix M ,

M =

False True

True

False



0.95 0

0.05 1.00


 (1)

where the inputs spread across columns and the outputs across
rows. Because columns represent distributions, all figures in the
same column should sum up to 1.

Matrices with this property will be referred to as column-
stochastic (CS). The multiplication of two CS-matrices is a CS-
matrix, as is the identity matrix id (square, diagonal matrix with
1s in the diagonal) which is the unit of such multiplication:
M .id = M = id · M , where matrix multiplication is denoted
by an infix dot (·).

We will write M : n → m , or draw the arrow n
M // m , to

indicate the type of a CS-matrix M , meaning that it has n columns
and m rows. This view enables us to regard all CS-matrices as
morphisms of a category whose objects are matrix dimensions,
each dimension having its identity morphism id [14]. If one extends
such objects to arbitrary types (with Cartesian product and disjoint
union for addition and multiplication of matrix dimensions), this
category of matrices turns out to be the Kleisli category induced
by the distribution monad. In the example above, f : Bool →
Dist Bool is represented by a matrix of type M : Bool → Bool
(1) on the Kleisli-category side.

Let notation [[f ]] mean the matrix which represents probabilistic
function f in such a matrix category. For f of type A → Dist B ,
[[f ]] will be a matrix of type A → B , that is, cell b [[f ]] a in the

matrix 7 records the probability of b in distribution δ = f a . Then
probabilistic function (monadic) composition,

(f • g) a = do {b ← g a; f b}
becomes matrix multiplication,

[[f • g ]] = [[f ]] · [[g ]] (2)

and probabilistic function choice is given by

[[f p� g ]] = p[[f ]] + (1− p)[[g ]] (3)

where + denotes addition of two matrices of the same type and
p M denotes the multiplication of every cell in M by probability
p.

Clearly, [[return]] = id . Any conventional function f : A→ B
can be turned into a “sharp” probabilistic one through the compo-
sition return · f which, represented as a CS-matrix, is the matrix
M = [[return · f ]] such that b M a = 1 if b = f a and is 0 other-
wise.8 We will write [[f ]] as shorthand for [[return · f ]] and therefore
will rely on fact (f a) [[f ]] a = 1, all other cells being 0.

The fact that sharp functions are representable by matrices and
that function composition corresponds to chaining the correspond-
ing matrix arrows makes it easy to picture probabilistic functional
programs in the form of diagrams in the matrix (Kleisli) category.
Take, for instance, the for-loop combinator given above,

for b i 0 = i
for b i (n + 1) = b (for b i n)

and re-write it as follows,

(for b i) · 0 = i
((for b i) · succ) n = (b · (for b i)) n

where succ n = n + 1 and (recall) the under-bar notation denotes
constant functions. This is the same as writing the matrix equalities,

[[for b i ]] · [[0]] = [[i ]]
[[for b i ]] · [[succ]] = [[b]] · [[for b i ]]

which can be reduced to a single equality,

[[for b i ]] · [[[0]]|[[succ]]] = [[[i ]]|([[b]] · [[for b i ]])] (4)

by resorting to the [M |N ] combinator which glues two matrices
M : A→ C and N : B → C side-by-side, yielding [M |N ] : A +
B → C . As explained in [14], this combinator (which corresponds
to the “junc” operator in [4]) is a universal construction in any
category of matrices, therefore satisfying (among others) the fusion
law

P · [M |N ] = [P ·M |P ·N ] (5)

and (for suitably typed matrices) the equality law,

[M |N ] = [P |Q] ≡ M = P ∧N = Q (6)

both silently used in the derivation above.
Our matrix semantics for the for-loop combinator can still be

simplified in two ways: first, the [[·]] parentheses in (4) can be
dropped, since we may assume they are implicitly surrounding
functions everywhere:

7 Following the infix notation usually adopted for relations (which are
Boolean matrices), for instance y 6 x , we write y M x to denote the
contents of the cell in matrix M addressed by row y and column x . This
and other notational conventions of the linear algebra of programming are
explained in detail in [19].
8 A probabilistic function f : A → Dist B is said to be sharp if, for all
a ∈ A, f a is a Dirac distribution. A Dirac distribution is one whose
support is a singleton set, the unique element of which is offered with 100%
probability.
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(for b i) · [0|succ] = [i |(b · (for b i))]

Second, [i |(b · (for b i))] can be factored into composition [i |b] ·
(id ⊕ (for b i)), since absorption law

[M |N ] · (P ⊕Q) = [M · P |N ·Q] (7)

holds [14], where · ⊕ · is the matrix direct sum (block) operation:

M ⊕ N =

[
M 0
0 N

]
. Altogether, we get an equality of matrix

compositions,

(for b i) · [0|succ] = [i |b] · (id ⊕ (for b i))

which corresponds to the typed matrix diagram which follows,

N0

in◦=
[

0◦
succ◦

]

))

for b i

��

∼= 1 + N0

in=[0|succ]

hh

id⊕(for b i)

��
B 1 +B

[i|b]

gg

where symbol∼= indicates that function in = [0|succ] is a bijection,
and therefore its converse in◦ is also a function. By the converse
M ◦ of a matrix M we mean its transpose, that is, x (M ◦) y =
y M x holds — the effect is that of swapping rows with columns.
The diagram also uses the split combinator

[ ·
·
]

which is the con-
verse dual of [·|·]:

[M |N ]◦ =

[
M ◦

N ◦

]
(8)

Why does this diagram matter? First, it can be recognized as
an instance of a catamorphism diagram [4], here interpreted in the
category of CS-matrices rather than in that of total functions or
binary relations — the qualitative to quantitative shift promised
in the introduction of the paper. In fact, because composition is
closed for CS-matrices and these include sharp functions, b and i
can vary inside the CS-matrix space and the diagram will still make
sense. For instance, the base case, which is represented by constant
function i :1→ N0 — a column vector — corresponds to the Dirac
distribution on i , which can be changed to any other distribution.

Moreover, because in is a bijection, not only the diagram tells
that for b i is a solution to the equation

k · in = [i |b] · (id ⊕ k)

but it turns out that this is the unique solution:9

k = for b i ≡ k · in = [i |b] · (id ⊕ k) (9)

This unique solution can be computed as the fixpoint in k of

k = i · 0◦ + b · k · succ◦ (10)

which is obtained from (9) above by use of the so-called ‘divide-
and-conquer’ law:

[M |N ] ·
[
P

Q

]
= M · P +N ·Q (11)

Equation (10) tells how the matrix k = for b i is recursively
filled up: first the outer-product i · 0◦, that is, the everywhere-0
matrix apart from the 1 in cell (i, 0)), which is added to b · i · 0◦ ·
succ◦, and so on. For sharp b, this is (b i) ·1◦, the n-th entry being
(bn i) · n◦. Note that each contribution of the fixpoint ascending

9 The argument is the same as in [4] just by replacing the powerset monad
by the distribution monad.

chain is a matrix which “fills an empty column”, thus ensuring that
no column ever adds up to more than 1.

Equation (10) also serves to emulate the construction of the fix-
point using matrix algebra packages such as, for instance, MAT-
LAB. In this case we build finite approximations of the fixpoint
helped by the corresponding diagram approximation, for inputs at
most n and at most m possible outputs:

n
[0|succ]◦ //

k

��

1 + n

id⊕k

��
m 1 + m

[i|b]
oo

As MATLAB is not typed, tracing matrix dimensions without the
help of diagrams of this kind would be a nightmare.

Let us see an example: suppose we want to emulate a fault in the
odd function, odd = (1+) · (2∗), in which (2∗) = for (2+) 0 is
disturbed by the propagation of the same fault of addition we have
seen before:

ftwice = mfor (fadd 0.1 2) 0

For instance, ftwice 4 is the distribution

8 65.6%
6 29.2%
4 4.9%
2 0.4%
0 0.0%

In MATLAB, we will first draw the corresponding diagram,

n
[0|succ]◦ //

ftwice

��

1 + n

id⊕ftwice

��
m 1 + m

[0|(idp�(2+))]

oo

parametric on probability p and the n and m dimensions, which
nevertheless have to be passed explicitly when building each arrow
of the diagram in MATLAB. The probabilistic choice in the corre-
sponding instance of (10),

k = 0 · 0◦ + (id p� (2+)) · k · succ◦ (12)

is captured by MATLAB function

function C = faddk(p,k,n,m)
M = eye(m,n);
N = addk(k,n,m);
C = choice(p,M,N);

end

(note the types, ie. dimensions n and m , passed as parameters)
where

function C = choice(p,M,N)
if size(M) ˜= size(N)

error(’Dimensions must agree’);
else

C = p*M+(1-p)*N
end

end

(note the need for explicit type error checking). The right-hand side
of the equation is captured by

function Y = twiceF(n,m,X)
if size(X) ˜= [m n]

error(’Dimensions must agree’);
else

Y = zero(m)*zero(n)’ +
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faddk(0.1,2,m,m)*X*succ(n,n)’
end

end

For n,m = 5, 8 and p = 0.1, the fixpoint of equation (12) is the
matrix

1 0.1 0.01 0.001 0.0001
0 0 0 0 0
0 0.9 0.18 0.027 0.0036
0 0 0 0 0
0 0 0.81 0.243 0.0486
0 0 0 0 0
0 0 0 0.729 0.2916
0 0 0 0 0
0 0 0 0 0.6561

whose leftmost column (resp. top row) corresponds to input (resp.
output) 0. The five columns of the matrix correspond to the distri-
butions output by the monadic ftwice n , for n = 0 . . 4.

So much for an illustration of the correspondence between
monadic probabilistic programming (in Haskell) and column stochas-
tic matrix construction (in MATLAB). In the following section we
will go back to analytical methods relying solely on universal prop-
erty (9) and its corollaries.

6. Probabilistic mutual recursion in the LAoP
As we have seen above, mutual recursion arises from the pairing
(tupling [11], in general) of two (sharp) functions f and g , defined
by

(f , g) x = (f x , g x )

where (f , g) : A → B × C for f : A → B and g : A → C . This
tupling operator is known as split [4] in the functional setting or
as fork in the relational one [8, 20]. Macedo [13] shows that these
operators generalize to the so-called Khatri-Rao product M M N of
two arbitrary matrices M and N defined index-wise by

(b, c) (M M N ) a = (b M a)× (c N a) (13)

Thus the Khatri-Rao product is a “column-wise” version of the
well-known Kronecker product · ⊗ ·, defined by

(y , x ) (M ⊗N ) (b, a) = (y M b)× (x N a) (14)

Khatri-Rao coincides with Kronecker for column vectors u : 1 →
B , v : 1→ C ,

u M v = u ⊗ v (15)

and commutes with matrix junc’ing via the exchange law [13]:

[M |N ] M [P |Q ] = [(M M P)|(N M Q)] (16)

for suitably typed matrices M , N , P and Q .
For sharp functions f and g , pairing is an universal construct

ensuring that any function k producing pairs is uniquely factored
to the left and to the right:

k = f M g ≡ fst · k = f ∧ snd · k = g (17)

where fst (b, c) = b and snd (b, c) = c. (Note how liberally
we keep omitting the [[·]] parentheses around the occurrence of
functions inside matrix expressions.)

From (17) a number of useful corollaries arise, namely (keep
in mind that f and g should be sharp functions for the time being)
fusion,

(f M g) · h = (f · h) M (g · h) (18)

reconstruction,

k = (fst · k) M (snd · k) (19)

and pairwise equality:

k M h = f M g ≡ k = f ∧ h = g (20)

This makes it easy to prove the mutual recursion law, below in-
stantiated to for-loops but (as is well-known) valid for any inductive
type (eg. lists, trees etc) [4, 11]; F f abbreviates id ⊕ f :

f M g = for (h M k) (i , j )

≡ { universal property (10) }
(f M g) · in = [(i , j )|(h M k)] · F (f M g)

≡ { fusion (18) ; constant functions }
(f · in) M (g · in) = [(i M j )|(h M k)] · F (f M g)

≡ { exchange law (16) }
(f · in) M (g · in) = ([i |h] M [j |k ]) · F (f M g)

≡ { fusion (18) again }
(f · in) M (g · in) = ([i |h] · F (f M g)) M ([j |k ] · F (f M g))

≡ { equality (20) }
{

f · in = [i |h] · F (f M g)
g · in = [j |k ] · F (f M g)

Read in reverse direction, this reasoning explains how two recur-
sive, mutually dependent functions f and g (regarded as matrices)
combine with each other into one single function f M g , from which
one can extract both f and g by projecting according to the cancel-
lation rule,

fst · (f M g) = f ∧ snd · (f M g) = g (21)

yet another corollary of (17).
The law just derived can be identified as the underpinning of the

(pointwise) derivations of fibl (resp. sql ) from fib (resp. sq) back
to section 2. But note that f and g have been regarded as sharp
functions thus far, and therefore what we have written is just a
rephrasing of what can be found already in the literature of tupling,
see eg. references [4, 11] among several others.

We are now interested in checking the probabilistic extension of
(17). Let two probabilistic functions f and g and their product f M g
be depicted as the CS-matrices of the following diagram:

2 2× 3
fst=

[
1 1 1 0 0 0
0 0 0 1 1 1

]

oo
snd=

[
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

]

// 3

4

f M g =




0.15 0.12 0 0
0.35 0.06 0 0.75
0 0.12 0 0

0.15 0.28 0.1 0
0.35 0.14 0.2 0.25
0 0.28 0.7 0




OO

g=

[
0.3 0.4 0.1 0
0.7 0.2 0.2 1
0 0.4 0.7 0

]

>>

f=

[
0.5 0.3 0 0.75
0.5 0.7 1 0.25

]

``

We can handle this in Haskell by running the following monadic
functions

(f M g) a = do {b ← f a; c ← g a; return (b, c)}
mfst d = do {(b, c)← d ; return b}
msnd d = do {(b, c)← d ; return c}
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inside the distribution monad Dist , thereby implementing the
Khatri-Rao product and its projections. For instance, (f M g) 2
will yield

(2,1) 28.0%
(2,3) 28.0%
(2,2) 14.0%
(1,1) 12.0%
(1,3) 12.0%
(1,2) 6.0%

as in the second column of the corresponding matrix given above.
Moreover, both in Haskell and MATLAB we can observe the can-
cellations fst · (f M g) = f and snd · (f M g) = g .

However, reconstruction (19) will not survive the probabilistic
extension. This is because not every CS-matrix k : A → B × C
outputting pairs is the Khatri-Rao product of two CS-matrices, as
the following counter-example shows: matrix

k : 3→ 2× 3

k =




0 0.4 0.2
0.2 0 0.17
0.2 0.1 0.13
0.6 0.4 0.2
0 0 0.17
0 0.1 0.13




cannot be recovered from its projections, cf. the first column in:

(fst · k) M (snd · k) =




0.24 0.4 0.2
0.08 0 0.17
0.08 0.1 0.13
0.36 0.4 0.2
0.12 0 0.17
0.12 0.1 0.13




This happens because probabilistic Khatri-Rao is a weak prod-
uct — the expected equivalence (17) is only an implication,

k = f M g ⇒ fst · k = f ∧ snd · k = g (22)

ensuring existence but not uniqueness. The proof of (22), which is
equivalent to cancellation (21) — substitute k and simplify — can
be found in appendix A. This proof relies on properties (15) and
(16) of the Khatri-Rao product.

Weak product (22) also grants pairwise equality (20) — substi-
tute k by k Mh and simplify — but the converse substitution of f and
g , in the⇐ direction, leading to reconstruction (19) is of course in-
valid. In turn, this invalidates fusion (18) for arbitrary probabilistic
functions f , g and h , although the property will still hold in case h
is sharp 10, as the straightforward proof in appendix A shows.

Altogether, the mutual recursion law will not hold in general for
probabilistic functions, as its calculation (above) relies on fusion
(18). This is consistent with what we have observed in section 4
concerning the two versions of Fibonacci, mfib before the applica-
tion of mutual recursion and mfibl after, which differ substantially
for inputs larger than 4. However, the corresponding pair of proba-
bilistic functions of the other example — msq and msql — seemed
to be the same (ie. probabilistically indistinguishable), as much as
could be tested.

In the following section we explain the difference observed
in the two experiments by investigating sufficient conditions for
the mutual recursion law to hold for probabilistic functions (CS-
matrices).

10 The same happens with forks in relation algebra [4].

7. Asymmetric Khatri-Rao product
To re-establish the equivalence in (17) given (22) we just have to
find conditions for the converse implication

k = f M g ⇐ fst · k = f ∧ snd · k = g

to hold, which is equivalent to (19) under the substitution or intro-
duction of variables f and g . For this we may seek inspiration in
relation algebra [4], where one knows that if one of the projections
of a binary relation R outputting pairs is functional (ie., determin-
istic), then (b, c) R a ≡ b (fst · R) a ∧ c (snd · R) a holds.
That is, by forking fst · R and snd · R one rebuilds R.

Back to probabilistic functions (ie. CS-matrices), this leads into
the following conjecture:

If either fst ·k or snd ·k are sharp functions then (19) holds.

Some intuitions first, before checking this conjecture. Let k : A→
B × C be a CS-matrix. The fact that f = fst · k : A→ B is sharp
means that, for b = f a , the corresponding C -block in matrix k
adds up to 1 and all the other entries in the a-column of k are 0.
Projection snd · k : A → C yields such a block; 〈fst · k , snd · k〉
puts it back in place.

In the proof of this conjecture we will resort to the definition of
(typed) matrix composition, for M : B → C and N : A→ B ,

c(M ·N)a = 〈
∑

b :: (c M b)× (b N a)〉 (23)

and to two rules given in [19] which interface index-free and index-
wise matrix notation, where N is an arbitrary matrix and f , g are
functional (ie. sharp) matrices: 11

y(f ·N)x = 〈
∑

z : y = f z : zNx〉 (24)

y(g◦ ·N · f)x = (g y) N (f x ) (25)

Let us suppose fst · k in (19) is sharp. We introduce f : A→ B
as denotation of the proper function which fst · k is, by hypothesis.
Thus f = fst · k . Regarded as a matrix, f is such that b f a = 1 if
b = f a , otherwise b f a = 0. It is easy to check that facts

〈
∑

c :: (f a, c) k a〉 = 1 (26)

〈
∑

(b, c) : (b 6= f a) : ((b, c) k a)〉 = 0 (27)

hold — see below. Define m = 〈fst · k , snd · k〉, that is,

(b, c) m a = (b (fst · k) a)× (c (snd · k) a)

the same as

(b, c) m a = (b f a)× 〈
∑

b′ :: (b′, c) k a〉 (28)

since f = fst · k an snd is sharp (24). Our aim is to prove that
m = k .

Case b 6= f a: In this case b f a = 0 and (28) yields
(b, c) m a = 0. From (27) we also get (b, c) k a = 0 and so
m = k for this case.

11 These rules, expressed in the style of the Eindhoven quantifier calculus
[1], are derived in [19]. We adopt the Eindhoven notation [1, 17] for
summations, eg. 〈∑ x : R : S〉 where R is the range (a predicate) which
binds the dummy x and S is the summand. 〈∑ x :: S〉 corresponds to R
being true for all x. (The convention is to omit R in this case.)
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Case b = f a: we have

(f a, c) m a

= { (28) ; (b f a) = 1 for b = f a }

〈
∑

b′ :: (b′, c) k a〉

= { b′ = f a ∨ b′ 6= f a }

〈
∑

b′ : b′ = f a ∨ b′ 6= f a : (b′, c) k a〉

= { split summation ; one-point over b′ = f a }

((f a, c) k a) + 〈
∑

b′ : b′ 6= f a : (b′, c) k a〉

= { (27) }
(f a, c) k a

Thus m and k are extensionally the same for all cells addressed by
(f a, c), completing the proof.
�

The proof assuming snd ·k sharp instead of fst ·k being so will
be essentially the same. It remains to prove assumptions (26) and
(27):

Proof of (26) This equality arises from rule (24):

〈
∑

c :: (f a, c) k a〉 = 1

≡ { one-point rule }

〈
∑

b, c : f a = b : (b, c) k a〉 = 1

≡ { b = fst (b, c) ; (24) }
(f a) (fst · k) a = 1

≡ { f = fst · k }
(f a) f a = 1

≡ { f is sharp }
true

�
Proof of (27) This equality arises from k being probabilistic:

〈
∑

b, c : b 6= f a : (b, c) k a〉 = 0

≡ { 1 + 0 = 1 }

1 + 〈
∑

b, c : b 6= f a : (b, c) k a〉 = 1

≡ { (26) }
〈∑ c :: (f a, c) k a〉+
〈∑ b, c : b 6= f a : (b, c) k a〉 = 1

≡ { merge quantifiers }

〈
∑

(b, c) :: (b, c) k a〉 = 1

≡ { k is probabilistic }
true

�

8. Probabilistic mutual recursion resumed
Back to the case studies of section 4, we now capitalize on the
result of the previous section granting that, if one of the projections

of a probabilistic pair-valued function k is a sharp function, then
property (17) holds and all its corollaries. 12 This means that, under
the same assumption, the mutual recursion law will hold too.

Put in other words, the probabilistic behaviour of a pair-valued
recursive function, for instance a for-loop k = for b i , will be the
same as the product f M g of its mutually recursive projections f
and g , provided either f is sharp or g is sharp.

This enables us to spot a difference between the two examples
of section 4 just by looking at the corresponding call graphs:

sq

��

// odd

��

fib // f

��

??

We see that sq depends on itself and on odd but odd only depends
on itself. Probabilistic msq was obtained from sq by injecting a
fault in the addition operation but this did not interfere with odd ,
which remained a sharp function. Thus msql and msq exhibit the
same probabilistic behaviour.

Comparatively, mfib was obtained from fib by injecting a sim-
ilar fault but this time the fault propagates to its derivative f and
then back to mfib. Thus both mfib and f are genuinely probabilis-
tic and the derived linear version mfibl is not granted to exhibit the
same behaviour.

This can be confirmed by further querying our experiments in
two ways. First, we check that the odd projection of msql remains
sharp in spite of the probabilistic process it runs inside of: we define
msqlo as the same as msql but returning o instead of s ,

msqlo n =
do {(s, o)← mfor loop (0, 1) n; return o}

where loop (s, o) =
do {z ← fadd 0.1 s o; return (z , o + 2)}

and run eg. msqlo 5, for instance

Main> msqlo 5
11 100.0%

to observe that it yields the Dirac distribution on 11, the fifth odd
number, while its companion projection yields

Main> msql 5
25 65.6%
9 10.0%
16 9.0%
21 8.1%
24 7.3%

Second, we disturb this situation by injecting another fault, this
time in the odd function itself,

odd ′ 0 = return 1
odd ′ (n + 1) = do {x ← odd ′ n; fadd 0.1 2 x }

and check that suitably adapted msq , mutually dependent on odd ′,

msq ′ 0 = return 0
msq ′ (n + 1) = do {m ← msq ′ n; x ← odd ′ n; fadd 0.1 m x }

and its linear version,

msql ′ n =
do {(s, o)← mfor loop (0, 1) n; return s } where

loop (s, o) = do {
z ← fadd 0.1 s o; x ← fadd 0.1 2 o;
return (z , x )}

12 This includes, of course, the standard case in which both f and g are
sharp functions.
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now exhibit different probabilistic behaviours, for instance,

n msq ′ n msql ′ n

3

9 59.0%
7 19.7%
5 10.3%
8 6.6%
6 2.2%
3 1.9%
4 0.2%
1 0.1%
2 0.0%

9 65.6%
5 15.4%
7 7.3%
8 7.3%
3 2.6%
4 0.8%
6 0.8%
1 0.1%
2 0.1%

where linear scores better than mutually recursive, still.

9. Generalizing to other fault propagation
patterns

Besides mutual recursion, other fault propagation patterns in func-
tional programs arise from calculations in the LAoP. These extend
to other datatypes, as for-loops generalize to folds over lists, and
more generally to catamorphisms over other inductive data types
[4].

Below we give examples of this generalization. The first exam-
ple, still dealing with for-loops, shows that faults in the base case
propagate linearly through the choice operator — the law of base
case fault distribution:

for f (a p� b) = (for f a) p� (for f b) (29)

The need for a generalization can be seen already in writing “a p�
b”, an abuse of notation since the choice operator chooses between
functions, not arbitrary values. Thus construct for f i has to
give room to (|[h|f ]|), where standard catamorphism notation [4]
is adopted to give freedom to the base case to be any probabilistic
function h of its type. Thus (9) becomes, for F f = id ⊕ f ,

k = (|[h|f ]|) ≡ k · in = [h|f ] · (F k) (30)

Clearly,

for f a = (|[a|f ]|) (31)

holds. In (29), abbreviation for f (a p� b) replacing (|[(a p� b)|f ]|)
is welcome as it enhances readability.

The proof of (29) is given in appendix A. It relies on properties
of probabilistic choice already given in [18], namely choice-fusion

(f p� g) · h = (f · h) p� (g · h) (32)
h · (f p� g) = (h · f ) p� (h · f ) (33)

and the exchange law:

[f |g ] p� [h|k ] = [(f p� h)|(g p� k)] (34)

Other interesting patterns of fault propagation arise in pipelin-
ing, that is, compositions of probabilistic functions k = f · g
whereby one is able to obtain the fault of the whole (probabilis-
tic k ) expressed in terms of the faults of its parts (probabilistic f
and g) by “fault fusion”.

The example of fault fusion given below involves sequences
rather than natural numbers, which means evolving from the for
combinator to the corresponding combinator at sequence process-
ing level 13,

k = fold f d ≡ k · in = [d |f ] · (F k) (35)

where F k = id ⊕ (id ⊗ k) and in = [nil|cons] is the initial
algebra of sequences, for (in Haskell notation) nil = [ ] and
cons (h, t) = h : t . Besides the direct sum (id ⊕ ·) splitting

13 Both are instances of the generic catamorphism construct, as already
mentioned.

base from recursive case, as with for, recursive pattern F k involves
the Kronecker product id ⊗ k which delivers to f the head of the
current sequence and the outcome of the recursive call k . The base
case is captured by vector d , a distribution. For sharp functions,
fold f u means the same as foldr (curry f ) u in standard Haskell.
(This difference is not a very significant one, as we shall see in the
examples below.) Substitution of k will yield a closed formula for
probabilistic fold (cancellation property):

fold f d = [d |f · (id ⊗ (fold f d))] ·
[

nil◦

cons◦

]

≡ { divide-and-conquer (11) }
d · nil◦ + f · (id ⊗ (fold f d)) · cons◦ (36)

As examples, consider count = fold (succ · snd) 0, the
function that counts how many items can be found in the input
sequence, and cat = fold cons nil, that which copies the input
sequence to the output (thus cat = id ). Suppose there is some
risk that cat might fail passing items from input to output, with
probability p, as captured by

fcat = fold (lose p� send) nil

where lose = snd and send = cons. For instance, for p = 0.1,
distribution fcat "abc" will range from perfect copy (72.9%) to
complete loss (0.1%):

"abc" 72.9%
"ab" 8.1%
"ac" 8.1%
"bc" 8.1%
"a" 0.9%
"b" 0.9%
"c" 0.9%
"" 0.1%

Now suppose that count too may be faulty in the sense of skipping
elements with probability q :

fcount = fold ((id q� succ) · snd) 0

For instance, for q = 0.15, distribution fcount "abc" will be:

3 61.4%
2 32.5%
1 5.7%
0 0.3%

What can we tell about the risk of faults in the pipeline fcount ·
fcat? We could try specific runs, eg. (fcount · fcat) "abc" yield-
ing distribution

3 44.8%
2 41.3%
1 12.7%
0 1.3%

whose figures combine, in some way, those given earlier for the
individual runs.

What we would like to know is the general formula which
combines such figures and expresses the overall risk of failure. For
this we resort to the fusion law which emerges from (35) in the
standard way [4] and also in the probabilistic setting:

k · (fold g e) = fold f d ⇐ k · [e|g ] = [d |f ] · (F k) (37)
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In our case, this enables us to solve the equation fcount · fcat =
fold x y for unknowns x and y :

fcount · fcat = fold x y

⇐ { fold fusion (37) ; definition of fcat }
fcount · [nil|(lose p� send)] = [x |y ] · (F fcount)

≡ { (5) ; definition of F; (7) ; (6) }
{

fcount · nil = x
fcount · (lose p� send) = y · (id ⊗ fcount)

≡ { fcount · nil = 0 }
{

x = 0
fcount · (snd p� cons) = y · (id ⊗ fcount)

Second, we solve the second equality just above for y :

fcount · (snd p� cons) = y · (id ⊗ fcount)

≡ { choice fusion (33) }
(fcount · snd) p� (fcount · cons) = y · (id ⊗ fcount)

≡ { unfolding fcount · cons }
(fcount · snd) p� ((id q� succ) · snd · (id ⊗ fcount))

= y · (id ⊗ fcount)

≡ { free theorem of snd }
(fcount · snd) p� ((id q� succ) · fcount · snd)

= y · (id ⊗ fcount)

≡ { choice fusion (32) }
(id p� (id q� succ)) · fcount · snd = y · (id ⊗ fcount)

≡ { free theorem of snd again }
(id p� (id q� succ)) · snd · (id ⊗ fcount) = y · (id ⊗ fcount)

⇐ { Leibniz (id ⊗ fcount cancelled from both sides) }
y = (id p� (id q� succ)) · snd

Summing up, we have been able to consolidate the risk of the
pipeline fcount · fcat , obtaining the overall behavior

fcount · fcat =
fold y 0 where

y = ((p + q − pq) id + (1− p) (1− q) succ) · snd

in which the probabilistic definition of y combines the choices
according to (3). It can be checked that this behaviour (which
corresponds to that of a even more risky fcount reading from a
perfect cat) matches up with the distributions obtained for the
specific runs given earlier.

10. Conclusions
The production of safety critical software is bound to a number of
safety and certification standards in which estimating the risk of
failure plays a central role. NASA’s procedures guide for proba-
bilistic risk assessment (PRA) reviews the historical background of
risk analysis, evolving from a qualitative to a quantitative perspec-
tive of risk [21]. The UK MoD Defence Standard 00-56 [16] en-
forces that all (...) calculations underpinning the risk estimation be
recorded in so-called safety cases (documents supporting the claim
that some given software is safe) such that the risk estimates can
be reviewed and reconstructed.

Risk estimation seems to live outside programmers’ core prac-
tice: either the software system once completed is subject (by oth-
ers) to intensive simulation over faults injected into safety-critical
parts or the estimation proceeds by analysis of worse case scenarios
on a large-scale view of the system’s operation.

Software development and risk analysis are performed sepa-
rately because programming language semantics are (in general)
qualitative and risk estimation calls for quantitative semantic mod-
els such as those already prominent in security [15]. Quantitative
methods face another problem, diagnosed in [17]: probability the-
ory is too descriptive and not fit enough for calculation as this is
understood in today’s research in program correctness.

In this paper we propose that risk calculation be constructively
handled in the programming process since the early stages, rather
than being an a posteriori concern. This means that risk is taken
into account as the “normal” situation, absence of risk being an
ideal case. In particular, operations are modelled as probabilistic
choice between expected behaviour and faulty behaviour.

Functional programming appears to be particularly apt for this
purpose because of its strong mathematical basis. The obstacles
mentioned above are circumvented by adopting a linear algebra
approach to probability calculation [18], a strategy which fits into
the calculational style of functional program development based on
its algebra of programming [4].

This puts functional programming in the forefront of risk es-
timation simply by exploring the adjunction between distribution-
valued functions and matrices of probabilities. One side of the ad-
junction is “good for programming”: the monadic one, as we have
shown by our experiments in Haskell; the other side (linear algebra)
is “good for calculation”.

This does not prevent one from actually running case studies
in a matrix-speaking language such as eg. MATLAB. Interestingly,
we have observed that, although using MATLAB for the purposes
of this paper may seem a “tour de force” (since it is poorly typed
and not polymorphic, calling for explicit type error checking in the
old style), MATLAB tends to perform faster than Haskell when the
probabilistic monadic calculations involve distributions of wider
support. 14

The core of the paper has shown how to calculate the propa-
gation of faults across standard program transformation techniques
known as tupling [11] and fusion [10]. This enables one to find
conditions for the fault of the whole to be expressed in terms of the
faults of its parts.

11. Future work
In our experiments with probabilistic mutual recursion transforma-
tion, linear versions consistently score better than the recursive.
This conforms to intuition, as program optimization leads to less
computations and therefore to lesser propagation of faults.

We would like to be able to quantify such a difference in prob-
abilistic behaviour. In general, one may think of ordering fault-
injected functions with respect to some expected, sharp function.
Let f : A → B be such a function and g , h : A → B be proba-
bilistic approximations to it, all represented as CS-matrices. Then
g and h can be compared against f as follows,

g 6f h iff g × f 6 h × f

where M × N denotes the Hadamard (entry-wise) product of ma-
trices M and N . That is, for each a , we compare the probability

14 All experiments reported in the current paper can be reproduced
by downloading the Haskell and MATLAB sources available from
http://wiki.di.uminho.pt/twiki/bin/view/Research/
QAIS/WorkBench. The PFP library should be credited to M. Erwig and
S. Kollmansberger [7].
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which g and h offer for the correct value f a . Of course, g 6f f
always holds, that is, f is the best approximation to itself. The ques-
tion is — how effective is it to calculate with this preorder? Is the
difference h×f −g×f a metric suitable for quantifying fault prop-
agation across correctness-preserving program transformations?

Another follow-up of the strategy put forward in this paper is
its application to fault-propagation in component-oriented software
systems. Reference [5] quantifies component-to-component error
propagation in terms of a matrix which emulates a probabilistic
call-graph. We are currently working on a formal alternative to
this approach [3] in which components represented by coalgebras
[2] extended probabilistically, adding to the coalgebraic matrices
of [19] a behaviour monad inside the distribution one. We hope
to show that the linear algebra of programming is a wide-range
formalism suitable to support quantitative methods in the software
sciences, in general.
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A. Proofs in appendix
Proof of cancellation (21) Base case (f and g are column vec-
tors) 15:

fst · (f M g) = f ∧ snd · (f M g) = g

≡ { fst = id ⊗ ! and snd = !⊗ id }
(id ⊗ !) · (f M g) = f ∧ (!⊗ id) · (f M g) = g

≡ { for vectors, f M g = f ⊗ g (15) }
(id ⊗ !) · (f ⊗ g) = f ∧ (!⊗ id) · (f ⊗ g) = g

≡ { functor-· ⊗ ·; natural-id }
f ⊗ (! · g) = f ∧ (! · f )⊗ g = g

≡ { g is probabilistic, therefore ! · f = ! · g = ! [18] }
f ⊗ ! = f ∧ !⊗ g = g

≡ { 1 1
!oo = 1 and M ⊗ 1 = M }

f = f ∧ g = g

�

15 Row vector ! : A→ 1 corresponds to the sharp, constant function which
maps every input to the singleton datatype.
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Inductive step: f = [f1|f2] and g = [g1|g2]. Calculating fst · (f M

g) = f first:

fst · (f M g) = f

≡ { f = [f1|f2] and g = [g1|g2] }
fst · ([f1|f2] M [g1|g2]) = [f1|f2]

≡ { exchange law (16) }
fst · [(f1 M g1)|(f2 M g2)] = [f1|f2]

≡ { fusion (5) }
[(fst · (f1 M g1))|(fst · (f2 M g2))] = [f1|f2]

≡
{

induction hypothesis: fst · (f M g) = f
holds for f , g := fi, gi (i = 1, 2)

}

[f1|f2] = [f1|f2]
�

Branch snd · (f M g) = g is calculated in a similar way. �

Proof of base-case fault propagation (29) Clearly, by (31) and
universal property (30), our target (29) re-writes to the equality

((for f a) p� (for f b)) · in =

[(a p� b)|f ] · (F ((for f a) p� (for f b)))

which holds by transforming the left-hand side into the right-hand
side:

((for f a) p� (for f b)) · in
= { choice-fusion (32) }

(for f a · in) p� (for f b · in)
= { (31) and (30), twice }

([a|f ] · F (for f a)) p� ([b|f ] · F (for f b)))

= { F f = id ⊕ f ; [M |N ] · (P ⊕Q) = [M · P |N ·Q] }
[a|(f · (for f a))] p� [b|(f · (for f b))]

= { exchange law (34) }
[(a p� b)|((f · for f a) p� (f · for f b))]

= { choice-fusion (33) }
[(a p� b)|(f · ((for f a) p� (for f b)))]

= { [M |N ] · (P ⊕Q) = [M · P |N ·Q] }
[(a p� b)|f ] · (id ⊕ ((for f a) p� (for f b)))

= { F f = id ⊕ f }
[(a p� b)|f ] · (F ((for f a) p� (for f b)))

�

Proof of Khatri-Rao (conditional) fusion We want to prove

(M M N ) · h = (M .h) M (N .h) ⇐ h is sharp

where probabilistic functions f and g are generalized to arbitrary
matrices M and N :

(b, c) ((M M N) · h) a

= { (25) for h a standard function }
(b, c) (M M N) (h a)

= { pointwise Khatri-Rao (13) }
(b M (h a))× (c N (h a))

= { (25) for h a standard function }
b (M · h) a × c (N · h) a

= { pointwise Khatri Rao (13) — twice }
(b, c) ((M · h) M (N · h)) a

�
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